blob: 31637dbf9034f498ff1b072dd0b536edfa79beb1 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! A Fuchsia Driver Bind Program compiler
use anyhow::{anyhow, Context, Error};
use bind::compiler::{self, BindProgram, SymbolicInstruction, SymbolicInstructionInfo};
use bind::encode_bind_program_v1::encode_to_string_v1;
use bind::encode_bind_program_v2::encode_to_string_v2;
use bind::{bind_library, linter, offline_debugger, test};
use std::collections::{HashMap, HashSet};
use std::convert::TryFrom;
use std::fmt::Write;
use std::fs::File;
use std::io::prelude::*;
use std::io::{self, BufRead, Write as IoWrite};
use std::path::PathBuf;
use structopt::StructOpt;
#[derive(StructOpt, Debug)]
struct SharedOptions {
/// The bind library input files. These may be included by the bind program. They should be in
/// the format described in //tools/bindc/README.md.
#[structopt(short = "i", long = "include", parse(from_os_str))]
include: Vec<PathBuf>,
/// Specifiy the bind library input files as a file. The file must contain a list of filenames
/// that are bind library input files that may be included by the bind program. Those files
/// should be in the format described in //tools/bindc/README.md.
#[structopt(short = "f", long = "include-file", parse(from_os_str))]
include_file: Option<PathBuf>,
/// The bind program input file. This should be in the format described in
/// //tools/bindc/README.md. This is required unless disable_autobind is true, in which case
/// the driver while bind unconditionally (but only on the user's request.)
#[structopt(parse(from_os_str))]
input: Option<PathBuf>,
/// Check inputs for style guide violations.
#[structopt(short = "l", long = "lint")]
lint: bool,
}
#[derive(StructOpt, Debug)]
enum Command {
#[structopt(name = "compile")]
Compile {
#[structopt(flatten)]
options: SharedOptions,
/// Output file. The compiler emits a C header file.
#[structopt(short = "o", long = "output", parse(from_os_str))]
output: Option<PathBuf>,
/// Specify a path for the compiler to generate a depfile. A depfile contain, in Makefile
/// format, the files that this invocation of the compiler depends on including all bind
/// libraries and the bind program input itself. An output file must be provided to generate
/// a depfile.
#[structopt(short = "d", long = "depfile", parse(from_os_str))]
depfile: Option<PathBuf>,
// TODO(fxbug.dev/43400): Eventually this option should be removed when we can define this
// configuration in the driver's component manifest.
/// Disable automatically binding the driver so that the driver must be bound on a user's
/// request.
#[structopt(short = "a", long = "disable-autobind")]
disable_autobind: bool,
/// Output a bytecode file, instead of a C header file.
#[structopt(short = "b", long = "output-bytecode")]
output_bytecode: bool,
/// Encode the bytecode in the new format if true. Otherwise, encode to the old format.
/// Currently the new bytecode format is unimplemented. See fxb/67440.
#[structopt(short = "n", long = "use-new-bytecode")]
use_new_bytecode: bool,
},
#[structopt(name = "debug")]
Debug {
#[structopt(flatten)]
options: SharedOptions,
/// A file containing the properties of a specific device, as a list of key-value pairs.
/// This will be used as the input to the bind program debugger.
#[structopt(short = "d", long = "debug", parse(from_os_str))]
device_file: PathBuf,
},
#[structopt(name = "test")]
Test {
#[structopt(flatten)]
options: SharedOptions,
// TODO(fxbug.dev/56774): Refer to documentation for bind testing.
/// A file containing the test specification.
#[structopt(short = "t", long = "test-spec", parse(from_os_str))]
test_spec: PathBuf,
},
#[structopt(name = "generate")]
Generate {
#[structopt(flatten)]
options: SharedOptions,
/// Output FIDL file.
