| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! Small vectors in various sizes. These store a certain number of elements inline, and fall back |
| //! to the heap for larger allocations. This can be a useful optimization for improving cache |
| //! locality and reducing allocator traffic for workloads that fit within the inline buffer. |
| //! |
| //! ## no_std support |
| //! |
| //! By default, `smallvec` depends on `libstd`. However, it can be configured to use the unstable |
| //! `liballoc` API instead, for use on platforms that have `liballoc` but not `libstd`. This |
| //! configuration is currently unstable and is not guaranteed to work on all versions of Rust. |
| //! |
| //! To depend on `smallvec` without `libstd`, use `default-features = false` in the `smallvec` |
| //! section of Cargo.toml to disable its `"std"` feature. |
| //! |
| //! ## `union` feature |
| //! |
| //! When the `union` feature is enabled `smallvec` will track its state (inline or spilled) |
| //! without the use of an enum tag, reducing the size of the `smallvec` by one machine word. |
| //! This means that there is potentially no space overhead compared to `Vec`. |
| //! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two |
| //! machine words. |
| //! |
| //! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml. |
| //! Note that this feature requires a nightly compiler (for now). |
| |
| #![cfg_attr(not(feature = "std"), no_std)] |
| #![cfg_attr(feature = "union", feature(untagged_unions))] |
| #![cfg_attr(feature = "specialization", feature(specialization))] |
| #![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))] |
| #![deny(missing_docs)] |
| |
| |
| #[cfg(not(feature = "std"))] |
| #[macro_use] |
| extern crate alloc; |
| |
| #[cfg(not(feature = "std"))] |
| use alloc::vec::Vec; |
| |
| #[cfg(feature = "serde")] |
| extern crate serde; |
| |
| extern crate maybe_uninit; |
| |
| #[cfg(not(feature = "std"))] |
| mod std { |
| pub use core::*; |
| } |
| |
| use maybe_uninit::MaybeUninit; |
| |
| use std::borrow::{Borrow, BorrowMut}; |
| use std::cmp; |
| use std::fmt; |
| use std::hash::{Hash, Hasher}; |
| use std::iter::{IntoIterator, FromIterator, repeat}; |
| use std::mem; |
| use std::ops; |
| use std::ptr; |
| use std::slice; |
| #[cfg(feature = "std")] |
| use std::io; |
| #[cfg(feature = "serde")] |
| use serde::ser::{Serialize, Serializer, SerializeSeq}; |
| #[cfg(feature = "serde")] |
| use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor}; |
| #[cfg(feature = "serde")] |
| use std::marker::PhantomData; |
| |
| /// Creates a [`SmallVec`] containing the arguments. |
| /// |
| /// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions. |
| /// There are two forms of this macro: |
| /// |
| /// - Create a [`SmallVec`] containing a given list of elements: |
| /// |
| /// ``` |
| /// # #[macro_use] extern crate smallvec; |
| /// # use smallvec::SmallVec; |
| /// # fn main() { |
| /// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3]; |
| /// assert_eq!(v[0], 1); |
| /// assert_eq!(v[1], 2); |
| /// assert_eq!(v[2], 3); |
| /// # } |
| /// ``` |
| /// |
| /// - Create a [`SmallVec`] from a given element and size: |
| /// |
| /// ``` |
| /// # #[macro_use] extern crate smallvec; |
| /// # use smallvec::SmallVec; |
| /// # fn main() { |
| /// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3]; |
| /// assert_eq!(v, SmallVec::from_buf([1, 1, 1])); |
| /// # } |
| /// ``` |
| /// |
| /// Note that unlike array expressions this syntax supports all elements |
| /// which implement [`Clone`] and the number of elements doesn't have to be |
| /// a constant. |
| /// |
| /// This will use `clone` to duplicate an expression, so one should be careful |
| /// using this with types having a nonstandard `Clone` implementation. For |
| /// example, `smallvec![Rc::new(1); 5]` will create a vector of five references |
| /// to the same boxed integer value, not five references pointing to independently |
| /// boxed integers. |
| |
| #[macro_export] |
| macro_rules! smallvec { |
| // count helper: transform any expression into 1 |
| (@one $x:expr) => (1usize); |
| ($elem:expr; $n:expr) => ({ |
| $crate::SmallVec::from_elem($elem, $n) |
| }); |
| ($($x:expr),*$(,)*) => ({ |
| let count = 0usize $(+ smallvec!(@one $x))*; |
| let mut vec = $crate::SmallVec::new(); |
| if count <= vec.inline_size() { |
| $(vec.push($x);)* |
| vec |
| } else { |
| $crate::SmallVec::from_vec(vec![$($x,)*]) |
| } |
| }); |
| } |
| |
| /// Hint to the optimizer that any code path which calls this function is |
| /// statically unreachable and can be removed. |
| /// |
| /// Equivalent to `std::hint::unreachable_unchecked` but works in older versions of Rust. |
| #[inline] |
| pub unsafe fn unreachable() -> ! { |
| enum Void {} |
| let x: &Void = mem::transmute(1usize); |
| match *x {} |
| } |
| |
| /// `panic!()` in debug builds, optimization hint in release. |
| #[cfg(not(feature = "union"))] |
| macro_rules! debug_unreachable { |
| () => { debug_unreachable!("entered unreachable code") }; |
| ($e:expr) => { |
| if cfg!(not(debug_assertions)) { |
| unreachable(); |
| } else { |
| panic!($e); |
| } |
| } |
| } |
| |
| /// Common operations implemented by both `Vec` and `SmallVec`. |
| /// |
| /// This can be used to write generic code that works with both `Vec` and `SmallVec`. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// use smallvec::{VecLike, SmallVec}; |
| /// |
| /// fn initialize<V: VecLike<u8>>(v: &mut V) { |
| /// for i in 0..5 { |
| /// v.push(i); |
| /// } |
| /// } |
| /// |
| /// let mut vec = Vec::new(); |
| /// initialize(&mut vec); |
| /// |
| /// let mut small_vec = SmallVec::<[u8; 8]>::new(); |
| /// initialize(&mut small_vec); |
| /// ``` |
| #[deprecated(note = "Use `Extend` and `Deref<[T]>` instead")] |
| pub trait VecLike<T>: |
| ops::Index<usize, Output=T> + |
| ops::IndexMut<usize> + |
| ops::Index<ops::Range<usize>, Output=[T]> + |
| ops::IndexMut<ops::Range<usize>> + |
| ops::Index<ops::RangeFrom<usize>, Output=[T]> + |
| ops::IndexMut<ops::RangeFrom<usize>> + |
| ops::Index<ops::RangeTo<usize>, Output=[T]> + |
| ops::IndexMut<ops::RangeTo<usize>> + |
| ops::Index<ops::RangeFull, Output=[T]> + |
| ops::IndexMut<ops::RangeFull> + |
| ops::DerefMut<Target = [T]> + |
| Extend<T> { |
| |
| /// Append an element to the vector. |
| fn push(&mut self, value: T); |
| } |
| |
| #[allow(deprecated)] |
| impl<T> VecLike<T> for Vec<T> { |
| #[inline] |
| fn push(&mut self, value: T) { |
| Vec::push(self, value); |
| } |
| } |
| |
| /// Trait to be implemented by a collection that can be extended from a slice |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// use smallvec::{ExtendFromSlice, SmallVec}; |
| /// |
| /// fn initialize<V: ExtendFromSlice<u8>>(v: &mut V) { |
| /// v.extend_from_slice(b"Test!"); |
| /// } |
| /// |
| /// let mut vec = Vec::new(); |
| /// initialize(&mut vec); |
| /// assert_eq!(&vec, b"Test!"); |
| /// |
| /// let mut small_vec = SmallVec::<[u8; 8]>::new(); |
| /// initialize(&mut small_vec); |
| /// assert_eq!(&small_vec as &[_], b"Test!"); |
| /// ``` |
| pub trait ExtendFromSlice<T> { |
| /// Extends a collection from a slice of its element type |
| fn extend_from_slice(&mut self, other: &[T]); |
| } |
| |
| impl<T: Clone> ExtendFromSlice<T> for Vec<T> { |
| fn extend_from_slice(&mut self, other: &[T]) { |
| Vec::extend_from_slice(self, other) |
| } |
| } |
| |
| unsafe fn deallocate<T>(ptr: *mut T, capacity: usize) { |
| let _vec: Vec<T> = Vec::from_raw_parts(ptr, 0, capacity); |
| // Let it drop. |
| } |
| |
| /// An iterator that removes the items from a `SmallVec` and yields them by value. |
| /// |
| /// Returned from [`SmallVec::drain`][1]. |
| /// |
| /// [1]: struct.SmallVec.html#method.drain |
| pub struct Drain<'a, T: 'a> { |
| iter: slice::IterMut<'a,T>, |
| } |
| |
| impl<'a, T: 'a> Iterator for Drain<'a,T> { |
| type Item = T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<T> { |
| self.iter.next().map(|reference| unsafe { ptr::read(reference) }) |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| } |
| |
| impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { |
| #[inline] |
| fn next_back(&mut self) -> Option<T> { |
