blob: ba1b9039a6ef65892ea833ec4c2f085ad52a1b47 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2008-2012 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <arch.h>
#include <ctype.h>
#include <debug.h>
#include <endian.h>
#include <lib/cmdline.h>
#include <lib/console.h>
#include <lib/instrumentation/asan.h>
#include <lib/unittest/user_memory.h>
#include <platform.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zircon/listnode.h>
#include <zircon/time.h>
#include <zircon/types.h>
#include <arch/ops.h>
#include <kernel/thread.h>
#include <ktl/array.h>
#include <ktl/unique_ptr.h>
#include <platform/debug.h>
#include <vm/physmap.h>
#include <vm/pmm.h>
#if defined(__x86_64__)
#include <arch/x86/feature.h>
#endif
static int cmd_display_mem(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_modify_mem(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_fill_mem(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_memtest(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_copy_mem(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_sleep(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_crash(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_stackstomp(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_recurse(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_cmdline(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_crash_user_read(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_crash_pmm_use_after_free(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_crash_assert(int argc, const cmd_args* argv, uint32_t flags);
static int cmd_build_instrumentation(int argc, const cmd_args* argv, uint32_t flags);
STATIC_COMMAND_START
STATIC_COMMAND_MASKED("dd", "display memory in dwords", &cmd_display_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("dw", "display memory in words", &cmd_display_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("dh", "display memory in halfwords", &cmd_display_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("db", "display memory in bytes", &cmd_display_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("mw", "modify word of memory", &cmd_modify_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("mh", "modify halfword of memory", &cmd_modify_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("mb", "modify byte of memory", &cmd_modify_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("fw", "fill range of memory by word", &cmd_fill_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("fh", "fill range of memory by halfword", &cmd_fill_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("fb", "fill range of memory by byte", &cmd_fill_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND_MASKED("mc", "copy a range of memory", &cmd_copy_mem, CMD_AVAIL_ALWAYS)
STATIC_COMMAND("mtest", "simple memory test", &cmd_memtest)
STATIC_COMMAND("crash", "intentionally crash", &cmd_crash)
STATIC_COMMAND("crash_stackstomp", "intentionally overrun the stack", &cmd_stackstomp)
STATIC_COMMAND("crash_recurse", "intentionally overrun the stack by recursing", &cmd_recurse)
STATIC_COMMAND("crash_user_read", "intentionally read user memory", &cmd_crash_user_read)
STATIC_COMMAND("crash_pmm_use_after_free", "intentionally corrupt the pmm free list",
&cmd_crash_pmm_use_after_free)
STATIC_COMMAND("crash_assert", "intentionally crash by failing an assert", &cmd_crash_assert)
STATIC_COMMAND("cmdline", "display kernel commandline", &cmd_cmdline)
STATIC_COMMAND("sleep", "sleep number of seconds", &cmd_sleep)
STATIC_COMMAND("sleepm", "sleep number of milliseconds", &cmd_sleep)
STATIC_COMMAND(
"build_instrumentation",
"display a non-exhaustive list of build instrumentations used to build this kernel image",
&cmd_build_instrumentation)
STATIC_COMMAND_END(mem)
static int cmd_display_mem(int argc, const cmd_args* argv, uint32_t flags) {
/* save the last address and len so we can continue where we left off */
static unsigned long address;
static size_t len;
if (argc < 3 && len == 0) {
printf("not enough arguments\n");
printf("%s [-l] [-b] [address] [length]\n", argv[0].str);
return -1;
}
int size;
if (strcmp(argv[0].str, "dd") == 0) {
size = 8;
} else if (strcmp(argv[0].str, "dw") == 0) {
size = 4;
} else if (strcmp(argv[0].str, "dh") == 0) {
size = 2;
} else {
size = 1;
}
uint byte_order = BYTE_ORDER;
int argindex = 1;
bool read_address = false;
while (argc > argindex) {
if (!strcmp(argv[argindex].str, "-l")) {
byte_order = LITTLE_ENDIAN;
} else if (!strcmp(argv[argindex].str, "-b")) {
byte_order = BIG_ENDIAN;
} else if (!read_address) {
address = argv[argindex].u;
read_address = true;
} else {