#[structopt(short = "o", long = "output", parse(from_os_str))]
output: Option<PathBuf>,
},
}
fn main() {
let command = Command::from_iter(std::env::args());
if let Err(err) = handle_command(command) {
eprintln!("{}", err);
std::process::exit(1);
}
}
fn write_depfile(
output: &PathBuf,
input: &Option<PathBuf>,
includes: &[PathBuf],
) -> Result<String, Error> {
fn path_to_str(path: &PathBuf) -> Result<&str, Error> {
path.as_os_str().to_str().context("failed to convert path to string")
}
let mut deps = includes.iter().map(|s| path_to_str(s)).collect::<Result<Vec<&str>, Error>>()?;
if let Some(input) = input {
let input_str = path_to_str(input)?;
deps.push(input_str);
}
let output_str = path_to_str(output)?;
let mut out = String::new();
writeln!(&mut out, "{}: {}", output_str, deps.join(" "))?;
Ok(out)
}
fn write_bind_template<'a>(bind_program: BindProgram<'a>) -> Result<String, Error> {
let mut output = String::new();
if bind_program.use_new_bytecode {
let (binding, byte_count) = encode_to_string_v2(bind_program)?;
output
.write_fmt(format_args!(
include_str!("templates/bind_v2.h.template"),
byte_count = byte_count,
binding = binding,
))
.context("Failed to format output")?;
} else {
output
.write_fmt(format_args!(
include_str!("templates/bind_v1.h.template"),
bind_count = bind_program.instructions.len(),
binding = encode_to_string_v1(bind_program)?,
))
.context("Failed to format output")?;
}
Ok(output)
}
fn read_file(path: &PathBuf) -> Result<String, Error> {
let mut file = File::open(path)?;
let mut buf = String::new();
file.read_to_string(&mut buf)?;
Ok(buf)
}
fn handle_command(command: Command) -> Result<(), Error> {
match command {
Command::Debug { options, device_file } => {
let includes = handle_includes(options.include, options.include_file)?;
let includes = includes.iter().map(read_file).collect::<Result<Vec<String>, _>>()?;
let input = options.input.ok_or(anyhow!("The debug command requires an input."))?;
let program = read_file(&input)?;
let bind_program = compiler::compile(&program, &includes, options.lint, false)?;
let device = read_file(&device_file)?;
let binds = offline_debugger::debug_from_str(&bind_program, &device)?;
if binds {
println!("Driver binds to device.");
} else {
println!("Driver doesn't bind to device.");
}
Ok(())
}
Command::Test { options, test_spec } => {
let input = options.input.ok_or(anyhow!("The test command requires an input."))?;
let program = read_file(&input)?;
let includes = handle_includes(options.include, options.include_file)?;
let includes = includes.iter().map(read_file).collect::<Result<Vec<String>, _>>()?;
let test_spec = read_file(&test_spec)?;
if !test::run(&program, &includes, &test_spec)? {
return Err(anyhow!("Test failed"));
}
Ok(())
}
Command::Compile {
options,
output,
depfile,
disable_autobind,
output_bytecode,
use_new_bytecode,
} => {
let includes = handle_includes(options.include, options.include_file)?;
handle_compile(
options.input,
includes,
disable_autobind,
output_bytecode,
use_new_bytecode,
options.lint,
output,
depfile,
)
}
Command::Generate { options, output } => {
handle_generate(options.input, options.lint, output)
}
}
}
fn handle_includes(
mut includes: Vec<PathBuf>,
include_file: Option<PathBuf>,
) -> Result<Vec<PathBuf>, Error> {
if let Some(include_file) = include_file {
let file = File::open(include_file).context("Failed to open include file")?;
let reader = io::BufReader::new(file);
let mut filenames = reader
.lines()
.map(|line| line.map(PathBuf::from))
.map(|line| line.context("Failed to read include file"))
.collect::<Result<Vec<_>, Error>>()?;
includes.append(&mut filenames);
}
Ok(includes)
}
fn handle_compile(
input: Option<PathBuf>,
includes: Vec<PathBuf>,
disable_autobind: bool,
output_bytecode: bool,
use_new_bytecode: bool,
lint: bool,
output: Option<PathBuf>,
depfile: Option<PathBuf>,
) -> Result<(), Error> {
let mut output_writer: Box<dyn io::Write> = if let Some(output) = output {
// If there's an output filename then we can generate a depfile too.
if let Some(filename) = depfile {
let mut file = File::create(filename).context("Failed to open depfile")?;
let depfile_string =
write_depfile(&output, &input, &includes).context("Failed to create depfile")?;
file.write(depfile_string.as_bytes()).context("Failed to write to depfile")?;
}
Box::new(File::create(output).context("Failed to create output file")?)
