blob: 4fca469f54fa59a633ab5cd74bc49a153ceca05c [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <gtest/gtest.h>
#include "tools/fidlcat/interception_tests/interception_workflow_test.h"
namespace fidlcat {
// zx_fifo_create tests.
std::unique_ptr<SystemCallTest> ZxFifoCreate(int64_t result, std::string_view result_name,
size_t elem_count, size_t elem_size, uint32_t options,
zx_handle_t* out0, zx_handle_t* out1) {
auto value = std::make_unique<SystemCallTest>("zx_fifo_create", result, result_name);
value->AddInput(elem_count);
value->AddInput(elem_size);
value->AddInput(options);
value->AddInput(reinterpret_cast<uint64_t>(out0));
value->AddInput(reinterpret_cast<uint64_t>(out1));
return value;
}
#define FIFO_CREATE_DISPLAY_TEST_CONTENT(result, expected) \
zx_handle_t out0 = kHandleOut; \
zx_handle_t out1 = kHandleOut2; \
PerformDisplayTest("$plt(zx_fifo_create)", ZxFifoCreate(result, #result, 4, 3, 0, &out0, &out1), \
expected);
#define FIFO_CREATE_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { FIFO_CREATE_DISPLAY_TEST_CONTENT(errno, expected); } \
TEST_F(InterceptionWorkflowTestArm, name) { FIFO_CREATE_DISPLAY_TEST_CONTENT(errno, expected); }
FIFO_CREATE_DISPLAY_TEST(ZxFifoCreate, ZX_OK,
"\n"
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_fifo_create("
"elem_count: \x1B[32msize\x1B[0m = \x1B[34m4\x1B[0m, "
"elem_size: \x1B[32msize\x1B[0m = \x1B[34m3\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m)\n"
" -> \x1B[32mZX_OK\x1B[0m ("
"out0: \x1B[32mhandle\x1B[0m = \x1B[31mbde90caf\x1B[0m, "
"out1: \x1B[32mhandle\x1B[0m = \x1B[31mbde90222\x1B[0m)\n");
// zx_fifo_read tests.
std::unique_ptr<SystemCallTest> ZxFifoRead(int64_t result, std::string_view result_name,
zx_handle_t handle, size_t elem_size, void* data,
size_t count, size_t* actual_count) {
auto value = std::make_unique<SystemCallTest>("zx_fifo_read", result, result_name);
value->AddInput(handle);
value->AddInput(elem_size);
value->AddInput(reinterpret_cast<uint64_t>(data));
value->AddInput(count);
value->AddInput(reinterpret_cast<uint64_t>(actual_count));
return value;
}
#define FIFO_READ_DISPLAY_TEST_CONTENT(result, expected) \
constexpr size_t kElemSize = 4; \
std::vector<uint8_t> buffer; \
for (int i = 0; i < 20; ++i) { \
buffer.emplace_back(i); \
} \
size_t actual_count = buffer.size() / kElemSize; \
PerformDisplayTest( \
"$plt(zx_fifo_read)", \
ZxFifoRead(result, #result, kHandle, kElemSize, buffer.data(), 10, &actual_count), \
expected);
#define FIFO_READ_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { FIFO_READ_DISPLAY_TEST_CONTENT(errno, expected); } \
TEST_F(InterceptionWorkflowTestArm, name) { FIFO_READ_DISPLAY_TEST_CONTENT(errno, expected); }
FIFO_READ_DISPLAY_TEST(
ZxFifoRead, ZX_OK,
"\n"
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_fifo_read("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"elem_size: \x1B[32msize_t\x1B[0m = \x1B[34m4\x1B[0m, "
"count: \x1B[32msize_t\x1B[0m = \x1B[34m10\x1B[0m)\n"
" -> \x1B[32mZX_OK\x1B[0m (actual: \x1B[32msize_t\x1B[0m = "
"\x1B[34m5\x1B[0m/\x1B[34m10\x1B[0m)\n"
" data: \x1B[32muint8\x1B[0m = "
"\x1B[34m00\x1B[0m, \x1B[34m01\x1B[0m, \x1B[34m02\x1B[0m, \x1B[34m03\x1B[0m, "
"\x1B[34m04\x1B[0m, \x1B[34m05\x1B[0m, \x1B[34m06\x1B[0m, \x1B[34m07\x1B[0m, "
"\x1B[34m08\x1B[0m, \x1B[34m09\x1B[0m, \x1B[34m0a\x1B[0m, \x1B[34m0b\x1B[0m, "
"\x1B[34m0c\x1B[0m, \x1B[34m0d\x1B[0m, \x1B[34m0e\x1B[0m, \x1B[34m0f\x1B[0m, "
"\x1B[34m10\x1B[0m, \x1B[34m11\x1B[0m, \x1B[34m12\x1B[0m, \x1B[34m13\x1B[0m\n");
// zx_fifo_write tests.
std::unique_ptr<SystemCallTest> ZxFifoWrite(int64_t result, std::string_view result_name,
zx_handle_t handle, size_t elem_size, const void* data,
size_t count, size_t* actual_count) {
auto value = std::make_unique<SystemCallTest>("zx_fifo_write", result, result_name);
value->AddInput(handle);
value->AddInput(elem_size);
value->AddInput(reinterpret_cast<uint64_t>(data));
value->AddInput(count);
value->AddInput(reinterpret_cast<uint64_t>(actual_count));
return value;
}
#define FIFO_WRITE_DISPLAY_TEST_CONTENT(result, expected) \
constexpr size_t kElemSize = 4; \
std::vector<uint8_t> buffer; \
for (int i = 0; i < 20; ++i) { \
buffer.emplace_back(i); \
} \
size_t actual_count = 2; \
PerformDisplayTest("$plt(zx_fifo_write)", \
ZxFifoWrite(result, #result, kHandle, kElemSize, buffer.data(), \
buffer.size() / kElemSize, &actual_count), \
expected);
#define FIFO_WRITE_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { FIFO_WRITE_DISPLAY_TEST_CONTENT(errno, expected); } \
TEST_F(InterceptionWorkflowTestArm, name) { FIFO_WRITE_DISPLAY_TEST_CONTENT(errno, expected); }
FIFO_WRITE_DISPLAY_TEST(
ZxFifoWrite, ZX_OK,
"\n"
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_fifo_write("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"elem_size: \x1B[32msize_t\x1B[0m = \x1B[34m4\x1B[0m, "
"count: \x1B[32msize_t\x1B[0m = \x1B[34m5\x1B[0m)\n"
" data: \x1B[32muint8\x1B[0m = "
"\x1B[34m00\x1B[0m, \x1B[34m01\x1B[0m, \x1B[34m02\x1B[0m, \x1B[34m03\x1B[0m, "
"\x1B[34m04\x1B[0m, \x1B[34m05\x1B[0m, \x1B[34m06\x1B[0m, \x1B[34m07\x1B[0m, "
"\x1B[34m08\x1B[0m, \x1B[34m09\x1B[0m, \x1B[34m0a\x1B[0m, \x1B[34m0b\x1B[0m, "
"\x1B[34m0c\x1B[0m, \x1B[34m0d\x1B[0m, \x1B[34m0e\x1B[0m, \x1B[34m0f\x1B[0m, "
"\x1B[34m10\x1B[0m, \x1B[34m11\x1B[0m, \x1B[34m12\x1B[0m, \x1B[34m13\x1B[0m\n"
" -> \x1B[32mZX_OK\x1B[0m ("
"actual: \x1B[32msize_t\x1B[0m = \x1B[34m2\x1B[0m/\x1B[34m5\x1B[0m)\n");
} // namespace fidlcat