| self.iter.next_back().map(|reference| unsafe { ptr::read(reference) }) |
| } |
| } |
| |
| impl<'a, T> ExactSizeIterator for Drain<'a, T> { } |
| |
| impl<'a, T: 'a> Drop for Drain<'a,T> { |
| fn drop(&mut self) { |
| // Destroy the remaining elements. |
| for _ in self.by_ref() {} |
| } |
| } |
| |
| #[cfg(feature = "union")] |
| union SmallVecData<A: Array> { |
| inline: MaybeUninit<A>, |
| heap: (*mut A::Item, usize), |
| } |
| |
| #[cfg(feature = "union")] |
| impl<A: Array> SmallVecData<A> { |
| #[inline] |
| unsafe fn inline(&self) -> *const A::Item { |
| self.inline.as_ptr() as *const A::Item |
| } |
| #[inline] |
| unsafe fn inline_mut(&mut self) -> *mut A::Item { |
| self.inline.as_mut_ptr() as *mut A::Item |
| } |
| #[inline] |
| fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> { |
| SmallVecData { inline } |
| } |
| #[inline] |
| unsafe fn into_inline(self) -> MaybeUninit<A> { |
| self.inline |
| } |
| #[inline] |
| unsafe fn heap(&self) -> (*mut A::Item, usize) { |
| self.heap |
| } |
| #[inline] |
| unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) { |
| &mut self.heap |
| } |
| #[inline] |
| fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData<A> { |
| SmallVecData { heap: (ptr, len) } |
| } |
| } |
| |
| #[cfg(not(feature = "union"))] |
| enum SmallVecData<A: Array> { |
| Inline(MaybeUninit<A>), |
| Heap((*mut A::Item, usize)), |
| } |
| |
| #[cfg(not(feature = "union"))] |
| impl<A: Array> SmallVecData<A> { |
| #[inline] |
| unsafe fn inline(&self) -> *const A::Item { |
| match *self { |
| SmallVecData::Inline(ref a) => a.as_ptr() as *const A::Item, |
| _ => debug_unreachable!(), |
| } |
| } |
| #[inline] |
| unsafe fn inline_mut(&mut self) -> *mut A::Item { |
| match *self { |
| SmallVecData::Inline(ref mut a) => a.as_mut_ptr() as *mut A::Item, |
| _ => debug_unreachable!(), |
| } |
| } |
| #[inline] |
| fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> { |
| SmallVecData::Inline(inline) |
| } |
| #[inline] |
| unsafe fn into_inline(self) -> MaybeUninit<A> { |
| match self { |
| SmallVecData::Inline(a) => a, |
| _ => debug_unreachable!(), |
| } |
| } |
| #[inline] |
| unsafe fn heap(&self) -> (*mut A::Item, usize) { |
| match *self { |
| SmallVecData::Heap(data) => data, |
| _ => debug_unreachable!(), |
| } |
| } |
| #[inline] |
| unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) { |
| match *self { |
| SmallVecData::Heap(ref mut data) => data, |
| _ => debug_unreachable!(), |
| } |
| } |
| #[inline] |
| fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData<A> { |
| SmallVecData::Heap((ptr, len)) |
| } |
| } |
| |
| unsafe impl<A: Array + Send> Send for SmallVecData<A> {} |
| unsafe impl<A: Array + Sync> Sync for SmallVecData<A> {} |
| |
| /// A `Vec`-like container that can store a small number of elements inline. |
| /// |
| /// `SmallVec` acts like a vector, but can store a limited amount of data inline within the |
| /// `SmallVec` struct rather than in a separate allocation. If the data exceeds this limit, the |
| /// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it. |
| /// |
| /// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing |
| /// store can be any type that implements the `Array` trait; usually it is a small fixed-sized |
| /// array. For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// use smallvec::SmallVec; |
| /// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector |
| /// |
| /// // The vector can hold up to 4 items without spilling onto the heap. |
| /// v.extend(0..4); |
| /// assert_eq!(v.len(), 4); |
| /// assert!(!v.spilled()); |
| /// |
| /// // Pushing another element will force the buffer to spill: |
| /// v.push(4); |
| /// assert_eq!(v.len(), 5); |
| /// assert!(v.spilled()); |
| /// ``` |
| pub struct SmallVec<A: Array> { |
| // The capacity field is used to determine which of the storage variants is active: |
| // If capacity <= A::size() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use). |
| // If capacity > A::size() then the heap variant is used and capacity holds the size of the memory allocation. |
| capacity: usize, |
| data: SmallVecData<A>, |
| } |
| |
| impl<A: Array> SmallVec<A> { |
| /// Construct an empty vector |
| #[inline] |
| pub fn new() -> SmallVec<A> { |
| // Try to detect invalid custom implementations of `Array`. Hopefuly, |
| // this check should be optimized away entirely for valid ones. |
| assert!( |
| mem::size_of::<A>() == A::size() * mem::size_of::<A::Item>() |
| && mem::align_of::<A>() >= mem::align_of::<A::Item>() |
| ); |
| SmallVec { |
| capacity: 0, |
| data: SmallVecData::from_inline(MaybeUninit::uninit()), |
| } |
| } |
| |
| /// Construct an empty vector with enough capacity pre-allocated to store at least `n` |
| /// elements. |
| /// |
| /// Will create a heap allocation only if `n` is larger than the inline capacity. |
| /// |
| /// ``` |
| /// # use smallvec::SmallVec; |
| /// |
| /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100); |
| /// |
| /// assert!(v.is_empty()); |
| /// assert!(v.capacity() >= 100); |
| /// ``` |
| #[inline] |
| pub fn with_capacity(n: usize) -> Self { |
| let mut v = SmallVec::new(); |
| v.reserve_exact(n); |
| v |
| } |
| |
| /// Construct a new `SmallVec` from a `Vec<A::Item>`. |
| /// |
| /// Elements will be copied to the inline buffer if vec.capacity() <= A::size(). |
| /// |
| /// ```rust |
| /// use smallvec::SmallVec; |
| /// |
| /// let vec = vec![1, 2, 3, 4, 5]; |
| /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec); |
| /// |
| /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| /// ``` |
| #[inline] |
| pub fn from_vec(mut vec: Vec<A::Item>) -> SmallVec<A> { |
| if vec.capacity() <= A::size() { |
| unsafe { |
| let mut data = SmallVecData::<A>::from_inline(MaybeUninit::uninit()); |
| let len = vec.len(); |
| vec.set_len(0); |
| ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut(), len); |
| |
| SmallVec { |
| capacity: len, |
| data, |
| } |
| } |
| } else { |
| let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len()); |
| mem::forget(vec); |
| |
| SmallVec { |
| capacity: cap, |
| data: SmallVecData::from_heap(ptr, len), |
| } |
| } |
| } |
| |
| /// Constructs a new `SmallVec` on the stack from an `A` without |
| /// copying elements. |
| /// |
| /// ```rust |
| /// use smallvec::SmallVec; |
| /// |
| /// let buf = [1, 2, 3, 4, 5]; |
| /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf); |
| /// |
| /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| /// ``` |
| #[inline] |
| pub fn from_buf(buf: A) -> SmallVec<A> { |
| SmallVec { |
| capacity: A::size(), |
| data: SmallVecData::from_inline(MaybeUninit::new(buf)), |
| } |
| } |
| |
| /// Constructs a new `SmallVec` on the stack from an `A` without |
| /// copying elements. Also sets the length, which must be less or |
| /// equal to the size of `buf`. |
| /// |
| /// ```rust |
| /// use smallvec::SmallVec; |
| /// |
| /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; |
| /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5); |
| /// |
| /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| /// ``` |
| #[inline] |
| pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A> { |
| assert!(len <= A::size()); |
| unsafe { SmallVec::from_buf_and_len_unchecked(buf, len) } |
| } |
| |
| /// Constructs a new `SmallVec` on the stack from an `A` without |
| /// copying elements. Also sets the length. The user is responsible |
| /// for ensuring that `len <= A::size()`. |
| /// |
| /// ```rust |
| /// use smallvec::SmallVec; |
| /// |
| /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; |
| /// let small_vec: SmallVec<_> = unsafe { |
| /// SmallVec::from_buf_and_len_unchecked(buf, 5) |
| /// }; |
| /// |
| /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| /// ``` |
| #[inline] |
| pub unsafe fn from_buf_and_len_unchecked(buf: A, len: usize) -> SmallVec<A> { |
| SmallVec { |
| capacity: len, |
| data: SmallVecData::from_inline(MaybeUninit::new(buf)), |
| } |
| } |
| |
| |
| /// Sets the length of a vector. |
| /// |
| /// This will explicitly set the size of the vector, without actually |
| /// modifying its buffers, so it is up to the caller to ensure that the |
| /// vector is actually the specified size. |
| pub unsafe fn set_len(&mut self, new_len: usize) { |