len = argv[argindex].u;
}
argindex++;
}
unsigned long stop = address + len;
int count = 0;
if ((address & (size - 1)) != 0) {
printf("unaligned address, cannot display\n");
return -1;
}
/* preflight the start address to see if it's mapped */
if (vaddr_to_paddr((void*)address) == 0) {
printf("ERROR: address 0x%lx is unmapped\n", address);
return -1;
}
for (; address < stop; address += size) {
if (count == 0)
printf("0x%08lx: ", address);
switch (size) {
case 8: {
uint64_t val =
(byte_order != BYTE_ORDER) ? SWAP_64(*(uint64_t*)address) : *(uint64_t*)address;
printf("%016lx ", val);
break;
}
case 4: {
uint32_t val =
(byte_order != BYTE_ORDER) ? SWAP_32(*(uint32_t*)address) : *(uint32_t*)address;
printf("%08x ", val);
break;
}
case 2: {
uint16_t val =
(byte_order != BYTE_ORDER) ? SWAP_16(*(uint16_t*)address) : *(uint16_t*)address;
printf("%04hx ", val);
break;
}
case 1:
printf("%02hhx ", *(uint8_t*)address);
break;
}
count += size;
if (count == 16) {
printf("\n");
count = 0;
}
}
if (count != 0)
printf("\n");
return 0;
}
static int cmd_modify_mem(int argc, const cmd_args* argv, uint32_t flags) {
int size;
if (argc < 3) {
printf("not enough arguments\n");
printf("%s <address> <val>\n", argv[0].str);
return -1;
}
if (strcmp(argv[0].str, "mw") == 0) {
size = 4;
} else if (strcmp(argv[0].str, "mh") == 0) {
size = 2;
} else {
size = 1;
}
unsigned long address = argv[1].u;
unsigned long val = argv[2].u;
if ((address & (size - 1)) != 0) {
printf("unaligned address, cannot modify\n");
return -1;
}
switch (size) {
case 4:
*(uint32_t*)address = (uint32_t)val;
break;
case 2:
*(uint16_t*)address = (uint16_t)val;
break;
case 1:
*(uint8_t*)address = (uint8_t)val;
break;
}
return 0;
}
static int cmd_fill_mem(int argc, const cmd_args* argv, uint32_t flags) {
int size;
if (argc < 4) {
printf("not enough arguments\n");
printf("%s <address> <len> <val>\n", argv[0].str);
return -1;
}
if (strcmp(argv[0].str, "fw") == 0) {
size = 4;
} else if (strcmp(argv[0].str, "fh") == 0) {
size = 2;
} else {
size = 1;
}
unsigned long address = argv[1].u;
unsigned long len = argv[2].u;
unsigned long stop = address + len;
unsigned long val = argv[3].u;
if ((address & (size - 1)) != 0) {
printf("unaligned address, cannot modify\n");
return -1;
}
for (; address < stop; address += size) {
switch (size) {
case 4:
*(uint32_t*)address = (uint32_t)val;
break;
case 2:
*(uint16_t*)address = (uint16_t)val;
break;
case 1:
*(uint8_t*)address = (uint8_t)val;
break;
}
}
return 0;
}
static int cmd_copy_mem(int argc, const cmd_args* argv, uint32_t flags) {
if (argc < 4) {
printf("not enough arguments\n");
printf("%s <source address> <target address> <len>\n", argv[0].str);
return -1;
}
uintptr_t source = argv[1].u;
uintptr_t target = argv[2].u;
size_t len = argv[3].u;
memcpy((void*)target, (const void*)source, len);
return 0;
}
static int cmd_memtest(int argc, const cmd_args* argv, uint32_t flags) {
if (argc < 3) {
printf("not enough arguments\n");
printf("%s <base> <len>\n", argv[0].str);
return -1;
}
uint32_t* ptr;
size_t len;
ptr = (uint32_t*)argv[1].u;
len = (size_t)argv[2].u;
size_t i;
// write out
printf("writing first pass...");
for (i = 0; i < len / 4; i++) {
ptr[i] = static_cast<uint32_t>(i);
}
printf("done\n");
// verify
printf("verifying...");
for (i = 0; i < len / 4; i++) {
if (ptr[i] != i)
printf("error at %p\n", &ptr[i]);
}
printf("done\n");
return 0;
}
static int cmd_sleep(int argc, const cmd_args* argv, uint32_t flags) {
zx_duration_t t = ZX_SEC(1); /* default to 1 second */
if (argc >= 2) {
t = ZX_MSEC(argv[1].u);
if (!strcmp(argv[0].str, "sleep"))
t = zx_duration_mul_int64(t, 1000);
}
Thread::Current::SleepRelative(t);
return 0;
}
static int crash_thread(void*) {
/* should crash */
volatile uint32_t* ptr = (volatile uint32_t*)1u;
*ptr = 1;
return 0;
}
static int cmd_crash(int argc, const cmd_args* argv, uint32_t flags) {
if (argc > 1) {
if (!strcmp(argv[1].str, "thread")) {
Thread* t = Thread::Create("crasher", &crash_thread, NULL, DEFAULT_PRIORITY);
t->Resume();
t->Join(NULL, ZX_TIME_INFINITE);
return 0;
}
}
crash_thread(nullptr);
/* if it didn't, panic the system */
panic("crash");
return 0;
}
// Crash by intentionally recursing to itself until the kernel
// call stack is exceeded.
__attribute__((noinline)) static int recurse(void* _func) {
auto func = reinterpret_cast<int (*)(void*)>(_func);
return func(_func) + 1;
}
static int cmd_recurse(int argc, const cmd_args* argv, uint32_t flags) {
recurse(reinterpret_cast<void*>(&recurse));
printf("survived.\n");
return 0;
}
__attribute__((noinline)) static void stomp_stack(size_t size) {
// -Wvla prevents VLAs but not explicit alloca.