} else {
Box::new(io::stdout())
};
let program;
let bind_program = if !disable_autobind {
let input = input.ok_or(anyhow!("An input is required when disable_autobind is false."))?;
program = read_file(&input)?;
let includes = includes.iter().map(read_file).collect::<Result<Vec<String>, _>>()?;
compiler::compile(&program, &includes, lint, use_new_bytecode)?
} else if let Some(input) = input {
// Autobind is disabled but there are some bind rules for manual binding.
program = read_file(&input)?;
let includes = includes.iter().map(read_file).collect::<Result<Vec<String>, _>>()?;
let mut bind_program = compiler::compile(&program, &includes, lint, use_new_bytecode)?;
bind_program.instructions.insert(0, SymbolicInstructionInfo::disable_autobind());
bind_program
} else {
// Autobind is disabled and there are no bind rules. Emit only the autobind check.
// Since the new bytecode format doesn't support match instructions, only add the
// UnconditionalBind instruction to the old bytecode.
let instructions = if use_new_bytecode {
vec![SymbolicInstructionInfo::disable_autobind()]
} else {
vec![
SymbolicInstructionInfo::disable_autobind(),
SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalBind,
},
]
};
BindProgram {
instructions: instructions,
symbol_table: HashMap::new(),
use_new_bytecode: use_new_bytecode,
}
};
if output_bytecode {
let bytecode = bind_program.encode_to_bytecode()?;
output_writer.write_all(bytecode.as_slice()).context("Failed to write to output file")?;
} else {
let template = write_bind_template(bind_program)?;
output_writer.write_all(template.as_bytes()).context("Failed to write to output file")?;
};
Ok(())
}
fn generate_declaration_name(name: &String, value: &bind_library::Value) -> String {
match value {
bind_library::Value::Number(value_name, _) => {
format!("{}_{}", name, value_name)
}
bind_library::Value::Str(value_name, _) => {
format!("{}_{}", name, value_name)
}
bind_library::Value::Bool(value_name, _) => {
format!("{}_{}", name, value_name)
}
bind_library::Value::Enum(value_name) => {
format!("{}_{}", name, value_name)
}
}
.to_uppercase()
}
/// The generated identifiers for each value must be unique. Since the key and value identifiers
/// are joined using underscores which are also valid to use in the identifiers themselves,
/// duplicate keys may be produced. I.e. the key-value pair "A_B" and "C", and the key-value pair
/// "A" and "B_C", will both produce the identifier "A_B_C". This function hence ensures none of the
/// generated names are duplicates.
fn check_names(declarations: &Vec<bind_library::Declaration>) -> Result<(), Error> {
let mut names: HashSet<String> = HashSet::new();
for declaration in declarations.into_iter() {
for value in &declaration.values {
let name = generate_declaration_name(&declaration.identifier.name, value);
// Return an error if there is a duplicate name.
if names.contains(&name) {
return Err(anyhow!("Name \"{}\" generated for more than one key", name));
}
names.insert(name);
}
}
Ok(())
}
/// Converts a declaration to the FIDL constant format.
fn convert_to_fidl_constant(
declaration: bind_library::Declaration,
path: &String,
) -> Result<String, Error> {
let mut result = String::new();
let identifier_name = declaration.identifier.name.to_uppercase();
// Generating the key definition is only done when it is not extended.
