| use crate::CollectionAllocErr; |
| use core::borrow::Borrow; |
| use core::fmt; |
| use core::hash::{BuildHasher, Hash}; |
| use core::iter::{Chain, FromIterator, FusedIterator}; |
| use core::ops::{BitAnd, BitOr, BitXor, Sub}; |
| |
| use super::map::{self, DefaultHashBuilder, HashMap, Keys}; |
| |
| // Future Optimization (FIXME!) |
| // ============================= |
| // |
| // Iteration over zero sized values is a noop. There is no need |
| // for `bucket.val` in the case of HashSet. I suppose we would need HKT |
| // to get rid of it properly. |
| |
| /// A hash set implemented as a `HashMap` where the value is `()`. |
| /// |
| /// As with the [`HashMap`] type, a `HashSet` requires that the elements |
| /// implement the [`Eq`] and [`Hash`] traits. This can frequently be achieved by |
| /// using `#[derive(PartialEq, Eq, Hash)]`. If you implement these yourself, |
| /// it is important that the following property holds: |
| /// |
| /// ```text |
| /// k1 == k2 -> hash(k1) == hash(k2) |
| /// ``` |
| /// |
| /// In other words, if two keys are equal, their hashes must be equal. |
| /// |
| /// |
| /// It is a logic error for an item to be modified in such a way that the |
| /// item's hash, as determined by the [`Hash`] trait, or its equality, as |
| /// determined by the [`Eq`] trait, changes while it is in the set. This is |
| /// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or |
| /// unsafe code. |
| /// |
| /// It is also a logic error for the [`Hash`] implementation of a key to panic. |
| /// This is generally only possible if the trait is implemented manually. If a |
| /// panic does occur then the contents of the `HashSet` may become corrupted and |
| /// some items may be dropped from the table. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// // Type inference lets us omit an explicit type signature (which |
| /// // would be `HashSet<String>` in this example). |
| /// let mut books = HashSet::new(); |
| /// |
| /// // Add some books. |
| /// books.insert("A Dance With Dragons".to_string()); |
| /// books.insert("To Kill a Mockingbird".to_string()); |
| /// books.insert("The Odyssey".to_string()); |
| /// books.insert("The Great Gatsby".to_string()); |
| /// |
| /// // Check for a specific one. |
| /// if !books.contains("The Winds of Winter") { |
| /// println!("We have {} books, but The Winds of Winter ain't one.", |
| /// books.len()); |
| /// } |
| /// |
| /// // Remove a book. |
| /// books.remove("The Odyssey"); |
| /// |
| /// // Iterate over everything. |
| /// for book in &books { |
| /// println!("{}", book); |
| /// } |
| /// ``` |
| /// |
| /// The easiest way to use `HashSet` with a custom type is to derive |
| /// [`Eq`] and [`Hash`]. We must also derive [`PartialEq`], this will in the |
| /// future be implied by [`Eq`]. |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// #[derive(Hash, Eq, PartialEq, Debug)] |
| /// struct Viking { |
| /// name: String, |
| /// power: usize, |
| /// } |
| /// |
| /// let mut vikings = HashSet::new(); |
| /// |
| /// vikings.insert(Viking { name: "Einar".to_string(), power: 9 }); |
| /// vikings.insert(Viking { name: "Einar".to_string(), power: 9 }); |
| /// vikings.insert(Viking { name: "Olaf".to_string(), power: 4 }); |
| /// vikings.insert(Viking { name: "Harald".to_string(), power: 8 }); |
| /// |
| /// // Use derived implementation to print the vikings. |
| /// for x in &vikings { |
| /// println!("{:?}", x); |
| /// } |
| /// ``` |
| /// |
| /// A `HashSet` with fixed list of elements can be initialized from an array: |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// fn main() { |
| /// let viking_names: HashSet<&'static str> = |
| /// [ "Einar", "Olaf", "Harald" ].iter().cloned().collect(); |
| /// // use the values stored in the set |
| /// } |
| /// ``` |
| /// |
| /// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// [`HashMap`]: struct.HashMap.html |
| /// [`PartialEq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html |
| /// [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html |
| #[derive(Clone)] |
| pub struct HashSet<T, S = DefaultHashBuilder> { |
| pub(crate) map: HashMap<T, (), S>, |
| } |
| |
| impl<T: Hash + Eq> HashSet<T, DefaultHashBuilder> { |
| /// Creates an empty `HashSet`. |
| /// |
| /// The hash set is initially created with a capacity of 0, so it will not allocate until it |
| /// is first inserted into. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let set: HashSet<i32> = HashSet::new(); |
| /// ``` |
| #[inline] |
| pub fn new() -> Self { |
| Self { |
| map: HashMap::new(), |
| } |
| } |
| |
| /// Creates an empty `HashSet` with the specified capacity. |
| /// |
| /// The hash set will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the hash set will not allocate. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let set: HashSet<i32> = HashSet::with_capacity(10); |