| let (_, len_ptr, _) = self.triple_mut(); |
| *len_ptr = new_len; |
| } |
| |
| /// The maximum number of elements this vector can hold inline |
| #[inline] |
| pub fn inline_size(&self) -> usize { |
| A::size() |
| } |
| |
| /// The number of elements stored in the vector |
| #[inline] |
| pub fn len(&self) -> usize { |
| self.triple().1 |
| } |
| |
| /// Returns `true` if the vector is empty |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// The number of items the vector can hold without reallocating |
| #[inline] |
| pub fn capacity(&self) -> usize { |
| self.triple().2 |
| } |
| |
| /// Returns a tuple with (data ptr, len, capacity) |
| /// Useful to get all SmallVec properties with a single check of the current storage variant. |
| #[inline] |
| fn triple(&self) -> (*const A::Item, usize, usize) { |
| unsafe { |
| if self.spilled() { |
| let (ptr, len) = self.data.heap(); |
| (ptr, len, self.capacity) |
| } else { |
| (self.data.inline(), self.capacity, A::size()) |
| } |
| } |
| } |
| |
| /// Returns a tuple with (data ptr, len ptr, capacity) |
| #[inline] |
| fn triple_mut(&mut self) -> (*mut A::Item, &mut usize, usize) { |
| unsafe { |
| if self.spilled() { |
| let &mut (ptr, ref mut len_ptr) = self.data.heap_mut(); |
| (ptr, len_ptr, self.capacity) |
| } else { |
| (self.data.inline_mut(), &mut self.capacity, A::size()) |
| } |
| } |
| } |
| |
| /// Returns `true` if the data has spilled into a separate heap-allocated buffer. |
| #[inline] |
| pub fn spilled(&self) -> bool { |
| self.capacity > A::size() |
| } |
| |
| /// Empty the vector and return an iterator over its former contents. |
| pub fn drain(&mut self) -> Drain<A::Item> { |
| unsafe { |
| let ptr = self.as_mut_ptr(); |
| |
| let current_len = self.len(); |
| self.set_len(0); |
| |
| let slice = slice::from_raw_parts_mut(ptr, current_len); |
| |
| Drain { |
| iter: slice.iter_mut(), |
| } |
| } |
| } |
| |
| /// Append an item to the vector. |
| #[inline] |
| pub fn push(&mut self, value: A::Item) { |
| unsafe { |
| let (_, &mut len, cap) = self.triple_mut(); |
| if len == cap { |
| self.reserve(1); |
| } |
| let (ptr, len_ptr, _) = self.triple_mut(); |
| *len_ptr = len + 1; |
| ptr::write(ptr.offset(len as isize), value); |
| } |
| } |
| |
| /// Remove an item from the end of the vector and return it, or None if empty. |
| #[inline] |
| pub fn pop(&mut self) -> Option<A::Item> { |
| unsafe { |
| let (ptr, len_ptr, _) = self.triple_mut(); |
| if *len_ptr == 0 { |
| return None; |
| } |
| let last_index = *len_ptr - 1; |
| *len_ptr = last_index; |
| Some(ptr::read(ptr.offset(last_index as isize))) |
| } |
| } |
| |
| /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. |
| /// |
| /// Panics if `new_cap` is less than the vector's length. |
| pub fn grow(&mut self, new_cap: usize) { |
| unsafe { |
| let (ptr, &mut len, cap) = self.triple_mut(); |
| let unspilled = !self.spilled(); |
| assert!(new_cap >= len); |
| if new_cap <= self.inline_size() { |
| if unspilled { |
| return; |
| } |
| self.data = SmallVecData::from_inline(MaybeUninit::uninit()); |
| ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len); |
| self.capacity = len; |
| } else if new_cap != cap { |
| let mut vec = Vec::with_capacity(new_cap); |
| let new_alloc = vec.as_mut_ptr(); |
| mem::forget(vec); |
| ptr::copy_nonoverlapping(ptr, new_alloc, len); |
| self.data = SmallVecData::from_heap(new_alloc, len); |
| self.capacity = new_cap; |
| if unspilled { |
| return; |
| } |
| } else { |
| return; |
| } |
| deallocate(ptr, cap); |
| } |
| } |
| |
| /// Reserve capacity for `additional` more elements to be inserted. |
| /// |
| /// May reserve more space to avoid frequent reallocations. |
| /// |
| /// If the new capacity would overflow `usize` then it will be set to `usize::max_value()` |
| /// instead. (This means that inserting `additional` new elements is not guaranteed to be |
| /// possible after calling this function.) |
| #[inline] |
| pub fn reserve(&mut self, additional: usize) { |
| // prefer triple_mut() even if triple() would work |
| // so that the optimizer removes duplicated calls to it |
| // from callers like insert() |
| let (_, &mut len, cap) = self.triple_mut(); |
| if cap - len < additional { |
| let new_cap = len.checked_add(additional). |
| and_then(usize::checked_next_power_of_two). |
| unwrap_or(usize::max_value()); |
| self.grow(new_cap); |
| } |
| } |
| |
| /// Reserve the minimum capacity for `additional` more elements to be inserted. |
| /// |
| /// Panics if the new capacity overflows `usize`. |
| pub fn reserve_exact(&mut self, additional: usize) { |
| let (_, &mut len, cap) = self.triple_mut(); |
| if cap - len < additional { |
| match len.checked_add(additional) { |
| Some(cap) => self.grow(cap), |
| None => panic!("reserve_exact overflow"), |
| } |
| } |
| } |
| |
| /// Shrink the capacity of the vector as much as possible. |
| /// |
| /// When possible, this will move data from an external heap buffer to the vector's inline |
| /// storage. |
| pub fn shrink_to_fit(&mut self) { |
| if !self.spilled() { |
| return; |
| } |
| let len = self.len(); |
| if self.inline_size() >= len { |
| unsafe { |
| let (ptr, len) = self.data.heap(); |
| self.data = SmallVecData::from_inline(MaybeUninit::uninit()); |
| ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len); |
| deallocate(ptr, self.capacity); |
| self.capacity = len; |
| } |
| } else if self.capacity() > len { |
| self.grow(len); |
| } |
| } |
| |
| /// Shorten the vector, keeping the first `len` elements and dropping the rest. |
| /// |
| /// If `len` is greater than or equal to the vector's current length, this has no |
| /// effect. |
| /// |
| /// This does not re-allocate. If you want the vector's capacity to shrink, call |
| /// `shrink_to_fit` after truncating. |
| pub fn truncate(&mut self, len: usize) { |
| unsafe { |
| let (ptr, len_ptr, _) = self.triple_mut(); |
| while len < *len_ptr { |
| let last_index = *len_ptr - 1; |
| *len_ptr = last_index; |
| ptr::drop_in_place(ptr.offset(last_index as isize)); |
| } |
| } |
| } |
| |
| /// Extracts a slice containing the entire vector. |
| /// |
| /// Equivalent to `&s[..]`. |
| pub fn as_slice(&self) -> &[A::Item] { |
| self |
| } |
| |
| /// Extracts a mutable slice of the entire vector. |
| /// |
| /// Equivalent to `&mut s[..]`. |
| pub fn as_mut_slice(&mut self) -> &mut [A::Item] { |
| self |
| } |
| |
| /// Remove the element at position `index`, replacing it with the last element. |
| /// |
| /// This does not preserve ordering, but is O(1). |
| /// |
| /// Panics if `index` is out of bounds. |
| #[inline] |
| pub fn swap_remove(&mut self, index: usize) -> A::Item { |
| let len = self.len(); |
| self.swap(len - 1, index); |
| self.pop().unwrap_or_else(|| unsafe { unreachable() }) |
| } |
| |
| /// Remove all elements from the vector. |
| #[inline] |
| pub fn clear(&mut self) { |
| self.truncate(0); |
| } |
| |
| /// Remove and return the element at position `index`, shifting all elements after it to the |
| /// left. |
| /// |
| /// Panics if `index` is out of bounds. |
| pub fn remove(&mut self, index: usize) -> A::Item { |
| unsafe { |
| let (mut ptr, len_ptr, _) = self.triple_mut(); |
| let len = *len_ptr; |
| assert!(index < len); |
| *len_ptr = len - 1; |
| ptr = ptr.offset(index as isize); |
| let item = ptr::read(ptr); |
| ptr::copy(ptr.offset(1), ptr, len - index - 1); |
| item |
| } |
| } |
| |
| /// Insert an element at position `index`, shifting all elements after it to the right. |
| /// |
| /// Panics if `index` is out of bounds. |
| pub fn insert(&mut self, index: usize, element: A::Item) { |
| self.reserve(1); |
| |
| unsafe { |
| let (mut ptr, len_ptr, _) = self.triple_mut(); |
| let len = *len_ptr; |
| assert!(index <= len); |
| *len_ptr = len + 1; |
| ptr = ptr.offset(index as isize); |
| ptr::copy(ptr, ptr.offset(1), len - index); |
| ptr::write(ptr, element); |
| } |
| } |
| |
| /// Insert multiple elements at position `index`, shifting all following elements toward the |
| /// back. |
| pub fn insert_many<I: IntoIterator<Item=A::Item>>(&mut self, index: usize, iterable: I) { |
| let iter = iterable.into_iter(); |
| if index == self.len() { |
| return self.extend(iter); |
| } |
| |