// When it is extended, the key will already be defined in the library that it is
// extending from.
if !declaration.extends {
writeln!(
&mut result,
"const fdf.NodePropertyKey {} = \"{}.{}\";",
&identifier_name, &path, &identifier_name
)?;
}
for value in &declaration.values {
let name = generate_declaration_name(&identifier_name, value);
let property_output = match &value {
bind_library::Value::Number(_, val) => {
format!("const fdf.NodePropertyValueUint {} = {};", name, val)
}
bind_library::Value::Str(_, val) => {
format!("const fdf.NodePropertyValueString {} = \"{}\";", name, val)
}
bind_library::Value::Bool(_, val) => {
format!("const fdf.NodePropertyValueBool {} = {};", name, val)
}
bind_library::Value::Enum(_) => {
format!("const fdf.NodePropertyValueEnum {};", name)
}
};
writeln!(&mut result, "{}", property_output)?;
}
Ok(result)
}
fn write_fidl_template(syntax_tree: bind_library::Ast) -> Result<String, Error> {
// Use the bind library name as the FIDL library name and give it "bind" as a top level
// namespace.
let bind_name = &syntax_tree.name.to_string();
let library_name = format!("bind.{}", bind_name);
check_names(&syntax_tree.declarations)?;
// Convert all key value pairs to their equivalent constants.
let definition = syntax_tree
.declarations
.into_iter()
.map(|declaration| convert_to_fidl_constant(declaration, bind_name))
.collect::<Result<Vec<String>, _>>()?
.join("\n");
// Output result into template.
let mut output = String::new();
output
.write_fmt(format_args!(
include_str!("templates/fidl.template"),
library_name = library_name,
definition = definition,
))
.context("Failed to format output")?;
Ok(output.to_string())
}
fn handle_generate(
input: Option<PathBuf>,
lint: bool,
output: Option<PathBuf>,
) -> Result<(), Error> {
let input = input.ok_or(anyhow!("An input is required."))?;
let input_content = read_file(&input)?;
// Generate the FIDL library.
let keys = bind_library::Ast::try_from(input_content.as_str())
.map_err(compiler::CompilerError::BindParserError)?;
if lint {
linter::lint_library(&keys).map_err(compiler::CompilerError::LinterError)?;
}
let template = write_fidl_template(keys)?;
// Create and open output file.
let mut output_writer: Box<dyn io::Write> = if let Some(output) = output {
Box::new(File::create(output).context("Failed to create output file.")?)
} else {
// Output file name was not given. Print result to stdout.
Box::new(io::stdout())
};
// Write FIDL library to output.
output_writer.write_all(template.as_bytes()).context("Failed to write to output file")?;
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
fn get_test_fidl_template(ast: bind_library::Ast) -> Vec<String> {
write_fidl_template(ast)
.unwrap()
.split("\n")
.map(|s| s.to_string())
.filter(|x| !x.is_empty())
.collect()
}
#[test]
fn zero_instructions_v1() {
let bind_program = BindProgram {
instructions: vec![],
symbol_table: HashMap::new(),
use_new_bytecode: false,
};
let bytecode = bind_program.encode_to_bytecode().unwrap();
assert!(bytecode.is_empty());
let bind_program = BindProgram {
instructions: vec![],
symbol_table: HashMap::new(),
use_new_bytecode: false,
};
let template = write_bind_template(bind_program).unwrap();
assert!(
template.contains("ZIRCON_DRIVER_BEGIN_PRIV_V1(Driver, Ops, VendorName, Version, 0)")
);
}
#[test]
fn one_instruction_v1() {
let bind_program = BindProgram {
instructions: vec![SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalBind,
}],
symbol_table: HashMap::new(),