| /// assert!(set.capacity() >= 10); |
| /// ``` |
| #[inline] |
| pub fn with_capacity(capacity: usize) -> Self { |
| Self { |
| map: HashMap::with_capacity(capacity), |
| } |
| } |
| } |
| |
| impl<T, S> HashSet<T, S> { |
| /// Returns the number of elements the set can hold without reallocating. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let set: HashSet<i32> = HashSet::with_capacity(100); |
| /// assert!(set.capacity() >= 100); |
| /// ``` |
| #[inline] |
| pub fn capacity(&self) -> usize { |
| self.map.capacity() |
| } |
| |
| /// An iterator visiting all elements in arbitrary order. |
| /// The iterator element type is `&'a T`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let mut set = HashSet::new(); |
| /// set.insert("a"); |
| /// set.insert("b"); |
| /// |
| /// // Will print in an arbitrary order. |
| /// for x in set.iter() { |
| /// println!("{}", x); |
| /// } |
| /// ``` |
| #[inline] |
| pub fn iter(&self) -> Iter<'_, T> { |
| Iter { |
| iter: self.map.keys(), |
| } |
| } |
| |
| /// Returns the number of elements in the set. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut v = HashSet::new(); |
| /// assert_eq!(v.len(), 0); |
| /// v.insert(1); |
| /// assert_eq!(v.len(), 1); |
| /// ``` |
| #[inline] |
| pub fn len(&self) -> usize { |
| self.map.len() |
| } |
| |
| /// Returns `true` if the set contains no elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut v = HashSet::new(); |
| /// assert!(v.is_empty()); |
| /// v.insert(1); |
| /// assert!(!v.is_empty()); |
| /// ``` |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.map.is_empty() |
| } |
| |
| /// Clears the set, returning all elements in an iterator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// assert!(!set.is_empty()); |
| /// |
| /// // print 1, 2, 3 in an arbitrary order |
| /// for i in set.drain() { |
| /// println!("{}", i); |
| /// } |
| /// |
| /// assert!(set.is_empty()); |
| /// ``` |
| #[inline] |
| pub fn drain(&mut self) -> Drain<'_, T> { |
| Drain { |
| iter: self.map.drain(), |
| } |
| } |
| |
| /// Clears the set, removing all values. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut v = HashSet::new(); |
| /// v.insert(1); |
| /// v.clear(); |
| /// assert!(v.is_empty()); |
| /// ``` |
| #[inline] |
| pub fn clear(&mut self) { |
| self.map.clear() |
| } |
| } |
| |
| impl<T, S> HashSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| /// Creates a new empty hash set which will use the given hasher to hash |
| /// keys. |
| /// |
| /// The hash set is also created with the default initial capacity. |
| /// |
| /// Warning: `hasher` is normally randomly generated, and |
| /// is designed to allow `HashSet`s to be resistant to attacks that |
| /// cause many collisions and very poor performance. Setting it |
| /// manually using this function can expose a DoS attack vector. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let s = DefaultHashBuilder::default(); |
| /// let mut set = HashSet::with_hasher(s); |
| /// set.insert(2); |
| /// ``` |
| #[inline] |
| pub fn with_hasher(hasher: S) -> Self { |
| Self { |
| map: HashMap::with_hasher(hasher), |
| } |
| } |
| |
| /// Creates an empty `HashSet` with the specified capacity, using |
| /// `hasher` to hash the keys. |
| /// |
| /// The hash set will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the hash set will not allocate. |
| /// |
| /// Warning: `hasher` is normally randomly generated, and |
| /// is designed to allow `HashSet`s to be resistant to attacks that |
| /// cause many collisions and very poor performance. Setting it |
| /// manually using this function can expose a DoS attack vector. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let s = DefaultHashBuilder::default(); |
| /// let mut set = HashSet::with_capacity_and_hasher(10, s); |
| /// set.insert(1); |
| /// ``` |
| #[inline] |
| pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> Self { |
| Self { |
| map: HashMap::with_capacity_and_hasher(capacity, hasher), |
| } |
| } |
| |
| /// Returns a reference to the set's [`BuildHasher`]. |
| /// |
| /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let hasher = DefaultHashBuilder::default(); |
| /// let set: HashSet<i32> = HashSet::with_hasher(hasher); |
| /// let hasher: &DefaultHashBuilder = set.hasher(); |
| /// ``` |
| #[inline] |
| pub fn hasher(&self) -> &S { |
| self.map.hasher() |
| } |
| |
| /// Reserves capacity for at least `additional` more elements to be inserted |
| /// in the `HashSet`. The collection may reserve more space to avoid |
| /// frequent reallocations. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new allocation size overflows `usize`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let mut set: HashSet<i32> = HashSet::new(); |
| /// set.reserve(10); |
| /// assert!(set.capacity() >= 10); |
| /// ``` |
| #[inline] |