| let (lower_size_bound, _) = iter.size_hint(); |
| assert!(lower_size_bound <= std::isize::MAX as usize); // Ensure offset is indexable |
| assert!(index + lower_size_bound >= index); // Protect against overflow |
| self.reserve(lower_size_bound); |
| |
| unsafe { |
| let old_len = self.len(); |
| assert!(index <= old_len); |
| let mut ptr = self.as_mut_ptr().offset(index as isize); |
| |
| // Move the trailing elements. |
| ptr::copy(ptr, ptr.offset(lower_size_bound as isize), old_len - index); |
| |
| // In case the iterator panics, don't double-drop the items we just copied above. |
| self.set_len(index); |
| |
| let mut num_added = 0; |
| for element in iter { |
| let mut cur = ptr.offset(num_added as isize); |
| if num_added >= lower_size_bound { |
| // Iterator provided more elements than the hint. Move trailing items again. |
| self.reserve(1); |
| ptr = self.as_mut_ptr().offset(index as isize); |
| cur = ptr.offset(num_added as isize); |
| ptr::copy(cur, cur.offset(1), old_len - index); |
| } |
| ptr::write(cur, element); |
| num_added += 1; |
| } |
| if num_added < lower_size_bound { |
| // Iterator provided fewer elements than the hint |
| ptr::copy(ptr.offset(lower_size_bound as isize), ptr.offset(num_added as isize), old_len - index); |
| } |
| |
| self.set_len(old_len + num_added); |
| } |
| } |
| |
| /// Convert a SmallVec to a Vec, without reallocating if the SmallVec has already spilled onto |
| /// the heap. |
| pub fn into_vec(self) -> Vec<A::Item> { |
| if self.spilled() { |
| unsafe { |
| let (ptr, len) = self.data.heap(); |
| let v = Vec::from_raw_parts(ptr, len, self.capacity); |
| mem::forget(self); |
| v |
| } |
| } else { |
| self.into_iter().collect() |
| } |
| } |
| |
| /// Convert the SmallVec into an `A` if possible. Otherwise return `Err(Self)`. |
| /// |
| /// This method returns `Err(Self)` if the SmallVec is too short (and the `A` contains uninitialized elements), |
| /// or if the SmallVec is too long (and all the elements were spilled to the heap). |
| pub fn into_inner(self) -> Result<A, Self> { |
| if self.spilled() || self.len() != A::size() { |
| Err(self) |
| } else { |
| unsafe { |
| let data = ptr::read(&self.data); |
| mem::forget(self); |
| Ok(data.into_inline().assume_init()) |
| } |
| } |
| } |
| |
| /// Retains only the elements specified by the predicate. |
| /// |
| /// In other words, remove all elements `e` such that `f(&e)` returns `false`. |
| /// This method operates in place and preserves the order of the retained |
| /// elements. |
| pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, mut f: F) { |
| let mut del = 0; |
| let len = self.len(); |
| for i in 0..len { |
| if !f(&mut self[i]) { |
| del += 1; |
| } else if del > 0 { |
| self.swap(i - del, i); |
| } |
| } |
| self.truncate(len - del); |
| } |
| |
| /// Removes consecutive duplicate elements. |
| pub fn dedup(&mut self) where A::Item: PartialEq<A::Item> { |
| self.dedup_by(|a, b| a == b); |
| } |
| |
| /// Removes consecutive duplicate elements using the given equality relation. |
| pub fn dedup_by<F>(&mut self, mut same_bucket: F) |
| where F: FnMut(&mut A::Item, &mut A::Item) -> bool |
| { |
| // See the implementation of Vec::dedup_by in the |
| // standard library for an explanation of this algorithm. |
| let len = self.len(); |
| if len <= 1 { |
| return; |
| } |
| |
| let ptr = self.as_mut_ptr(); |
| let mut w: usize = 1; |
| |
| unsafe { |
| for r in 1..len { |
| let p_r = ptr.offset(r as isize); |
| let p_wm1 = ptr.offset((w - 1) as isize); |
| if !same_bucket(&mut *p_r, &mut *p_wm1) { |
| if r != w { |
| let p_w = p_wm1.offset(1); |
| mem::swap(&mut *p_r, &mut *p_w); |
| } |
| w += 1; |
| } |
| } |
| } |
| |
| self.truncate(w); |
| } |
| |
| /// Removes consecutive elements that map to the same key. |
| pub fn dedup_by_key<F, K>(&mut self, mut key: F) |
| where F: FnMut(&mut A::Item) -> K, |
| K: PartialEq<K> |
| { |
| self.dedup_by(|a, b| key(a) == key(b)); |
| } |
| |
| /// Creates a `SmallVec` directly from the raw components of another |
| /// `SmallVec`. |
| /// |
| /// # Safety |
| /// |
| /// This is highly unsafe, due to the number of invariants that aren't |
| /// checked: |
| /// |
| /// * `ptr` needs to have been previously allocated via `SmallVec` for its |
| /// spilled storage (at least, it's highly likely to be incorrect if it |
| /// wasn't). |
| /// * `ptr`'s `A::Item` type needs to be the same size and alignment that |
| /// it was allocated with |
| /// * `length` needs to be less than or equal to `capacity`. |
| /// * `capacity` needs to be the capacity that the pointer was allocated |
| /// with. |
| /// |
| /// Violating these may cause problems like corrupting the allocator's |
| /// internal data structures. |
| /// |
| /// Additionally, `capacity` must be greater than the amount of inline |
| /// storage `A` has; that is, the new `SmallVec` must need to spill over |
| /// into heap allocated storage. This condition is asserted against. |
| /// |
| /// The ownership of `ptr` is effectively transferred to the |
| /// `SmallVec` which may then deallocate, reallocate or change the |
| /// contents of memory pointed to by the pointer at will. Ensure |
| /// that nothing else uses the pointer after calling this |
| /// function. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # #[macro_use] extern crate smallvec; |
| /// # use smallvec::SmallVec; |
| /// use std::mem; |
| /// use std::ptr; |
| /// |
| /// fn main() { |
| /// let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3]; |
| /// |
| /// // Pull out the important parts of `v`. |
| /// let p = v.as_mut_ptr(); |
| /// let len = v.len(); |
| /// let cap = v.capacity(); |
| /// let spilled = v.spilled(); |
| /// |
| /// unsafe { |
| /// // Forget all about `v`. The heap allocation that stored the |
| /// // three values won't be deallocated. |
| /// mem::forget(v); |
| /// |
| /// // Overwrite memory with [4, 5, 6]. |
| /// // |
| /// // This is only safe if `spilled` is true! Otherwise, we are |
| /// // writing into the old `SmallVec`'s inline storage on the |
| /// // stack. |
| /// assert!(spilled); |
| /// for i in 0..len as isize { |
| /// ptr::write(p.offset(i), 4 + i); |
| /// } |
| /// |
| /// // Put everything back together into a SmallVec with a different |
| /// // amount of inline storage, but which is still less than `cap`. |
| /// let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap); |
| /// assert_eq!(&*rebuilt, &[4, 5, 6]); |
| /// } |
| /// } |
| pub unsafe fn from_raw_parts( |
| ptr: *mut A::Item, |
| length: usize, |
| capacity: usize, |
| ) -> SmallVec<A> { |
| assert!(capacity > A::size()); |
| SmallVec { |
| capacity, |
| data: SmallVecData::from_heap(ptr, length), |
| } |
| } |
| } |
| |
| impl<A: Array> SmallVec<A> where A::Item: Copy { |
| /// Copy the elements from a slice into a new `SmallVec`. |
| /// |
| /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`. |
| pub fn from_slice(slice: &[A::Item]) -> Self { |
| let len = slice.len(); |
| if len <= A::size() { |
| SmallVec { |
| capacity: len, |
| data: SmallVecData::from_inline(unsafe { |
| let mut data: MaybeUninit<A> = MaybeUninit::uninit(); |
| ptr::copy_nonoverlapping( |
| slice.as_ptr(), |
| data.as_mut_ptr() as *mut A::Item, |
| len, |
| ); |
| data |
| }) |
| } |
| } else { |
| let mut b = slice.to_vec(); |
| let (ptr, cap) = (b.as_mut_ptr(), b.capacity()); |
| mem::forget(b); |
| SmallVec { |
| capacity: cap, |
| data: SmallVecData::from_heap(ptr, len), |
| } |
| } |
| } |
| |
| /// Copy elements from a slice into the vector at position `index`, shifting any following |
| /// elements toward the back. |
| /// |
| /// For slices of `Copy` types, this is more efficient than `insert`. |
| pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) { |
| self.reserve(slice.len()); |
| |
| let len = self.len(); |
| assert!(index <= len); |
| |
| unsafe { |
| let slice_ptr = slice.as_ptr(); |
| let ptr = self.as_mut_ptr().offset(index as isize); |
| ptr::copy(ptr, ptr.offset(slice.len() as isize), len - index); |
| ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len()); |
| self.set_len(len + slice.len()); |
| } |
| } |
| |
| /// Copy elements from a slice and append them to the vector. |
| /// |