// Neither is allowed anywhere in the kernel outside this test code.
void* death = __builtin_alloca(size); // OK in test-only code.
memset(death, 0xaa, size);
Thread::Current::SleepRelative(ZX_USEC(1));
}
static int cmd_stackstomp(int argc, const cmd_args* argv, uint32_t flags) {
for (size_t i = 0; i < DEFAULT_STACK_SIZE * 2; i++)
stomp_stack(i);
printf("survived.\n");
return 0;
}
// Marked with NO_ASAN because this will be called with a pointer to user memory.
NO_ASAN uint8_t read_byte(const uint8_t* p) { return *p; }
static int cmd_crash_user_read(int argc, const cmd_args* argv, uint32_t flags) {
// TODO(fxbug.dev/59284): Once we support PAN enable this for arm64.
#if defined(__x86_64__)
if (!g_x86_feature_has_smap) {
printf("cpu does not support smap; will not crash.\n");
return -1;
}
#else
printf("only supported on x64; will not crash.\n");
return -1;
#endif
ktl::unique_ptr<testing::UserMemory> mem = testing::UserMemory::Create(PAGE_SIZE);
if (mem == nullptr) {
printf("failed to allocate user memory; will not crash.\n");
return -1;
}
const uint8_t* p = mem->user_in<uint8_t>().get();
if (p == nullptr) {
printf("failed to get pointer; will not crash.\n");
return -1;
}
printf("about to crash..\n");
uint8_t b = read_byte(p);
printf("read %02hhx; did not crash.\n", b);
return -1;
}
static int cmd_crash_pmm_use_after_free(int argc, const cmd_args* argv, uint32_t flags) {
// We want to corrupt one of the pages on the pmm's free list. To do so, we'll allocate a bunch
// of pages, keep track of the address of the last page, then free them all. The free list is
// LIFO so by allocating and freeing a bunch of pages we'll have a pointer "to the middle" and our
// corrupted page will be less like to be immediately allocated.
// Allocate.
const size_t num_pages = 10000;
list_node pages = LIST_INITIAL_VALUE(pages);
zx_status_t status = pmm_alloc_pages(num_pages, 0, &pages);
if (unlikely(status != ZX_OK)) {
printf("error: failed to allocate (%d)\n", status);
return -1;
}
// Make note of address.
vm_page_t* last_page = list_peek_tail_type(&pages, vm_page_t, queue_node);
void* va = paddr_to_physmap(last_page->paddr());
// We're printing a little early because once we've returned the pages to the free list, we want
// to avoid doing anything that might cause the target page to be allocated (by this thread or
// some other thread).
printf("corrupting memory at address %p\n", va);
// Free.
pmm_free(&pages);
// Corrupt!
*reinterpret_cast<char*>(va) = 'X';
printf("crash_pmm_use_after_free done\n");
return -1;
}
static int cmd_crash_assert(int argc, const cmd_args* argv, uint32_t flags) {
constexpr int kValue = 42;
ASSERT_MSG(kValue == 0, "value %d\n", kValue);
return -1;
}
#define DEBUG_CMDLINE_MAX 1024
static int cmd_cmdline(int argc, const cmd_args* argv, uint32_t flags) {
if (argc == 1) {
char cmdline_buf[DEBUG_CMDLINE_MAX];
memset(cmdline_buf, 0, DEBUG_CMDLINE_MAX);
const char* cmdline = gCmdline.GetString(NULL);
for (size_t i = 0; i < DEBUG_CMDLINE_MAX; i++) {
if (cmdline[i] == '\0') {
if (cmdline[i + 1] == '\0') {
break;
}
cmdline_buf[i] = ' ';
} else {
cmdline_buf[i] = cmdline[i];
}
}
printf("cmdline: %s\n", cmdline_buf);
} else {
const char* key = argv[1].str;
const char* val = gCmdline.GetString(key);
if (!val) {
printf("cmdline: %s not found\n", key);
} else {
printf("cmdline: %s=%s\n", key, val);
}
}
return 0;
}
static int cmd_build_instrumentation(int argc, const cmd_args* argv, uint32_t flags) {
ktl::array static_features {
#if __has_feature(address_sanitizer)
"address_sanitizer",
#endif
#if DEBUG_ASSERT_IMPLEMENTED
"debug_assert",
#endif
#if WITH_LOCK_DEP
"lockdep",
#endif
#if __has_feature(safe_stack)
"safe_stack",
#endif
#if __has_feature(shadow_call_stack)
"shadow_call_stack",
#endif
// missing: sancov, profile
};
for (const auto& feature : static_features) {
printf("build_instrumentation: %s\n", feature);
}
printf("build_instrumentation: done\n");
return 0;
}