use_new_bytecode: false,
};
let bytecode = bind_program.encode_to_bytecode().unwrap();
assert_eq!(bytecode, vec![0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]);
let bind_program = BindProgram {
instructions: vec![SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalBind,
}],
symbol_table: HashMap::new(),
use_new_bytecode: false,
};
let template = write_bind_template(bind_program).unwrap();
assert!(
template.contains("ZIRCON_DRIVER_BEGIN_PRIV_V1(Driver, Ops, VendorName, Version, 1)")
);
assert!(template.contains("{0x1000000,0x0,0x0}"));
}
#[test]
fn zero_instructions_v2() {
let bind_program = BindProgram {
instructions: vec![],
symbol_table: HashMap::new(),
use_new_bytecode: true,
};
assert_eq!(
bind_program.encode_to_bytecode().unwrap(),
vec![
66, 73, 78, 68, 2, 0, 0, 0, 83, 89, 78, 66, 0, 0, 0, 0, 73, 78, 83, 84, 0, 0, 0, 0
]
);
let bind_program = BindProgram {
instructions: vec![],
symbol_table: HashMap::new(),
use_new_bytecode: true,
};
let template = write_bind_template(bind_program).unwrap();
assert!(
template.contains("ZIRCON_DRIVER_BEGIN_PRIV_V2(Driver, Ops, VendorName, Version, 24)")
);
assert!(template.contains(
"0x42,0x49,0x4e,0x44,0x2,0x0,0x0,0x0,0x53,0x59,0x4e,0x42,0x0,\
0x0,0x0,0x0,0x49,0x4e,0x53,0x54,0x0,0x0,0x0,0x0"
));
}
#[test]
fn one_instruction_v2() {
let bind_program = BindProgram {
instructions: vec![SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalAbort,
}],
symbol_table: HashMap::new(),
use_new_bytecode: true,
};
assert_eq!(
bind_program.encode_to_bytecode().unwrap(),
vec![
66, 73, 78, 68, 2, 0, 0, 0, 83, 89, 78, 66, 0, 0, 0, 0, 73, 78, 83, 84, 1, 0, 0, 0,
48
]
);
let bind_program = BindProgram {
instructions: vec![SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalAbort,
}],
symbol_table: HashMap::new(),
use_new_bytecode: true,
};
let template = write_bind_template(bind_program).unwrap();
assert!(
template.contains("ZIRCON_DRIVER_BEGIN_PRIV_V2(Driver, Ops, VendorName, Version, 25)")
);
assert!(template.contains(
"0x42,0x49,0x4e,0x44,0x2,0x0,0x0,0x0,0x53,0x59,0x4e,0x42,0x0,0x0,\
0x0,0x0,0x49,0x4e,0x53,0x54,0x1,0x0,0x0,0x0,0x30"
));
}
#[test]
fn disable_autobind() {
let bind_program = BindProgram {
instructions: vec![
SymbolicInstructionInfo::disable_autobind(),
SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalBind,
},
],
symbol_table: HashMap::new(),
use_new_bytecode: false,
};
let bytecode = bind_program.encode_to_bytecode().unwrap();
assert_eq!(bytecode[..12], [2, 0, 0, 0x20, 0, 0, 0, 0, 0, 0, 0, 0]);
let bind_program = BindProgram {
instructions: vec![
SymbolicInstructionInfo::disable_autobind(),
SymbolicInstructionInfo {
location: None,
instruction: SymbolicInstruction::UnconditionalBind,
},
],
symbol_table: HashMap::new(),
use_new_bytecode: false,
};
let template = write_bind_template(bind_program).unwrap();
assert!(
template.contains("ZIRCON_DRIVER_BEGIN_PRIV_V1(Driver, Ops, VendorName, Version, 2)")
);
assert!(template.contains("{0x20000002,0x0,0x0}"));
}
#[test]
fn depfile_no_includes() {
let output = PathBuf::from("/a/output");
let input = PathBuf::from("/a/input");
assert_eq!(
write_depfile(&output, &Some(input), &[]).unwrap(),
"/a/output: /a/input\n".to_string()
);
}
#[test]
fn depfile_no_input() {
let output = PathBuf::from("/a/output");
let includes = vec![PathBuf::from("/a/include"), PathBuf::from("/b/include")];
let result = write_depfile(&output, &None, &includes).unwrap();
assert!(result.starts_with("/a/output:"));