| pub fn reserve(&mut self, additional: usize) { |
| self.map.reserve(additional) |
| } |
| |
| /// Tries to reserve capacity for at least `additional` more elements to be inserted |
| /// in the given `HashSet<K,V>`. The collection may reserve more space to avoid |
| /// frequent reallocations. |
| /// |
| /// # Errors |
| /// |
| /// If the capacity overflows, or the allocator reports a failure, then an error |
| /// is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let mut set: HashSet<i32> = HashSet::new(); |
| /// set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?"); |
| /// ``` |
| #[inline] |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { |
| self.map.try_reserve(additional) |
| } |
| |
| /// Shrinks the capacity of the set as much as possible. It will drop |
| /// down as much as possible while maintaining the internal rules |
| /// and possibly leaving some space in accordance with the resize policy. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set = HashSet::with_capacity(100); |
| /// set.insert(1); |
| /// set.insert(2); |
| /// assert!(set.capacity() >= 100); |
| /// set.shrink_to_fit(); |
| /// assert!(set.capacity() >= 2); |
| /// ``` |
| #[inline] |
| pub fn shrink_to_fit(&mut self) { |
| self.map.shrink_to_fit() |
| } |
| |
| /// Shrinks the capacity of the set with a lower limit. It will drop |
| /// down no lower than the supplied limit while maintaining the internal rules |
| /// and possibly leaving some space in accordance with the resize policy. |
| /// |
| /// Panics if the current capacity is smaller than the supplied |
| /// minimum capacity. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set = HashSet::with_capacity(100); |
| /// set.insert(1); |
| /// set.insert(2); |
| /// assert!(set.capacity() >= 100); |
| /// set.shrink_to(10); |
| /// assert!(set.capacity() >= 10); |
| /// set.shrink_to(0); |
| /// assert!(set.capacity() >= 2); |
| /// ``` |
| #[inline] |
| pub fn shrink_to(&mut self, min_capacity: usize) { |
| self.map.shrink_to(min_capacity) |
| } |
| |
| /// Visits the values representing the difference, |
| /// i.e., the values that are in `self` but not in `other`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); |
| /// |
| /// // Can be seen as `a - b`. |
| /// for x in a.difference(&b) { |
| /// println!("{}", x); // Print 1 |
| /// } |
| /// |
| /// let diff: HashSet<_> = a.difference(&b).collect(); |
| /// assert_eq!(diff, [1].iter().collect()); |
| /// |
| /// // Note that difference is not symmetric, |
| /// // and `b - a` means something else: |
| /// let diff: HashSet<_> = b.difference(&a).collect(); |
| /// assert_eq!(diff, [4].iter().collect()); |
| /// ``` |
| #[inline] |
| pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, T, S> { |
| Difference { |
| iter: self.iter(), |
| other, |
| } |
| } |
| |
| /// Visits the values representing the symmetric difference, |
| /// i.e., the values that are in `self` or in `other` but not in both. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); |
| /// |
| /// // Print 1, 4 in arbitrary order. |
| /// for x in a.symmetric_difference(&b) { |
| /// println!("{}", x); |
| /// } |
| /// |
| /// let diff1: HashSet<_> = a.symmetric_difference(&b).collect(); |
| /// let diff2: HashSet<_> = b.symmetric_difference(&a).collect(); |
| /// |
| /// assert_eq!(diff1, diff2); |
| /// assert_eq!(diff1, [1, 4].iter().collect()); |
| /// ``` |
| #[inline] |
| pub fn symmetric_difference<'a>(&'a self, other: &'a Self) -> SymmetricDifference<'a, T, S> { |
| SymmetricDifference { |
| iter: self.difference(other).chain(other.difference(self)), |
| } |
| } |
| |
| /// Visits the values representing the intersection, |
| /// i.e., the values that are both in `self` and `other`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); |
| /// |
| /// // Print 2, 3 in arbitrary order. |
| /// for x in a.intersection(&b) { |
| /// println!("{}", x); |
| /// } |
| /// |
| /// let intersection: HashSet<_> = a.intersection(&b).collect(); |
| /// assert_eq!(intersection, [2, 3].iter().collect()); |
| /// ``` |
| #[inline] |
| pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, T, S> { |
| Intersection { |
| iter: self.iter(), |
| other, |
| } |
| } |
| |
| /// Visits the values representing the union, |
| /// i.e., all the values in `self` or `other`, without duplicates. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); |
| /// |
| /// // Print 1, 2, 3, 4 in arbitrary order. |
| /// for x in a.union(&b) { |
| /// println!("{}", x); |
| /// } |
| /// |
| /// let union: HashSet<_> = a.union(&b).collect(); |
| /// assert_eq!(union, [1, 2, 3, 4].iter().collect()); |
| /// ``` |
| #[inline] |
| pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, T, S> { |
| Union { |
| iter: self.iter().chain(other.difference(self)), |
| } |
| } |
| |
| /// Returns `true` if the set contains a value. |
| /// |
