blob: 8564c31c8d94605c4c61d816e9759a1f7eb6b23a [file] [log] [blame] [edit]
// Copyright 2020 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include "kernel/cpu_search_set.h"
#include <assert.h>
#include <debug.h>
#include <inttypes.h>
#include <stddef.h>
#include <fbl/alloc_checker.h>
#include <kernel/cpu_distance_map.h>
#include <ktl/algorithm.h>
#include <ktl/span.h>
#include <ktl/unique_ptr.h>
CpuSearchSet::ClusterSet CpuSearchSet::cluster_set_;
namespace {
// Resizes the given vector with default values.
// TODO(eieio): Implement fbl::Vector::resize().
template <typename T>
void Resize(fbl::Vector<T>* vector, size_t size) {
fbl::AllocChecker checker;
vector->reserve(size, &checker);
ASSERT(checker.check());
for (size_t i = 0; i < size; i++) {
vector->push_back({}, &checker);
ASSERT(checker.check());
}
}
// Utility type compute CPU clusters using a disjoint set structure.
class ClusterMap {
public:
ClusterMap() = default;
ClusterMap(const ClusterMap&) = delete;
ClusterMap& operator=(const ClusterMap&) = delete;
ClusterMap(ClusterMap&&) = default;
ClusterMap& operator=(ClusterMap&&) = default;
explicit operator bool() const { return !elements_.is_empty(); }
// Creates a ClusterMap with the given number of CPUs, with each CPU initially
// in its own cluster.
static ClusterMap Create(size_t element_count) {
fbl::Vector<cpu_num_t> elements;
Resize(&elements, element_count);
for (cpu_num_t i = 0; i < element_count; i++) {
elements[i] = i;
}
return ClusterMap{ktl::move(elements)};
}
// Returns an iterator over the elements of the disjoint set structure.
auto iterator() { return ktl::span{elements_.begin(), elements_.size()}; }
auto begin() { return iterator().begin(); }
auto end() { return iterator().end(); }
cpu_num_t operator[](size_t index) const { return elements_[index]; }
cpu_num_t FindSet(cpu_num_t node) {
while (true) {
cpu_num_t parent = elements_[node];
cpu_num_t grandparent = elements_[parent];
if (parent == grandparent) {
return parent;
}
elements_[node] = grandparent;
node = parent;
}
}
void UnionSets(cpu_num_t a, cpu_num_t b) {
while (true) {
cpu_num_t root_a = FindSet(a);
cpu_num_t root_b = FindSet(b);
if (root_a < root_b) {
elements_[root_b] = root_a;
} else if (root_a > root_b) {
elements_[root_a] = root_b;
} else {
return;
}
}
}
size_t ClusterCount() const {
size_t count = 0;
for (size_t i = 0; i < elements_.size(); i++) {
if (elements_[i] == i) {
count++;
}
}
return count;
}
size_t MemberCount(cpu_num_t root) {
size_t count = 0;
for (cpu_num_t i = 0; i < elements_.size(); i++) {
if (FindSet(i) == root) {
count++;
}
}
return count;
}
private:
explicit ClusterMap(fbl::Vector<cpu_num_t> elements) : elements_{ktl::move(elements)} {}
fbl::Vector<cpu_num_t> elements_{};
};
} // anonymous namespace
CpuSearchSet::ClusterSet CpuSearchSet::DoAutoCluster(size_t cpu_count, const CpuDistanceMap& map) {
ClusterMap cluster_map = ClusterMap::Create(cpu_count);
// Perform a single pass of agglomerative clustering, joining CPUs with
// distances below the significant distance threshold into the same cluster.
for (cpu_num_t i = 0; i < cpu_count; i++) {
for (cpu_num_t j = i + 1; j < cpu_count; j++) {
if (map[{i, j}] < map.distance_threshold()) {
cluster_map.UnionSets(i, j);
}
}
}
// Allocate vector of Cluster structures with an entry for each computed
// cluster.
fbl::AllocChecker checker;
fbl::Vector<Cluster> clusters;
Resize(&clusters, cluster_map.ClusterCount());
// Alllocate a vector of MapEntry structures with an entry for each CPU.