assert!(result.contains("/a/include"));
assert!(result.contains("/b/include"));
}
#[test]
fn depfile_input_and_includes() {
let output = PathBuf::from("/a/output");
let input = PathBuf::from("/a/input");
let includes = vec![PathBuf::from("/a/include"), PathBuf::from("/b/include")];
let result = write_depfile(&output, &Some(input), &includes).unwrap();
assert!(result.starts_with("/a/output:"));
assert!(result.contains("/a/input"));
assert!(result.contains("/a/include"));
assert!(result.contains("/b/include"));
}
#[test]
fn zero_keys() {
let empty_ast = bind_library::Ast::try_from("library fuchsia.platform;").unwrap();
let template: Vec<String> = get_test_fidl_template(empty_ast);
let expected = vec![
"[NoDoc]".to_string(),
"library bind.fuchsia.platform;".to_string(),
"using fuchsia.driver.framework as fdf;".to_string(),
];
assert!(template.into_iter().zip(expected).all(|(a, b)| (a == b)));
}
#[test]
fn one_key() {
let ast = bind_library::Ast::try_from(
"library fuchsia.platform;\nstring A_KEY {\nA_VALUE = \"a string value\",\n};",
)
.unwrap();
let template: Vec<String> = get_test_fidl_template(ast);
let expected = vec![
"[NoDoc]".to_string(),
"library bind.fuchsia.platform;".to_string(),
"using fuchsia.driver.framework as fdf;".to_string(),
"const fdf.NodePropertyKey A_KEY = \"fuchsia.platform.A_KEY\";".to_string(),
"const fdf.NodePropertyValueString A_KEY_A_VALUE = \"a string value\";".to_string(),
];
assert!(template.into_iter().zip(expected).all(|(a, b)| (a == b)));
}
#[test]
fn one_key_extends() {
let ast = bind_library::Ast::try_from(
"library fuchsia.platform;\nextend uint fuchsia.BIND_PROTOCOL {\nBUS = 84,\n};",
)
.unwrap();
let template: Vec<String> = get_test_fidl_template(ast);
let expected = vec![
"[NoDoc]".to_string(),
"library bind.fuchsia.platform;".to_string(),
"using fuchsia.driver.framework as fdf;".to_string(),
"const fdf.NodePropertyValueUint BIND_PROTOCOL_BUS = 84;".to_string(),
];
assert!(template.into_iter().zip(expected).all(|(a, b)| (a == b)));
}
#[test]
fn lower_snake_case() {
let ast = bind_library::Ast::try_from(
"library fuchsia.platform;\nstring a_key {\na_value = \"a string value\",\n};",
)
.unwrap();
let template: Vec<String> = get_test_fidl_template(ast);
let expected = vec![
"[NoDoc]".to_string(),
"library bind.fuchsia.platform;".to_string(),
"using fuchsia.driver.framework as fdf;".to_string(),
"const fdf.NodePropertyKey A_KEY = \"fuchsia.platform.A_KEY\";".to_string(),
"const fdf.NodePropertyValueString A_KEY_A_VALUE = \"a string value\";".to_string(),
];
assert!(template.into_iter().zip(expected).all(|(a, b)| (a == b)));
}
#[test]
fn duplicate_key_value() {
let ast = bind_library::Ast::try_from(
"library fuchsia.platform;\nstring A_KEY {\nA_VALUE = \"a string value\",\n};
\nstring A_KEY_A {\nVALUE = \"a string value\",\n};",
)
.unwrap();
let template = write_fidl_template(ast);
assert!(template.is_err());
}
#[test]
fn duplicate_values_one_key() {
let ast = bind_library::Ast::try_from(
"library fuchsia.platform;\nstring A_KEY {\nA_VALUE = \"a string value\",\n
A_VALUE = \"a string value\",\n};",
)
.unwrap();
let template = write_fidl_template(ast);
assert!(template.is_err());
}
#[test]
fn duplicate_values_two_keys() {
let ast = bind_library::Ast::try_from(
"library fuchsia.platform;\nstring KEY {\nA_VALUE = \"a string value\",\n};\n
string KEY_A {\nVALUE = \"a string value\",\n};\n",
)
.unwrap();
let template = write_fidl_template(ast);
assert!(template.is_err());
}
}