| /// For slices of `Copy` types, this is more efficient than `extend`. |
| #[inline] |
| pub fn extend_from_slice(&mut self, slice: &[A::Item]) { |
| let len = self.len(); |
| self.insert_from_slice(len, slice); |
| } |
| } |
| |
| impl<A: Array> SmallVec<A> where A::Item: Clone { |
| /// Resizes the vector so that its length is equal to `len`. |
| /// |
| /// If `len` is less than the current length, the vector simply truncated. |
| /// |
| /// If `len` is greater than the current length, `value` is appended to the |
| /// vector until its length equals `len`. |
| pub fn resize(&mut self, len: usize, value: A::Item) { |
| let old_len = self.len(); |
| |
| if len > old_len { |
| self.extend(repeat(value).take(len - old_len)); |
| } else { |
| self.truncate(len); |
| } |
| } |
| |
| /// Creates a `SmallVec` with `n` copies of `elem`. |
| /// ``` |
| /// use smallvec::SmallVec; |
| /// |
| /// let v = SmallVec::<[char; 128]>::from_elem('d', 2); |
| /// assert_eq!(v, SmallVec::from_buf(['d', 'd'])); |
| /// ``` |
| pub fn from_elem(elem: A::Item, n: usize) -> Self { |
| if n > A::size() { |
| vec![elem; n].into() |
| } else { |
| let mut v = SmallVec::<A>::new(); |
| unsafe { |
| let (ptr, len_ptr, _) = v.triple_mut(); |
| let mut local_len = SetLenOnDrop::new(len_ptr); |
| |
| for i in 0..n as isize { |
| ::std::ptr::write(ptr.offset(i), elem.clone()); |
| local_len.increment_len(1); |
| } |
| } |
| v |
| } |
| } |
| } |
| |
| impl<A: Array> ops::Deref for SmallVec<A> { |
| type Target = [A::Item]; |
| #[inline] |
| fn deref(&self) -> &[A::Item] { |
| unsafe { |
| let (ptr, len, _) = self.triple(); |
| slice::from_raw_parts(ptr, len) |
| } |
| } |
| } |
| |
| impl<A: Array> ops::DerefMut for SmallVec<A> { |
| #[inline] |
| fn deref_mut(&mut self) -> &mut [A::Item] { |
| unsafe { |
| let (ptr, &mut len, _) = self.triple_mut(); |
| slice::from_raw_parts_mut(ptr, len) |
| } |
| } |
| } |
| |
| impl<A: Array> AsRef<[A::Item]> for SmallVec<A> { |
| #[inline] |
| fn as_ref(&self) -> &[A::Item] { |
| self |
| } |
| } |
| |
| impl<A: Array> AsMut<[A::Item]> for SmallVec<A> { |
| #[inline] |
| fn as_mut(&mut self) -> &mut [A::Item] { |
| self |
| } |
| } |
| |
| impl<A: Array> Borrow<[A::Item]> for SmallVec<A> { |
| #[inline] |
| fn borrow(&self) -> &[A::Item] { |
| self |
| } |
| } |
| |
| impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A> { |
| #[inline] |
| fn borrow_mut(&mut self) -> &mut [A::Item] { |
| self |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| impl<A: Array<Item = u8>> io::Write for SmallVec<A> { |
| #[inline] |
| fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
| self.extend_from_slice(buf); |
| Ok(buf.len()) |
| } |
| |
| #[inline] |
| fn write_all(&mut self, buf: &[u8]) -> io::Result<()> { |
| self.extend_from_slice(buf); |
| Ok(()) |
| } |
| |
| #[inline] |
| fn flush(&mut self) -> io::Result<()> { |
| Ok(()) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<A: Array> Serialize for SmallVec<A> where A::Item: Serialize { |
| fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { |
| let mut state = serializer.serialize_seq(Some(self.len()))?; |
| for item in self { |
| state.serialize_element(&item)?; |
| } |
| state.end() |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<'de, A: Array> Deserialize<'de> for SmallVec<A> where A::Item: Deserialize<'de> { |
| fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> { |
| deserializer.deserialize_seq(SmallVecVisitor{phantom: PhantomData}) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| struct SmallVecVisitor<A> { |
| phantom: PhantomData<A> |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<'de, A: Array> Visitor<'de> for SmallVecVisitor<A> |
| where A::Item: Deserialize<'de>, |
| { |
| type Value = SmallVec<A>; |
| |
| fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
| formatter.write_str("a sequence") |
| } |
| |
| fn visit_seq<B>(self, mut seq: B) -> Result<Self::Value, B::Error> |
| where |
| B: SeqAccess<'de>, |
| { |
| let len = seq.size_hint().unwrap_or(0); |
| let mut values = SmallVec::with_capacity(len); |
| |
| while let Some(value) = seq.next_element()? { |
| values.push(value); |
| } |
| |
| Ok(values) |
| } |
| } |
| |
| |
| #[cfg(feature = "specialization")] |
| trait SpecFrom<A: Array, S> { |
| fn spec_from(slice: S) -> SmallVec<A>; |
| } |
| |
| #[cfg(feature = "specialization")] |
| mod specialization; |
| |
| #[cfg(feature = "specialization")] |
| impl<'a, A: Array> SpecFrom<A, &'a [A::Item]> for SmallVec<A> where A::Item: Copy { |
| #[inline] |
| fn spec_from(slice: &'a [A::Item]) -> SmallVec<A> { |
| SmallVec::from_slice(slice) |
| } |
| } |
| |
| impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A> where A::Item: Clone { |
| #[cfg(not(feature = "specialization"))] |
| #[inline] |
| fn from(slice: &'a [A::Item]) -> SmallVec<A> { |
| slice.into_iter().cloned().collect() |
| } |
| |
| #[cfg(feature = "specialization")] |
| #[inline] |
| fn from(slice: &'a [A::Item]) -> SmallVec<A> { |
| SmallVec::spec_from(slice) |
| } |
| } |
| |
| impl<A: Array> From<Vec<A::Item>> for SmallVec<A> { |
| #[inline] |
| fn from(vec: Vec<A::Item>) -> SmallVec<A> { |
| SmallVec::from_vec(vec) |
| } |
| } |
| |
| impl<A: Array> From<A> for SmallVec<A> { |
| #[inline] |
| fn from(array: A) -> SmallVec<A> { |
| SmallVec::from_buf(array) |
| } |
| } |
| |
| macro_rules! impl_index { |
| ($index_type: ty, $output_type: ty) => { |
| impl<A: Array> ops::Index<$index_type> for SmallVec<A> { |
| type Output = $output_type; |
| #[inline] |
| fn index(&self, index: $index_type) -> &$output_type { |
| &(&**self)[index] |
| } |
| } |
| |
| impl<A: Array> ops::IndexMut<$index_type> for SmallVec<A> { |
| #[inline] |
| fn index_mut(&mut self, index: $index_type) -> &mut $output_type { |
| &mut (&mut **self)[index] |
| } |
| } |
| } |
| } |
| |
| impl_index!(usize, A::Item); |
| impl_index!(ops::Range<usize>, [A::Item]); |
| impl_index!(ops::RangeFrom<usize>, [A::Item]); |
| impl_index!(ops::RangeTo<usize>, [A::Item]); |
| impl_index!(ops::RangeFull, [A::Item]); |
| |
| impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A> where A::Item: Copy { |
| fn extend_from_slice(&mut self, other: &[A::Item]) { |
| SmallVec::extend_from_slice(self, other) |
| } |
| } |
| |
| #[allow(deprecated)] |
| impl<A: Array> VecLike<A::Item> for SmallVec<A> { |
| #[inline] |
| fn push(&mut self, value: A::Item) { |
| SmallVec::push(self, value); |
| } |
| } |
| |
| impl<A: Array> FromIterator<A::Item> for SmallVec<A> { |
| fn from_iter<I: IntoIterator<Item=A::Item>>(iterable: I) -> SmallVec<A> { |
| let mut v = SmallVec::new(); |
| v.extend(iterable); |
| v |
| } |
| } |
| |
| impl<A: Array> Extend<A::Item> for SmallVec<A> { |
| fn extend<I: IntoIterator<Item=A::Item>>(&mut self, iterable: I) { |
| let mut iter = iterable.into_iter(); |
| let (lower_size_bound, _) = iter.size_hint(); |
| self.reserve(lower_size_bound); |
| |
| unsafe { |
| let (ptr, len_ptr, cap) = self.triple_mut(); |
| let mut len = SetLenOnDrop::new(len_ptr); |
| while len.get() < cap { |
| if let Some(out) = iter.next() { |
| ptr::write(ptr.offset(len.get() as isize), out); |
| len.increment_len(1); |
| } else { |
| return; |
| } |
| } |
| } |
| |
| for elem in iter { |
| self.push(elem); |
| } |
| } |
| } |
| |
| impl<A: Array> fmt::Debug for SmallVec<A> where A::Item: fmt::Debug { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| f.debug_list().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<A: Array> Default for SmallVec<A> { |
| #[inline] |
| fn default() -> SmallVec<A> { |
| SmallVec::new() |
| } |
| } |
| |
| #[cfg(feature = "may_dangle")] |
| unsafe impl<#[may_dangle] A: Array> Drop for SmallVec<A> { |
| fn drop(&mut self) { |
| unsafe { |
| if self.spilled() { |
| let (ptr, len) = self.data.heap(); |
| Vec::from_raw_parts(ptr, len, self.capacity); |
| } else { |
| ptr::drop_in_place(&mut self[..]); |
| } |
| } |
| } |
| } |
| |
| #[cfg(not(feature = "may_dangle"))] |
| impl<A: Array> Drop for SmallVec<A> { |
| fn drop(&mut self) { |
| unsafe { |
| if self.spilled() { |
| let (ptr, len) = self.data.heap(); |
| Vec::from_raw_parts(ptr, len, self.capacity); |
| } else { |
| ptr::drop_in_place(&mut self[..]); |
| } |
| } |
| } |
| } |
| |
| impl<A: Array> Clone for SmallVec<A> where A::Item: Clone { |