| /// The value may be any borrowed form of the set's value type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the value type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let set: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// assert_eq!(set.contains(&1), true); |
| /// assert_eq!(set.contains(&4), false); |
| /// ``` |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| #[inline] |
| pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool |
| where |
| T: Borrow<Q>, |
| Q: Hash + Eq, |
| { |
| self.map.contains_key(value) |
| } |
| |
| /// Returns a reference to the value in the set, if any, that is equal to the given value. |
| /// |
| /// The value may be any borrowed form of the set's value type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the value type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let set: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// assert_eq!(set.get(&2), Some(&2)); |
| /// assert_eq!(set.get(&4), None); |
| /// ``` |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| #[inline] |
| pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> |
| where |
| T: Borrow<Q>, |
| Q: Hash + Eq, |
| { |
| self.map.get_key_value(value).map(|(k, _)| k) |
| } |
| |
| /// Returns `true` if `self` has no elements in common with `other`. |
| /// This is equivalent to checking for an empty intersection. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// let mut b = HashSet::new(); |
| /// |
| /// assert_eq!(a.is_disjoint(&b), true); |
| /// b.insert(4); |
| /// assert_eq!(a.is_disjoint(&b), true); |
| /// b.insert(1); |
| /// assert_eq!(a.is_disjoint(&b), false); |
| /// ``` |
| pub fn is_disjoint(&self, other: &Self) -> bool { |
| self.iter().all(|v| !other.contains(v)) |
| } |
| |
| /// Returns `true` if the set is a subset of another, |
| /// i.e., `other` contains at least all the values in `self`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let sup: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// let mut set = HashSet::new(); |
| /// |
| /// assert_eq!(set.is_subset(&sup), true); |
| /// set.insert(2); |
| /// assert_eq!(set.is_subset(&sup), true); |
| /// set.insert(4); |
| /// assert_eq!(set.is_subset(&sup), false); |
| /// ``` |
| pub fn is_subset(&self, other: &Self) -> bool { |
| if self.len() <= other.len() { |
| self.iter().all(|v| other.contains(v)) |
| } else { |
| false |
| } |
| } |
| |
| /// Returns `true` if the set is a superset of another, |
| /// i.e., `self` contains at least all the values in `other`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let sub: HashSet<_> = [1, 2].iter().cloned().collect(); |
| /// let mut set = HashSet::new(); |
| /// |
| /// assert_eq!(set.is_superset(&sub), false); |
| /// |
| /// set.insert(0); |
| /// set.insert(1); |
| /// assert_eq!(set.is_superset(&sub), false); |
| /// |
| /// set.insert(2); |
| /// assert_eq!(set.is_superset(&sub), true); |
| /// ``` |
| #[inline] |
| pub fn is_superset(&self, other: &Self) -> bool { |
| other.is_subset(self) |
| } |
| |
| /// Adds a value to the set. |
| /// |
| /// If the set did not have this value present, `true` is returned. |
| /// |
| /// If the set did have this value present, `false` is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set = HashSet::new(); |
| /// |
| /// assert_eq!(set.insert(2), true); |
| /// assert_eq!(set.insert(2), false); |
| /// assert_eq!(set.len(), 1); |
| /// ``` |
| #[inline] |
| pub fn insert(&mut self, value: T) -> bool { |
| self.map.insert(value, ()).is_none() |
| } |
| |
| /// Adds a value to the set, replacing the existing value, if any, that is equal to the given |
| /// one. Returns the replaced value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set = HashSet::new(); |
| /// set.insert(Vec::<i32>::new()); |
| /// |
| /// assert_eq!(set.get(&[][..]).unwrap().capacity(), 0); |
| /// set.replace(Vec::with_capacity(10)); |
| /// assert_eq!(set.get(&[][..]).unwrap().capacity(), 10); |
| /// ``` |
| #[inline] |
| pub fn replace(&mut self, value: T) -> Option<T> { |
| match self.map.entry(value) { |
| map::Entry::Occupied(occupied) => Some(occupied.replace_key()), |
| map::Entry::Vacant(vacant) => { |
| vacant.insert(()); |
| None |
| } |
| } |
| } |
| |
| /// Removes a value from the set. Returns whether the value was |
| /// present in the set. |
| /// |
| /// The value may be any borrowed form of the set's value type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the value type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set = HashSet::new(); |
| /// |
| /// set.insert(2); |
| /// assert_eq!(set.remove(&2), true); |
| /// assert_eq!(set.remove(&2), false); |
| /// ``` |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| #[inline] |
| pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool |
| where |
| T: Borrow<Q>, |
| Q: Hash + Eq, |
| { |