fbl::Vector<MapEntry> cpu_to_cluster_map;
Resize(&cpu_to_cluster_map, cpu_count);
// Fill in the Cluster structures and CPU-to-cluster map.
size_t cluster_index = 0;
for (cpu_num_t i = 0; i < cpu_count; i++) {
const size_t member_count = cluster_map.MemberCount(i);
if (member_count != 0) {
Cluster& cluster = clusters[cluster_index];
cluster.id = cluster_index;
Resize(&cluster.members, member_count);
size_t member_index = 0;
for (cpu_num_t j = 0; j < cpu_count; j++) {
if (cluster_map[j] == i) {
cluster.members[member_index] = j;
cpu_to_cluster_map[j] = {&cluster, member_index};
member_index++;
}
}
cluster_index++;
}
}
return {ktl::move(clusters), ktl::move(cpu_to_cluster_map)};
}
void CpuSearchSet::DumpClusters() {
dprintf(INFO, "CPU clusters:\n");
for (const Cluster& cluster : cluster_set_.iterator()) {
dprintf(INFO, "Cluster %2zu: ", cluster.id);
for (size_t j = 0; j < cluster.members.size(); j++) {
dprintf(INFO, "%" PRIu32 "%s", cluster.members[j],
j < cluster.members.size() - 1 ? ", " : "");
}
dprintf(INFO, "\n");
}
}
// Initializes the search set with a unique CPU order that minimizes cache level
// crossings while attempting to maximize distribution across CPUs.
void CpuSearchSet::DoInitialize(cpu_num_t this_cpu, size_t cpu_count, const ClusterSet& cluster_set,
const CpuDistanceMap& map) {
// Initialize the search set in increasing ordinal order.
cpu_count_ = cpu_count;
for (cpu_num_t i = 0; i < cpu_count; i++) {
const size_t cluster = cluster_set.cpu_to_cluster_map[i].cluster->id;
ordered_cpus_[i] = {i, cluster};
}
// Sort the search set by these criteria in priority order:
// 1. Cache distance from this CPU.
// 2. Modular cluster order, offset by this CPU's cluster id.
// 3. Modular cluster member order, offset by this CPU's cluster member index.
//
// These criteria result in a relaxed Latin Square with the following
// properties:
// * A CPU is always at the front of its own search list (distance is 0).
// * The search list is ordered by increasing cache distance.
// * The search order is reasonably unique compared to other CPUs (a CPU is
// found as few times as possible at a given offset in all search lists).
//
const auto comparator = [this_cpu, &cluster_set, &map](const Entry& a, const Entry& b) {
const auto distance_a = map[{this_cpu, a.cpu}];
const auto distance_b = map[{this_cpu, b.cpu}];
if (distance_a != distance_b) {
return distance_a < distance_b;
}
const auto [this_cluster, this_index] = cluster_set.cpu_to_cluster_map[this_cpu];
const auto [a_cluster, a_index] = cluster_set.cpu_to_cluster_map[a.cpu];
const auto [b_cluster, b_index] = cluster_set.cpu_to_cluster_map[b.cpu];
const size_t cluster_count = cluster_set.clusters.size();
const auto a_cluster_prime = (this_cluster->id + cluster_count - a_cluster->id) % cluster_count;
const auto b_cluster_prime = (this_cluster->id + cluster_count - b_cluster->id) % cluster_count;
if (a_cluster_prime != b_cluster_prime) {
return a_cluster_prime < b_cluster_prime;
}
const auto a_count = a_cluster->members.size();
const auto b_count = b_cluster->members.size();
const size_t a_index_prime = a_cluster->members[(this_index + a_count - a_index) % a_count];
const size_t b_index_prime = b_cluster->members[(this_index + b_count - b_index) % b_count];
return a_index_prime < b_index_prime;
};
ktl::stable_sort(iterator().begin(), iterator().end(), comparator);
}
void CpuSearchSet::Dump() const {
dprintf(INFO, "CPU %2" PRIu32 ": ", ordered_cpus_[0].cpu);
for (cpu_num_t i = 0; i < cpu_count_; i++) {
dprintf(INFO, "%2" PRIu32 "%s", ordered_cpus_[i].cpu, i < cpu_count_ - 1 ? ", " : "");
}
dprintf(INFO, "\n");
}