| fn clone(&self) -> SmallVec<A> { |
| let mut new_vector = SmallVec::with_capacity(self.len()); |
| for element in self.iter() { |
| new_vector.push((*element).clone()) |
| } |
| new_vector |
| } |
| } |
| |
| impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A> |
| where A::Item: PartialEq<B::Item> { |
| #[inline] |
| fn eq(&self, other: &SmallVec<B>) -> bool { self[..] == other[..] } |
| #[inline] |
| fn ne(&self, other: &SmallVec<B>) -> bool { self[..] != other[..] } |
| } |
| |
| impl<A: Array> Eq for SmallVec<A> where A::Item: Eq {} |
| |
| impl<A: Array> PartialOrd for SmallVec<A> where A::Item: PartialOrd { |
| #[inline] |
| fn partial_cmp(&self, other: &SmallVec<A>) -> Option<cmp::Ordering> { |
| PartialOrd::partial_cmp(&**self, &**other) |
| } |
| } |
| |
| impl<A: Array> Ord for SmallVec<A> where A::Item: Ord { |
| #[inline] |
| fn cmp(&self, other: &SmallVec<A>) -> cmp::Ordering { |
| Ord::cmp(&**self, &**other) |
| } |
| } |
| |
| impl<A: Array> Hash for SmallVec<A> where A::Item: Hash { |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| (**self).hash(state) |
| } |
| } |
| |
| unsafe impl<A: Array> Send for SmallVec<A> where A::Item: Send {} |
| |
| /// An iterator that consumes a `SmallVec` and yields its items by value. |
| /// |
| /// Returned from [`SmallVec::into_iter`][1]. |
| /// |
| /// [1]: struct.SmallVec.html#method.into_iter |
| pub struct IntoIter<A: Array> { |
| data: SmallVec<A>, |
| current: usize, |
| end: usize, |
| } |
| |
| impl<A: Array> Drop for IntoIter<A> { |
| fn drop(&mut self) { |
| for _ in self { } |
| } |
| } |
| |
| impl<A: Array> Iterator for IntoIter<A> { |
| type Item = A::Item; |
| |
| #[inline] |
| fn next(&mut self) -> Option<A::Item> { |
| if self.current == self.end { |
| None |
| } |
| else { |
| unsafe { |
| let current = self.current as isize; |
| self.current += 1; |
| Some(ptr::read(self.data.as_ptr().offset(current))) |
| } |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let size = self.end - self.current; |
| (size, Some(size)) |
| } |
| } |
| |
| impl<A: Array> DoubleEndedIterator for IntoIter<A> { |
| #[inline] |
| fn next_back(&mut self) -> Option<A::Item> { |
| if self.current == self.end { |
| None |
| } |
| else { |
| unsafe { |
| self.end -= 1; |
| Some(ptr::read(self.data.as_ptr().offset(self.end as isize))) |
| } |
| } |
| } |
| } |
| |
| impl<A: Array> ExactSizeIterator for IntoIter<A> { } |
| |
| impl<A: Array> IntoIterator for SmallVec<A> { |
| type IntoIter = IntoIter<A>; |
| type Item = A::Item; |
| fn into_iter(mut self) -> Self::IntoIter { |
| unsafe { |
| // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements |
| let len = self.len(); |
| self.set_len(0); |
| IntoIter { |
| data: self, |
| current: 0, |
| end: len, |
| } |
| } |
| } |
| } |
| |
| impl<'a, A: Array> IntoIterator for &'a SmallVec<A> { |
| type IntoIter = slice::Iter<'a, A::Item>; |
| type Item = &'a A::Item; |
| fn into_iter(self) -> Self::IntoIter { |
| self.iter() |
| } |
| } |
| |
| impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A> { |
| type IntoIter = slice::IterMut<'a, A::Item>; |
| type Item = &'a mut A::Item; |
| fn into_iter(self) -> Self::IntoIter { |
| self.iter_mut() |
| } |
| } |
| |
| /// Types that can be used as the backing store for a SmallVec |
| pub unsafe trait Array { |
| /// The type of the array's elements. |
| type Item; |
| /// Returns the number of items the array can hold. |
| fn size() -> usize; |
| /// Returns a pointer to the first element of the array. |
| fn ptr(&self) -> *const Self::Item; |
| /// Returns a mutable pointer to the first element of the array. |
| fn ptr_mut(&mut self) -> *mut Self::Item; |
| } |
| |
| /// Set the length of the vec when the `SetLenOnDrop` value goes out of scope. |
| /// |
| /// Copied from https://github.com/rust-lang/rust/pull/36355 |
| struct SetLenOnDrop<'a> { |
| len: &'a mut usize, |
| local_len: usize, |
| } |
| |
| impl<'a> SetLenOnDrop<'a> { |
| #[inline] |
| fn new(len: &'a mut usize) -> Self { |
| SetLenOnDrop { local_len: *len, len: len } |
| } |
| |
| #[inline] |
| fn get(&self) -> usize { |
| self.local_len |
| } |
| |
| #[inline] |
| fn increment_len(&mut self, increment: usize) { |
| self.local_len += increment; |
| } |
| } |
| |
| impl<'a> Drop for SetLenOnDrop<'a> { |
| #[inline] |
| fn drop(&mut self) { |
| *self.len = self.local_len; |
| } |
| } |
| |
| macro_rules! impl_array( |
| ($($size:expr),+) => { |
| $( |
| unsafe impl<T> Array for [T; $size] { |
| type Item = T; |
| fn size() -> usize { $size } |
| fn ptr(&self) -> *const T { unimplemented!() } |
| fn ptr_mut(&mut self) -> *mut T { unimplemented!() } |
| } |
| )+ |
| } |
| ); |
| |
| impl_array!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 36, |
| 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, |
| 0x10000, 0x20000, 0x40000, 0x80000, 0x100000); |
| |
| #[cfg(test)] |
| mod tests { |
| use SmallVec; |
| |
| use std::iter::FromIterator; |
| |
| #[cfg(feature = "std")] |
| use std::borrow::ToOwned; |
| #[cfg(not(feature = "std"))] |
| use alloc::borrow::ToOwned; |
| #[cfg(feature = "std")] |
| use std::rc::Rc; |
| #[cfg(not(feature = "std"))] |
| use alloc::rc::Rc; |
| #[cfg(not(feature = "std"))] |
| use alloc::boxed::Box; |
| #[cfg(not(feature = "std"))] |
| use alloc::vec::Vec; |
| |
| #[test] |
| pub fn test_zero() { |
| let mut v = SmallVec::<[_; 0]>::new(); |
| assert!(!v.spilled()); |
| v.push(0usize); |
| assert!(v.spilled()); |
| assert_eq!(&*v, &[0]); |
| } |
| |
| // We heap allocate all these strings so that double frees will show up under valgrind. |
| |
| #[test] |
| pub fn test_inline() { |
| let mut v = SmallVec::<[_; 16]>::new(); |
| v.push("hello".to_owned()); |
| v.push("there".to_owned()); |
| assert_eq!(&*v, &[ |
| "hello".to_owned(), |
| "there".to_owned(), |
| ][..]); |
| } |
| |
| #[test] |
| pub fn test_spill() { |
| let mut v = SmallVec::<[_; 2]>::new(); |
| v.push("hello".to_owned()); |
| assert_eq!(v[0], "hello"); |
| v.push("there".to_owned()); |
| v.push("burma".to_owned()); |
| assert_eq!(v[0], "hello"); |
| v.push("shave".to_owned()); |
| assert_eq!(&*v, &[ |
| "hello".to_owned(), |
| "there".to_owned(), |
| "burma".to_owned(), |
| "shave".to_owned(), |
| ][..]); |
| } |
| |
| #[test] |
| pub fn test_double_spill() { |
| let mut v = SmallVec::<[_; 2]>::new(); |
| v.push("hello".to_owned()); |
| v.push("there".to_owned()); |
| v.push("burma".to_owned()); |
| v.push("shave".to_owned()); |
| v.push("hello".to_owned()); |
| v.push("there".to_owned()); |
| v.push("burma".to_owned()); |
| v.push("shave".to_owned()); |
| assert_eq!(&*v, &[ |
| "hello".to_owned(), |
| "there".to_owned(), |
| "burma".to_owned(), |
| "shave".to_owned(), |
| "hello".to_owned(), |
| "there".to_owned(), |
| "burma".to_owned(), |
| "shave".to_owned(), |
| ][..]); |
| } |
| |
| /// https://github.com/servo/rust-smallvec/issues/4 |
| #[test] |
| fn issue_4() { |
| SmallVec::<[Box<u32>; 2]>::new(); |
| } |
| |
| /// https://github.com/servo/rust-smallvec/issues/5 |
| #[test] |
| fn issue_5() { |
| assert!(Some(SmallVec::<[&u32; 2]>::new()).is_some()); |
| } |
| |
| #[test] |
| fn test_with_capacity() { |
| let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(1); |
| assert!(v.is_empty()); |
| assert!(!v.spilled()); |
| assert_eq!(v.capacity(), 3); |
| |
| let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(10); |
| assert!(v.is_empty()); |
| assert!(v.spilled()); |
| assert_eq!(v.capacity(), 10); |
| } |
| |
| #[test] |
| fn drain() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(3); |
| assert_eq!(v.drain().collect::<Vec<_>>(), &[3]); |
| |
| // spilling the vec |
| v.push(3); |
| v.push(4); |
| v.push(5); |
| assert_eq!(v.drain().collect::<Vec<_>>(), &[3, 4, 5]); |
| } |
| |
| #[test] |
| fn drain_rev() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(3); |
| assert_eq!(v.drain().rev().collect::<Vec<_>>(), &[3]); |
| |
| // spilling the vec |
| v.push(3); |
| v.push(4); |
| v.push(5); |
| assert_eq!(v.drain().rev().collect::<Vec<_>>(), &[5, 4, 3]); |
| } |
| |
| #[test] |
| fn into_iter() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(3); |
| assert_eq!(v.into_iter().collect::<Vec<_>>(), &[3]); |
| |
| // spilling the vec |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(3); |