| self.map.remove(value).is_some() |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the given one. |
| /// |
| /// The value may be any borrowed form of the set's value type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the value type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect(); |
| /// assert_eq!(set.take(&2), Some(2)); |
| /// assert_eq!(set.take(&2), None); |
| /// ``` |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| #[inline] |
| pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> |
| where |
| T: Borrow<Q>, |
| Q: Hash + Eq, |
| { |
| self.map.remove_entry(value).map(|(k, _)| k) |
| } |
| |
| /// Retains only the elements specified by the predicate. |
| /// |
| /// In other words, remove all elements `e` such that `f(&e)` returns `false`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let xs = [1,2,3,4,5,6]; |
| /// let mut set: HashSet<i32> = xs.iter().cloned().collect(); |
| /// set.retain(|&k| k % 2 == 0); |
| /// assert_eq!(set.len(), 3); |
| /// ``` |
| pub fn retain<F>(&mut self, mut f: F) |
| where |
| F: FnMut(&T) -> bool, |
| { |
| self.map.retain(|k, _| f(k)); |
| } |
| } |
| |
| impl<T, S> PartialEq for HashSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| fn eq(&self, other: &Self) -> bool { |
| if self.len() != other.len() { |
| return false; |
| } |
| |
| self.iter().all(|key| other.contains(key)) |
| } |
| } |
| |
| impl<T, S> Eq for HashSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> fmt::Debug for HashSet<T, S> |
| where |
| T: Eq + Hash + fmt::Debug, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_set().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<T, S> FromIterator<T> for HashSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher + Default, |
| { |
| #[inline] |
| fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { |
| let mut set = Self::with_hasher(Default::default()); |
| set.extend(iter); |
| set |
| } |
| } |
| |
| impl<T, S> Extend<T> for HashSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| #[inline] |
| fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { |
| self.map.extend(iter.into_iter().map(|k| (k, ()))); |
| } |
| } |
| |
| impl<'a, T, S> Extend<&'a T> for HashSet<T, S> |
| where |
| T: 'a + Eq + Hash + Copy, |
| S: BuildHasher, |
| { |
| #[inline] |
| fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { |
| self.extend(iter.into_iter().cloned()); |
| } |
| } |
| |
| impl<T, S> Default for HashSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher + Default, |
| { |
| /// Creates an empty `HashSet<T, S>` with the `Default` value for the hasher. |
| #[inline] |
| fn default() -> Self { |
| Self { |
| map: HashMap::default(), |
| } |
| } |
| } |
| |
| impl<T, S> BitOr<&HashSet<T, S>> for &HashSet<T, S> |
| where |
| T: Eq + Hash + Clone, |
| S: BuildHasher + Default, |
| { |
| type Output = HashSet<T, S>; |
| |
| /// Returns the union of `self` and `rhs` as a new `HashSet<T, S>`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); |
| /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); |
| /// |
| /// let set = &a | &b; |
| /// |
| /// let mut i = 0; |
| /// let expected = [1, 2, 3, 4, 5]; |
| /// for x in &set { |
| /// assert!(expected.contains(x)); |
| /// i += 1; |
| /// } |
| /// assert_eq!(i, expected.len()); |
| /// ``` |
| fn bitor(self, rhs: &HashSet<T, S>) -> HashSet<T, S> { |
| self.union(rhs).cloned().collect() |
| } |
| } |
| |
| impl<T, S> BitAnd<&HashSet<T, S>> for &HashSet<T, S> |
| where |
| T: Eq + Hash + Clone, |
| S: BuildHasher + Default, |
| { |
| type Output = HashSet<T, S>; |
| |
| /// Returns the intersection of `self` and `rhs` as a new `HashSet<T, S>`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); |
| /// let b: HashSet<_> = vec![2, 3, 4].into_iter().collect(); |
| /// |
| /// let set = &a & &b; |
| /// |
| /// let mut i = 0; |
| /// let expected = [2, 3]; |
| /// for x in &set { |
| /// assert!(expected.contains(x)); |
| /// i += 1; |
| /// } |
| /// assert_eq!(i, expected.len()); |
| /// ``` |
| fn bitand(self, rhs: &HashSet<T, S>) -> HashSet<T, S> { |
| self.intersection(rhs).cloned().collect() |
| } |
| } |
| |
| impl<T, S> BitXor<&HashSet<T, S>> for &HashSet<T, S> |
| where |
| T: Eq + Hash + Clone, |
| S: BuildHasher + Default, |
| { |
| type Output = HashSet<T, S>; |
| |
| /// Returns the symmetric difference of `self` and `rhs` as a new `HashSet<T, S>`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); |
| /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); |
| /// |
| /// let set = &a ^ &b; |
| /// |
| /// let mut i = 0; |
| /// let expected = [1, 2, 4, 5]; |
| /// for x in &set { |
| /// assert!(expected.contains(x)); |
| /// i += 1; |
| /// } |
| /// assert_eq!(i, expected.len()); |
| /// ``` |
| fn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S> { |
| self.symmetric_difference(rhs).cloned().collect() |
| } |
| } |
| |
