blob: bb4d87fdf9c593aeea1c2fd3ae13d28933952ba4 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2015 Google Inc. All rights reserved
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <assert.h>
#include <bits.h>
#include <trace.h>
#include <arch/arm64.h>
#include <kernel/thread.h>
#define LOCAL_TRACE 0
/* FPEN bits in the cpacr register
* 0 means all fpu instructions fault
* 3 means no faulting at all EL levels
* other values are not useful to us
*/
#define FPU_ENABLE_MASK (3 << 20)
static inline bool is_fpu_enabled(uint64_t cpacr) { return !!(BITS(cpacr, 21, 20) != 0); }
static void arm64_fpu_load_regs(Thread* t) {
struct fpstate* fpstate = &t->arch().fpstate;
LTRACEF("cpu %u, thread %s, load fpstate %p\n", arch_curr_cpu_num(), t->name(), fpstate);
static_assert(sizeof(fpstate->regs) == 16 * 32, "");
__asm__ volatile(
"ldp q0, q1, [%0, #(0 * 32)]\n"
"ldp q2, q3, [%0, #(1 * 32)]\n"
"ldp q4, q5, [%0, #(2 * 32)]\n"
"ldp q6, q7, [%0, #(3 * 32)]\n"
"ldp q8, q9, [%0, #(4 * 32)]\n"
"ldp q10, q11, [%0, #(5 * 32)]\n"
"ldp q12, q13, [%0, #(6 * 32)]\n"
"ldp q14, q15, [%0, #(7 * 32)]\n"
"ldp q16, q17, [%0, #(8 * 32)]\n"
"ldp q18, q19, [%0, #(9 * 32)]\n"
"ldp q20, q21, [%0, #(10 * 32)]\n"
"ldp q22, q23, [%0, #(11 * 32)]\n"
"ldp q24, q25, [%0, #(12 * 32)]\n"
"ldp q26, q27, [%0, #(13 * 32)]\n"
"ldp q28, q29, [%0, #(14 * 32)]\n"
"ldp q30, q31, [%0, #(15 * 32)]\n"
"msr fpcr, %1\n"
"msr fpsr, %2\n" ::"r"(fpstate->regs),
"r"((uint64_t)fpstate->fpcr), "r"((uint64_t)fpstate->fpsr));
}
static void arm64_fpu_save_regs(Thread* t) {
struct fpstate* fpstate = &t->arch().fpstate;
LTRACEF("cpu %u, thread %s, save fpstate %p\n", arch_curr_cpu_num(), t->name(), fpstate);
__asm__ volatile(
"stp q0, q1, [%0, #(0 * 32)]\n"
"stp q2, q3, [%0, #(1 * 32)]\n"
"stp q4, q5, [%0, #(2 * 32)]\n"
"stp q6, q7, [%0, #(3 * 32)]\n"
"stp q8, q9, [%0, #(4 * 32)]\n"
"stp q10, q11, [%0, #(5 * 32)]\n"
"stp q12, q13, [%0, #(6 * 32)]\n"
"stp q14, q15, [%0, #(7 * 32)]\n"
"stp q16, q17, [%0, #(8 * 32)]\n"
"stp q18, q19, [%0, #(9 * 32)]\n"
"stp q20, q21, [%0, #(10 * 32)]\n"
"stp q22, q23, [%0, #(11 * 32)]\n"
"stp q24, q25, [%0, #(12 * 32)]\n"
"stp q26, q27, [%0, #(13 * 32)]\n"
"stp q28, q29, [%0, #(14 * 32)]\n"
"stp q30, q31, [%0, #(15 * 32)]\n" ::"r"(fpstate->regs));
// These are 32-bit values, but the msr instruction always uses a
// 64-bit destination register.
uint64_t fpcr, fpsr;
__asm__("mrs %0, fpcr\n" : "=r"(fpcr));
__asm__("mrs %0, fpsr\n" : "=r"(fpsr));
fpstate->fpcr = (uint32_t)fpcr;
fpstate->fpsr = (uint32_t)fpsr;
LTRACEF("thread %s, fpcr %x, fpsr %x\n", t->name(), fpstate->fpcr, fpstate->fpsr);
}
static bool use_lazy_fpu_restore(Thread* t) {
// The number 8 here was selected by measuring |fp_restore_count| running
// a particular workload.
return (t->arch().fp_restore_count < 8u);
}
void arm64_fpu_save_state(Thread* t) {
// If the FPU is not enabled, then there's nothing to save.
const uint64_t cpacr = __arm_rsr64("cpacr_el1");
if (!is_fpu_enabled(cpacr)) {
return;
}
arm64_fpu_save_regs(t);
}
void arm64_fpu_restore_state(Thread* t) {
const uint64_t cpacr = __arm_rsr64("cpacr_el1");
const bool enabled = is_fpu_enabled(cpacr);
const bool lazy_restore = use_lazy_fpu_restore(t);
if (lazy_restore) {
if (enabled) {
// FPU is enabled, but the thread wants lazy restore so disable it.
__arm_wsr64("cpacr_el1", cpacr & ~FPU_ENABLE_MASK);
__isb(ARM_MB_SY);
}
return;
}
// Eager restore.
if (!enabled) {
__arm_wsr64("cpacr_el1", cpacr | FPU_ENABLE_MASK);
__isb(ARM_MB_SY);
}
arm64_fpu_load_regs(t);
}
void arm64_fpu_context_switch(Thread* oldthread, Thread* newthread) {
const uint64_t cpacr = __arm_rsr64("cpacr_el1");
if (is_fpu_enabled(cpacr)) {
LTRACEF("saving state on thread %s\n", oldthread->name());
arm64_fpu_save_regs(oldthread);
}
if (use_lazy_fpu_restore(newthread)) {
if (is_fpu_enabled(cpacr)) {
// Previous thread had the fpu enabled, but the next thread is going
// to use lazy restore via the exception, so disable the fpu.
__arm_wsr64("cpacr_el1", cpacr & ~FPU_ENABLE_MASK);
__isb(ARM_MB_SY);
}
} else {
// Restoring fpu state eagerly.
if (!is_fpu_enabled(cpacr)) {
// .. but previous thread has the fpu disabled. So enable it.
__arm_wsr64("cpacr_el1", cpacr | FPU_ENABLE_MASK);
__isb(ARM_MB_SY);
}
arm64_fpu_load_regs(newthread);
}
}
// Called because of a fpu instruction caused exception.
void arm64_fpu_exception(iframe_t* iframe, uint exception_flags) {
LTRACEF("cpu %u, thread %s, flags 0x%x\n", arch_curr_cpu_num(), Thread::Current::Get()->name(),
exception_flags);
// Only valid to be called if exception came from lower level.
DEBUG_ASSERT(exception_flags & ARM64_EXCEPTION_FLAG_LOWER_EL);
uint64_t cpacr = __arm_rsr64("cpacr_el1");
DEBUG_ASSERT(!is_fpu_enabled(cpacr));
// Enable the fpu.
cpacr |= FPU_ENABLE_MASK;
__arm_wsr64("cpacr_el1", cpacr);
__isb(ARM_MB_SY);
// Load the fpu state for the current thread.
Thread* t = Thread::Current::Get();
if (likely(t)) {
DEBUG_ASSERT(use_lazy_fpu_restore(t));
t->arch().fp_restore_count++;
arm64_fpu_load_regs(t);
}
}