| v.push(4); |
| v.push(5); |
| assert_eq!(v.into_iter().collect::<Vec<_>>(), &[3, 4, 5]); |
| } |
| |
| #[test] |
| fn into_iter_rev() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(3); |
| assert_eq!(v.into_iter().rev().collect::<Vec<_>>(), &[3]); |
| |
| // spilling the vec |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(3); |
| v.push(4); |
| v.push(5); |
| assert_eq!(v.into_iter().rev().collect::<Vec<_>>(), &[5, 4, 3]); |
| } |
| |
| #[test] |
| fn into_iter_drop() { |
| use std::cell::Cell; |
| |
| struct DropCounter<'a>(&'a Cell<i32>); |
| |
| impl<'a> Drop for DropCounter<'a> { |
| fn drop(&mut self) { |
| self.0.set(self.0.get() + 1); |
| } |
| } |
| |
| { |
| let cell = Cell::new(0); |
| let mut v: SmallVec<[DropCounter; 2]> = SmallVec::new(); |
| v.push(DropCounter(&cell)); |
| v.into_iter(); |
| assert_eq!(cell.get(), 1); |
| } |
| |
| { |
| let cell = Cell::new(0); |
| let mut v: SmallVec<[DropCounter; 2]> = SmallVec::new(); |
| v.push(DropCounter(&cell)); |
| v.push(DropCounter(&cell)); |
| assert!(v.into_iter().next().is_some()); |
| assert_eq!(cell.get(), 2); |
| } |
| |
| { |
| let cell = Cell::new(0); |
| let mut v: SmallVec<[DropCounter; 2]> = SmallVec::new(); |
| v.push(DropCounter(&cell)); |
| v.push(DropCounter(&cell)); |
| v.push(DropCounter(&cell)); |
| assert!(v.into_iter().next().is_some()); |
| assert_eq!(cell.get(), 3); |
| } |
| { |
| let cell = Cell::new(0); |
| let mut v: SmallVec<[DropCounter; 2]> = SmallVec::new(); |
| v.push(DropCounter(&cell)); |
| v.push(DropCounter(&cell)); |
| v.push(DropCounter(&cell)); |
| { |
| let mut it = v.into_iter(); |
| assert!(it.next().is_some()); |
| assert!(it.next_back().is_some()); |
| } |
| assert_eq!(cell.get(), 3); |
| } |
| } |
| |
| #[test] |
| fn test_capacity() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.reserve(1); |
| assert_eq!(v.capacity(), 2); |
| assert!(!v.spilled()); |
| |
| v.reserve_exact(0x100); |
| assert!(v.capacity() >= 0x100); |
| |
| v.push(0); |
| v.push(1); |
| v.push(2); |
| v.push(3); |
| |
| v.shrink_to_fit(); |
| assert!(v.capacity() < 0x100); |
| } |
| |
| #[test] |
| fn test_truncate() { |
| let mut v: SmallVec<[Box<u8>; 8]> = SmallVec::new(); |
| |
| for x in 0..8 { |
| v.push(Box::new(x)); |
| } |
| v.truncate(4); |
| |
| assert_eq!(v.len(), 4); |
| assert!(!v.spilled()); |
| |
| assert_eq!(*v.swap_remove(1), 1); |
| assert_eq!(*v.remove(1), 3); |
| v.insert(1, Box::new(3)); |
| |
| assert_eq!(&v.iter().map(|v| **v).collect::<Vec<_>>(), &[0, 3, 2]); |
| } |
| |
| #[test] |
| fn test_insert_many() { |
| let mut v: SmallVec<[u8; 8]> = SmallVec::new(); |
| for x in 0..4 { |
| v.push(x); |
| } |
| assert_eq!(v.len(), 4); |
| v.insert_many(1, [5, 6].iter().cloned()); |
| assert_eq!(&v.iter().map(|v| *v).collect::<Vec<_>>(), &[0, 5, 6, 1, 2, 3]); |
| } |
| |
| struct MockHintIter<T: Iterator>{x: T, hint: usize} |
| impl<T: Iterator> Iterator for MockHintIter<T> { |
| type Item = T::Item; |
| fn next(&mut self) -> Option<Self::Item> {self.x.next()} |
| fn size_hint(&self) -> (usize, Option<usize>) {(self.hint, None)} |
| } |
| |
| #[test] |
| fn test_insert_many_short_hint() { |
| let mut v: SmallVec<[u8; 8]> = SmallVec::new(); |
| for x in 0..4 { |
| v.push(x); |
| } |
| assert_eq!(v.len(), 4); |
| v.insert_many(1, MockHintIter{x: [5, 6].iter().cloned(), hint: 5}); |
| assert_eq!(&v.iter().map(|v| *v).collect::<Vec<_>>(), &[0, 5, 6, 1, 2, 3]); |
| } |
| |
| #[test] |
| fn test_insert_many_long_hint() { |
| let mut v: SmallVec<[u8; 8]> = SmallVec::new(); |
| for x in 0..4 { |
| v.push(x); |
| } |
| assert_eq!(v.len(), 4); |
| v.insert_many(1, MockHintIter{x: [5, 6].iter().cloned(), hint: 1}); |
| assert_eq!(&v.iter().map(|v| *v).collect::<Vec<_>>(), &[0, 5, 6, 1, 2, 3]); |
| } |
| |
| #[cfg(all(feature = "std", not(miri)))] // Miri currently does not support unwinding |
| #[test] |
| // https://github.com/servo/rust-smallvec/issues/96 |
| fn test_insert_many_panic() { |
| struct PanicOnDoubleDrop { |
| dropped: Box<bool> |
| } |
| |
| impl Drop for PanicOnDoubleDrop { |
| fn drop(&mut self) { |
| assert!(!*self.dropped, "already dropped"); |
| *self.dropped = true; |
| } |
| } |
| |
| struct BadIter; |
| impl Iterator for BadIter { |
| type Item = PanicOnDoubleDrop; |
| fn size_hint(&self) -> (usize, Option<usize>) { (1, None) } |
| fn next(&mut self) -> Option<Self::Item> { panic!() } |
| } |
| |
| let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = vec![ |
| PanicOnDoubleDrop { dropped: Box::new(false) }, |
| PanicOnDoubleDrop { dropped: Box::new(false) }, |
| ].into(); |
| let result = ::std::panic::catch_unwind(move || { |
| vec.insert_many(0, BadIter); |
| }); |
| assert!(result.is_err()); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_invalid_grow() { |
| let mut v: SmallVec<[u8; 8]> = SmallVec::new(); |
| v.extend(0..8); |
| v.grow(5); |
| } |
| |
| #[test] |
| fn test_insert_from_slice() { |
| let mut v: SmallVec<[u8; 8]> = SmallVec::new(); |
| for x in 0..4 { |
| v.push(x); |
| } |
| assert_eq!(v.len(), 4); |
| v.insert_from_slice(1, &[5, 6]); |
| assert_eq!(&v.iter().map(|v| *v).collect::<Vec<_>>(), &[0, 5, 6, 1, 2, 3]); |
| } |
| |
| #[test] |
| fn test_extend_from_slice() { |
| let mut v: SmallVec<[u8; 8]> = SmallVec::new(); |
| for x in 0..4 { |
| v.push(x); |
| } |
| assert_eq!(v.len(), 4); |
| v.extend_from_slice(&[5, 6]); |
| assert_eq!(&v.iter().map(|v| *v).collect::<Vec<_>>(), &[0, 1, 2, 3, 5, 6]); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_drop_panic_smallvec() { |
| // This test should only panic once, and not double panic, |
| // which would mean a double drop |
| struct DropPanic; |
| |
| impl Drop for DropPanic { |
| fn drop(&mut self) { |
| panic!("drop"); |
| } |
| } |
| |
| let mut v = SmallVec::<[_; 1]>::new(); |
| v.push(DropPanic); |
| } |
| |
| #[test] |
| fn test_eq() { |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| let mut b: SmallVec<[u32; 2]> = SmallVec::new(); |
| let mut c: SmallVec<[u32; 2]> = SmallVec::new(); |
| // a = [1, 2] |
| a.push(1); |
| a.push(2); |
| // b = [1, 2] |
| b.push(1); |
| b.push(2); |
| // c = [3, 4] |
| c.push(3); |
| c.push(4); |
| |
| assert!(a == b); |
| assert!(a != c); |
| } |
| |
| #[test] |
| fn test_ord() { |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| let mut b: SmallVec<[u32; 2]> = SmallVec::new(); |
| let mut c: SmallVec<[u32; 2]> = SmallVec::new(); |
| // a = [1] |
| a.push(1); |
| // b = [1, 1] |
| b.push(1); |
| b.push(1); |
| // c = [1, 2] |
| c.push(1); |
| c.push(2); |
| |
| assert!(a < b); |
| assert!(b > a); |
| assert!(b < c); |
| assert!(c > b); |
| } |
| |
| #[cfg(feature = "std")] |
| #[test] |
| fn test_hash() { |
| use std::hash::Hash; |
| use std::collections::hash_map::DefaultHasher; |
| |
| { |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| let b = [1, 2]; |
| a.extend(b.iter().cloned()); |
| let mut hasher = DefaultHasher::new(); |
| assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher)); |
| } |
| { |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| let b = [1, 2, 11, 12]; |
| a.extend(b.iter().cloned()); |
| let mut hasher = DefaultHasher::new(); |
| assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher)); |
| } |
| } |
| |
| #[test] |
| fn test_as_ref() { |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| a.push(1); |
| assert_eq!(a.as_ref(), [1]); |
| a.push(2); |
| assert_eq!(a.as_ref(), [1, 2]); |
| a.push(3); |
| assert_eq!(a.as_ref(), [1, 2, 3]); |
| } |
| |
| #[test] |
| fn test_as_mut() { |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| a.push(1); |
| assert_eq!(a.as_mut(), [1]); |
| a.push(2); |
| assert_eq!(a.as_mut(), [1, 2]); |
| a.push(3); |
| assert_eq!(a.as_mut(), [1, 2, 3]); |
| a.as_mut()[1] = 4; |
| assert_eq!(a.as_mut(), [1, 4, 3]); |
| } |
| |
| #[test] |
| fn test_borrow() { |
| use std::borrow::Borrow; |
| |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| a.push(1); |
| assert_eq!(a.borrow(), [1]); |
| a.push(2); |
| assert_eq!(a.borrow(), [1, 2]); |
| a.push(3); |
| assert_eq!(a.borrow(), [1, 2, 3]); |
| } |
| |
| #[test] |
| fn test_borrow_mut() { |
| use std::borrow::BorrowMut; |
| |
| let mut a: SmallVec<[u32; 2]> = SmallVec::new(); |
| a.push(1); |