| impl<T, S> Sub<&HashSet<T, S>> for &HashSet<T, S> |
| where |
| T: Eq + Hash + Clone, |
| S: BuildHasher + Default, |
| { |
| type Output = HashSet<T, S>; |
| |
| /// Returns the difference of `self` and `rhs` as a new `HashSet<T, S>`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// |
| /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); |
| /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); |
| /// |
| /// let set = &a - &b; |
| /// |
| /// let mut i = 0; |
| /// let expected = [1, 2]; |
| /// for x in &set { |
| /// assert!(expected.contains(x)); |
| /// i += 1; |
| /// } |
| /// assert_eq!(i, expected.len()); |
| /// ``` |
| fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S> { |
| self.difference(rhs).cloned().collect() |
| } |
| } |
| |
| /// An iterator over the items of a `HashSet`. |
| /// |
| /// This `struct` is created by the [`iter`] method on [`HashSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`iter`]: struct.HashSet.html#method.iter |
| pub struct Iter<'a, K> { |
| iter: Keys<'a, K, ()>, |
| } |
| |
| /// An owning iterator over the items of a `HashSet`. |
| /// |
| /// This `struct` is created by the [`into_iter`] method on [`HashSet`][`HashSet`] |
| /// (provided by the `IntoIterator` trait). See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`into_iter`]: struct.HashSet.html#method.into_iter |
| pub struct IntoIter<K> { |
| iter: map::IntoIter<K, ()>, |
| } |
| |
| /// A draining iterator over the items of a `HashSet`. |
| /// |
| /// This `struct` is created by the [`drain`] method on [`HashSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`drain`]: struct.HashSet.html#method.drain |
| pub struct Drain<'a, K> { |
| iter: map::Drain<'a, K, ()>, |
| } |
| |
| /// A lazy iterator producing elements in the intersection of `HashSet`s. |
| /// |
| /// This `struct` is created by the [`intersection`] method on [`HashSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`intersection`]: struct.HashSet.html#method.intersection |
| pub struct Intersection<'a, T, S> { |
| // iterator of the first set |
| iter: Iter<'a, T>, |
| // the second set |
| other: &'a HashSet<T, S>, |
| } |
| |
| /// A lazy iterator producing elements in the difference of `HashSet`s. |
| /// |
| /// This `struct` is created by the [`difference`] method on [`HashSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`difference`]: struct.HashSet.html#method.difference |
| pub struct Difference<'a, T, S> { |
| // iterator of the first set |
| iter: Iter<'a, T>, |
| // the second set |
| other: &'a HashSet<T, S>, |
| } |
| |
| /// A lazy iterator producing elements in the symmetric difference of `HashSet`s. |
| /// |
| /// This `struct` is created by the [`symmetric_difference`] method on |
| /// [`HashSet`]. See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`symmetric_difference`]: struct.HashSet.html#method.symmetric_difference |
| pub struct SymmetricDifference<'a, T, S> { |
| iter: Chain<Difference<'a, T, S>, Difference<'a, T, S>>, |
| } |
| |
| /// A lazy iterator producing elements in the union of `HashSet`s. |
| /// |
| /// This `struct` is created by the [`union`] method on [`HashSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`HashSet`]: struct.HashSet.html |
| /// [`union`]: struct.HashSet.html#method.union |
| pub struct Union<'a, T, S> { |
| iter: Chain<Iter<'a, T>, Difference<'a, T, S>>, |
| } |
| |
| impl<'a, T, S> IntoIterator for &'a HashSet<T, S> { |
| type Item = &'a T; |
| type IntoIter = Iter<'a, T>; |
| |
| #[inline] |
| fn into_iter(self) -> Iter<'a, T> { |
| self.iter() |
| } |
| } |
| |
| impl<T, S> IntoIterator for HashSet<T, S> { |
| type Item = T; |
| type IntoIter = IntoIter<T>; |
| |
| /// Creates a consuming iterator, that is, one that moves each value out |
| /// of the set in arbitrary order. The set cannot be used after calling |
| /// this. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashSet; |
| /// let mut set = HashSet::new(); |
| /// set.insert("a".to_string()); |
| /// set.insert("b".to_string()); |
| /// |
| /// // Not possible to collect to a Vec<String> with a regular `.iter()`. |
| /// let v: Vec<String> = set.into_iter().collect(); |
| /// |
| /// // Will print in an arbitrary order. |
| /// for x in &v { |
| /// println!("{}", x); |
| /// } |
| /// ``` |
| #[inline] |
| fn into_iter(self) -> IntoIter<T> { |
| IntoIter { |
| iter: self.map.into_iter(), |
| } |
| } |
| } |
| |
| impl<K> Clone for Iter<'_, K> { |
| #[inline] |
| fn clone(&self) -> Self { |
| Iter { |
| iter: self.iter.clone(), |
| } |
| } |
| } |
| impl<'a, K> Iterator for Iter<'a, K> { |
| type Item = &'a K; |
| |
| #[inline] |
| fn next(&mut self) -> Option<&'a K> { |
| self.iter.next() |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| } |
| impl<'a, K> ExactSizeIterator for Iter<'a, K> { |
| #[inline] |
| fn len(&self) -> usize { |
| self.iter.len() |
| } |
| } |
| impl<K> FusedIterator for Iter<'_, K> {} |
| |
| impl<K: fmt::Debug> fmt::Debug for Iter<'_, K> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| impl<K> Iterator for IntoIter<K> { |
| type Item = K; |
| |
| #[inline] |
| fn next(&mut self) -> Option<K> { |
| self.iter.next().map(|(k, _)| k) |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| } |
| impl<K> ExactSizeIterator for IntoIter<K> { |
| #[inline] |
| fn len(&self) -> usize { |
| self.iter.len() |
| } |
| } |
| impl<K> FusedIterator for IntoIter<K> {} |
| |
| impl<K: fmt::Debug> fmt::Debug for IntoIter<K> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let entries_iter = self.iter.iter().map(|(k, _)| k); |
| f.debug_list().entries(entries_iter).finish() |
| } |
| } |
| |
| impl<K> Iterator for Drain<'_, K> { |
| type Item = K; |
| |
| #[inline] |
| fn next(&mut self) -> Option<K> { |
| self.iter.next().map(|(k, _)| k) |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| } |
| impl<K> ExactSizeIterator for Drain<'_, K> { |
| #[inline] |
| fn len(&self) -> usize { |
| self.iter.len() |
| } |
| } |
| impl<K> FusedIterator for Drain<'_, K> {} |
| |
| impl<K: fmt::Debug> fmt::Debug for Drain<'_, K> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let entries_iter = self.iter.iter().map(|(k, _)| k); |
| f.debug_list().entries(entries_iter).finish() |
| } |
| } |
| |
| impl<T, S> Clone for Intersection<'_, T, S> { |
| #[inline] |
| fn clone(&self) -> Self { |
| Intersection { |
| iter: self.iter.clone(), |
| ..*self |
| } |
| } |
| } |
| |
| impl<'a, T, S> Iterator for Intersection<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<&'a T> { |
| loop { |
| let elt = self.iter.next()?; |
| if self.other.contains(elt) { |
| return Some(elt); |
| } |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (_, upper) = self.iter.size_hint(); |
| (0, upper) |
| } |
| } |
| |
| impl<T, S> fmt::Debug for Intersection<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| impl<T, S> FusedIterator for Intersection<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> Clone for Difference<'_, T, S> { |
| #[inline] |
| fn clone(&self) -> Self { |
| Difference { |
| iter: self.iter.clone(), |
| ..*self |
| } |
| } |
| } |
| |
| impl<'a, T, S> Iterator for Difference<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<&'a T> { |
| loop { |
| let elt = self.iter.next()?; |
| if !self.other.contains(elt) { |
| return Some(elt); |
| } |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (_, upper) = self.iter.size_hint(); |
| (0, upper) |
| } |
| } |
| |
| impl<T, S> FusedIterator for Difference<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> fmt::Debug for Difference<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| impl<T, S> Clone for SymmetricDifference<'_, T, S> { |
| #[inline] |
| fn clone(&self) -> Self { |
| SymmetricDifference { |
| iter: self.iter.clone(), |
| } |
| } |
| } |
| |
| impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<&'a T> { |
| self.iter.next() |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| } |
| |
| impl<T, S> FusedIterator for SymmetricDifference<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> fmt::Debug for SymmetricDifference<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| impl<T, S> Clone for Union<'_, T, S> { |
| #[inline] |
| fn clone(&self) -> Self { |
| Union { |
| iter: self.iter.clone(), |
| } |
| } |
| } |
| |
| impl<T, S> FusedIterator for Union<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> fmt::Debug for Union<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| impl<'a, T, S> Iterator for Union<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<&'a T> { |
| self.iter.next() |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| } |
| |
| #[allow(dead_code)] |
| fn assert_covariance() { |
| fn set<'new>(v: HashSet<&'static str>) -> HashSet<&'new str> { |
| v |
| } |
| fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> { |
| v |
| } |
| fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> { |
| v |
| } |
| fn difference<'a, 'new>( |
| v: Difference<'a, &'static str, DefaultHashBuilder>, |
| ) -> Difference<'a, &'new str, DefaultHashBuilder> { |
| v |
| } |
| fn symmetric_difference<'a, 'new>( |
| v: SymmetricDifference<'a, &'static str, DefaultHashBuilder>, |
| ) -> SymmetricDifference<'a, &'new str, DefaultHashBuilder> { |
| v |
| } |
| fn intersection<'a, 'new>( |
| v: Intersection<'a, &'static str, DefaultHashBuilder>, |
| ) -> Intersection<'a, &'new str, DefaultHashBuilder> { |
| v |
| } |
| fn union<'a, 'new>( |
| v: Union<'a, &'static str, DefaultHashBuilder>, |
| ) -> Union<'a, &'new str, DefaultHashBuilder> { |
| v |
| } |
| fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { |
| d |
| } |
| } |
| |
| #[cfg(test)] |
| mod test_set { |
| use super::super::map::DefaultHashBuilder; |
| use super::HashSet; |