| assert_eq!(a.borrow_mut(), [1]); |
| a.push(2); |
| assert_eq!(a.borrow_mut(), [1, 2]); |
| a.push(3); |
| assert_eq!(a.borrow_mut(), [1, 2, 3]); |
| BorrowMut::<[u32]>::borrow_mut(&mut a)[1] = 4; |
| assert_eq!(a.borrow_mut(), [1, 4, 3]); |
| } |
| |
| #[test] |
| fn test_from() { |
| assert_eq!(&SmallVec::<[u32; 2]>::from(&[1][..])[..], [1]); |
| assert_eq!(&SmallVec::<[u32; 2]>::from(&[1, 2, 3][..])[..], [1, 2, 3]); |
| |
| let vec = vec![]; |
| let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec); |
| assert_eq!(&*small_vec, &[]); |
| drop(small_vec); |
| |
| let vec = vec![1, 2, 3, 4, 5]; |
| let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec); |
| assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| drop(small_vec); |
| |
| let vec = vec![1, 2, 3, 4, 5]; |
| let small_vec: SmallVec<[u8; 1]> = SmallVec::from(vec); |
| assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| drop(small_vec); |
| |
| let array = [1]; |
| let small_vec: SmallVec<[u8; 1]> = SmallVec::from(array); |
| assert_eq!(&*small_vec, &[1]); |
| drop(small_vec); |
| |
| let array = [99; 128]; |
| let small_vec: SmallVec<[u8; 128]> = SmallVec::from(array); |
| assert_eq!(&*small_vec, vec![99u8; 128].as_slice()); |
| drop(small_vec); |
| } |
| |
| #[test] |
| fn test_from_slice() { |
| assert_eq!(&SmallVec::<[u32; 2]>::from_slice(&[1][..])[..], [1]); |
| assert_eq!(&SmallVec::<[u32; 2]>::from_slice(&[1, 2, 3][..])[..], [1, 2, 3]); |
| } |
| |
| #[test] |
| fn test_exact_size_iterator() { |
| let mut vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]); |
| assert_eq!(vec.clone().into_iter().len(), 3); |
| assert_eq!(vec.drain().len(), 3); |
| } |
| |
| #[test] |
| #[allow(deprecated)] |
| fn veclike_deref_slice() { |
| use super::VecLike; |
| |
| fn test<T: VecLike<i32>>(vec: &mut T) { |
| assert!(!vec.is_empty()); |
| assert_eq!(vec.len(), 3); |
| |
| vec.sort(); |
| assert_eq!(&vec[..], [1, 2, 3]); |
| } |
| |
| let mut vec = SmallVec::<[i32; 2]>::from(&[3, 1, 2][..]); |
| test(&mut vec); |
| } |
| |
| #[test] |
| fn shrink_to_fit_unspill() { |
| let mut vec = SmallVec::<[u8; 2]>::from_iter(0..3); |
| vec.pop(); |
| assert!(vec.spilled()); |
| vec.shrink_to_fit(); |
| assert!(!vec.spilled(), "shrink_to_fit will un-spill if possible"); |
| } |
| |
| #[test] |
| fn test_into_vec() { |
| let vec = SmallVec::<[u8; 2]>::from_iter(0..2); |
| assert_eq!(vec.into_vec(), vec![0, 1]); |
| |
| let vec = SmallVec::<[u8; 2]>::from_iter(0..3); |
| assert_eq!(vec.into_vec(), vec![0, 1, 2]); |
| } |
| |
| #[test] |
| fn test_into_inner() { |
| let vec = SmallVec::<[u8; 2]>::from_iter(0..2); |
| assert_eq!(vec.into_inner(), Ok([0, 1])); |
| |
| let vec = SmallVec::<[u8; 2]>::from_iter(0..1); |
| assert_eq!(vec.clone().into_inner(), Err(vec)); |
| |
| let vec = SmallVec::<[u8; 2]>::from_iter(0..3); |
| assert_eq!(vec.clone().into_inner(), Err(vec)); |
| } |
| |
| #[test] |
| fn test_from_vec() { |
| let vec = vec![]; |
| let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); |
| assert_eq!(&*small_vec, &[]); |
| drop(small_vec); |
| |
| let vec = vec![]; |
| let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec); |
| assert_eq!(&*small_vec, &[]); |
| drop(small_vec); |
| |
| let vec = vec![1]; |
| let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); |
| assert_eq!(&*small_vec, &[1]); |
| drop(small_vec); |
| |
| let vec = vec![1, 2, 3]; |
| let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); |
| assert_eq!(&*small_vec, &[1, 2, 3]); |
| drop(small_vec); |
| |
| let vec = vec![1, 2, 3, 4, 5]; |
| let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); |
| assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| drop(small_vec); |
| |
| let vec = vec![1, 2, 3, 4, 5]; |
| let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec); |
| assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| drop(small_vec); |
| } |
| |
| #[test] |
| fn test_retain() { |
| // Test inline data storate |
| let mut sv: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]); |
| sv.retain(|&mut i| i != 3); |
| assert_eq!(sv.pop(), Some(4)); |
| assert_eq!(sv.pop(), Some(2)); |
| assert_eq!(sv.pop(), Some(1)); |
| assert_eq!(sv.pop(), None); |
| |
| // Test spilled data storage |
| let mut sv: SmallVec<[i32; 3]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]); |
| sv.retain(|&mut i| i != 3); |
| assert_eq!(sv.pop(), Some(4)); |
| assert_eq!(sv.pop(), Some(2)); |
| assert_eq!(sv.pop(), Some(1)); |
| assert_eq!(sv.pop(), None); |
| |
| // Test that drop implementations are called for inline. |
| let one = Rc::new(1); |
| let mut sv: SmallVec<[Rc<i32>; 3]> = SmallVec::new(); |
| sv.push(Rc::clone(&one)); |
| assert_eq!(Rc::strong_count(&one), 2); |
| sv.retain(|_| false); |
| assert_eq!(Rc::strong_count(&one), 1); |
| |
| // Test that drop implementations are called for spilled data. |
| let mut sv: SmallVec<[Rc<i32>; 1]> = SmallVec::new(); |
| sv.push(Rc::clone(&one)); |
| sv.push(Rc::new(2)); |
| assert_eq!(Rc::strong_count(&one), 2); |
| sv.retain(|_| false); |
| assert_eq!(Rc::strong_count(&one), 1); |
| } |
| |
| #[test] |
| fn test_dedup() { |
| let mut dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 2, 3, 3]); |
| dupes.dedup(); |
| assert_eq!(&*dupes, &[1, 2, 3]); |
| |
| let mut empty: SmallVec<[i32; 5]> = SmallVec::new(); |
| empty.dedup(); |
| assert!(empty.is_empty()); |
| |
| let mut all_ones: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 1, 1, 1]); |
| all_ones.dedup(); |
| assert_eq!(all_ones.len(), 1); |
| |
| let mut no_dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 4, 5]); |
| no_dupes.dedup(); |
| assert_eq!(no_dupes.len(), 5); |
| } |
| |
| #[test] |
| fn test_resize() { |
| let mut v: SmallVec<[i32; 8]> = SmallVec::new(); |
| v.push(1); |
| v.resize(5, 0); |
| assert_eq!(v[..], [1, 0, 0, 0, 0][..]); |
| |
| v.resize(2, -1); |
| assert_eq!(v[..], [1, 0][..]); |
| } |
| |
| #[cfg(feature = "std")] |
| #[test] |
| fn test_write() { |
| use io::Write; |
| |
| let data = [1, 2, 3, 4, 5]; |
| |
| let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new(); |
| let len = small_vec.write(&data[..]).unwrap(); |
| assert_eq!(len, 5); |
| assert_eq!(small_vec.as_ref(), data.as_ref()); |
| |
| let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new(); |
| small_vec.write_all(&data[..]).unwrap(); |
| assert_eq!(small_vec.as_ref(), data.as_ref()); |
| } |
| |
| #[cfg(feature = "serde")] |
| extern crate bincode; |
| |
| #[cfg(feature = "serde")] |
| #[test] |
| fn test_serde() { |
| use self::bincode::{config, deserialize}; |
| let mut small_vec: SmallVec<[i32; 2]> = SmallVec::new(); |
| small_vec.push(1); |
| let encoded = config().limit(100).serialize(&small_vec).unwrap(); |
| let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap(); |
| assert_eq!(small_vec, decoded); |
| small_vec.push(2); |
| // Spill the vec |
| small_vec.push(3); |
| small_vec.push(4); |
| // Check again after spilling. |
| let encoded = config().limit(100).serialize(&small_vec).unwrap(); |
| let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap(); |
| assert_eq!(small_vec, decoded); |
| } |
| |
| #[test] |
| fn grow_to_shrink() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(1); |
| v.push(2); |
| v.push(3); |
| assert!(v.spilled()); |
| v.clear(); |
| // Shrink to inline. |
| v.grow(2); |
| assert!(!v.spilled()); |
| assert_eq!(v.capacity(), 2); |
| assert_eq!(v.len(), 0); |
| v.push(4); |
| assert_eq!(v[..], [4]); |
| } |
| |
| #[test] |
| fn resumable_extend() { |
| let s = "a b c"; |
| // This iterator yields: (Some('a'), None, Some('b'), None, Some('c')), None |
| let it = s |
| .chars() |
| .scan(0, |_, ch| if ch.is_whitespace() { None } else { Some(ch) }); |
| let mut v: SmallVec<[char; 4]> = SmallVec::new(); |
| v.extend(it); |
| assert_eq!(v[..], ['a']); |
| } |
| |
| // #139 |
| #[test] |
| fn uninhabited() { |
| enum Void {} |
| let _sv = SmallVec::<[Void; 8]>::new(); |
| } |
| |
| #[test] |
| fn grow_spilled_same_size() { |
| let mut v: SmallVec<[u8; 2]> = SmallVec::new(); |
| v.push(0); |
| v.push(1); |
| v.push(2); |
| assert!(v.spilled()); |
| assert_eq!(v.capacity(), 4); |
| // grow with the same capacity |
| v.grow(4); |
| assert_eq!(v.capacity(), 4); |
| assert_eq!(v[..], [0, 1, 2]); |
| } |
| } |