| use std::vec::Vec; |
| |
| #[test] |
| fn test_zero_capacities() { |
| type HS = HashSet<i32>; |
| |
| let s = HS::new(); |
| assert_eq!(s.capacity(), 0); |
| |
| let s = HS::default(); |
| assert_eq!(s.capacity(), 0); |
| |
| let s = HS::with_hasher(DefaultHashBuilder::default()); |
| assert_eq!(s.capacity(), 0); |
| |
| let s = HS::with_capacity(0); |
| assert_eq!(s.capacity(), 0); |
| |
| let s = HS::with_capacity_and_hasher(0, DefaultHashBuilder::default()); |
| assert_eq!(s.capacity(), 0); |
| |
| let mut s = HS::new(); |
| s.insert(1); |
| s.insert(2); |
| s.remove(&1); |
| s.remove(&2); |
| s.shrink_to_fit(); |
| assert_eq!(s.capacity(), 0); |
| |
| let mut s = HS::new(); |
| s.reserve(0); |
| assert_eq!(s.capacity(), 0); |
| } |
| |
| #[test] |
| fn test_disjoint() { |
| let mut xs = HashSet::new(); |
| let mut ys = HashSet::new(); |
| assert!(xs.is_disjoint(&ys)); |
| assert!(ys.is_disjoint(&xs)); |
| assert!(xs.insert(5)); |
| assert!(ys.insert(11)); |
| assert!(xs.is_disjoint(&ys)); |
| assert!(ys.is_disjoint(&xs)); |
| assert!(xs.insert(7)); |
| assert!(xs.insert(19)); |
| assert!(xs.insert(4)); |
| assert!(ys.insert(2)); |
| assert!(ys.insert(-11)); |
| assert!(xs.is_disjoint(&ys)); |
| assert!(ys.is_disjoint(&xs)); |
| assert!(ys.insert(7)); |
| assert!(!xs.is_disjoint(&ys)); |
| assert!(!ys.is_disjoint(&xs)); |
| } |
| |
| #[test] |
| fn test_subset_and_superset() { |
| let mut a = HashSet::new(); |
| assert!(a.insert(0)); |
| assert!(a.insert(5)); |
| assert!(a.insert(11)); |
| assert!(a.insert(7)); |
| |
| let mut b = HashSet::new(); |
| assert!(b.insert(0)); |
| assert!(b.insert(7)); |
| assert!(b.insert(19)); |
| assert!(b.insert(250)); |
| assert!(b.insert(11)); |
| assert!(b.insert(200)); |
| |
| assert!(!a.is_subset(&b)); |
| assert!(!a.is_superset(&b)); |
| assert!(!b.is_subset(&a)); |
| assert!(!b.is_superset(&a)); |
| |
| assert!(b.insert(5)); |
| |
| assert!(a.is_subset(&b)); |
| assert!(!a.is_superset(&b)); |
| assert!(!b.is_subset(&a)); |
| assert!(b.is_superset(&a)); |
| } |
| |
| #[test] |
| fn test_iterate() { |
| let mut a = HashSet::new(); |
| for i in 0..32 { |
| assert!(a.insert(i)); |
| } |
| let mut observed: u32 = 0; |
| for k in &a { |
| observed |= 1 << *k; |
| } |
| assert_eq!(observed, 0xFFFF_FFFF); |
| } |
| |
| #[test] |
| fn test_intersection() { |
| let mut a = HashSet::new(); |
| let mut b = HashSet::new(); |
| |
| assert!(a.insert(11)); |
| assert!(a.insert(1)); |
| assert!(a.insert(3)); |
| assert!(a.insert(77)); |
| assert!(a.insert(103)); |
| assert!(a.insert(5)); |
| assert!(a.insert(-5)); |
| |
| assert!(b.insert(2)); |
| assert!(b.insert(11)); |
| assert!(b.insert(77)); |
| assert!(b.insert(-9)); |
| assert!(b.insert(-42)); |
| assert!(b.insert(5)); |
| assert!(b.insert(3)); |
| |
| let mut i = 0; |
| let expected = [3, 5, 11, 77]; |
| for x in a.intersection(&b) { |
| assert!(expected.contains(x)); |
| i += 1 |
| } |
| assert_eq!(i, expected.len()); |
| } |
| |
| #[test] |
| fn test_difference() { |
| let mut a = HashSet::new(); |
| let mut b = HashSet::new(); |
| |
| assert!(a.insert(1)); |
| assert!(a.insert(3)); |
| assert!(a.insert(5)); |
| assert!(a.insert(9)); |
| assert!(a.insert(11)); |
| |
| assert!(b.insert(3)); |
| assert!(b.insert(9)); |
| |
| let mut i = 0; |
| let expected = [1, 5, 11]; |
| for x in a.difference(&b) { |
| assert!(expected.contains(x)); |
| i += 1 |
| } |
| assert_eq!(i, expected.len()); |
| } |
| |
| #[test] |
| fn test_symmetric_difference() { |
| let mut a = HashSet::new(); |
| let mut b = HashSet::new(); |
| |
| assert!(a.insert(1)); |
| assert!(a.insert(3)); |
| assert!(a.insert(5)); |
| assert!(a.insert(9)); |
| assert!(a.insert(11)); |
| |
| assert!(b.insert(-2)); |
| assert!(b.insert(3)); |
| assert!(b.insert(9)); |
| assert!(b.insert(14)); |
| assert!(b.insert(22)); |
| |
| let mut i = 0; |
| let expected = [-2, 1, 5, 11, 14, 22]; |
| for x in a.symmetric_difference(&b) { |
| assert!(expected.contains(x)); |
| i += 1 |
| } |
| assert_eq!(i, expected.len()); |
| } |
| |
| #[test] |
| fn test_union() { |
| let mut a = HashSet::new(); |
| let mut b = HashSet::new(); |
| |
| assert!(a.insert(1)); |
| assert!(a.insert(3)); |
| assert!(a.insert(5)); |
| assert!(a.insert(9)); |
| assert!(a.insert(11)); |
| assert!(a.insert(16)); |
| assert!(a.insert(19)); |
| assert!(a.insert(24)); |
| |
| assert!(b.insert(-2)); |
| assert!(b.insert(1)); |
| assert!(b.insert(5)); |
| assert!(b.insert(9)); |
| assert!(b.insert(13)); |
| assert!(b.insert(19)); |
| |
| let mut i = 0; |
| let expected = [-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]; |
| for x in a.union(&b) { |
| assert!(expected.contains(x)); |
| i += 1 |
| } |
| assert_eq!(i, expected.len()); |
| } |
| |
| #[test] |
| fn test_from_iter() { |
| let xs = [1, 2, 3, 4, 5, 6, 7, 8, 9]; |
| |
| let set: HashSet<_> = xs.iter().cloned().collect(); |
| |
| for x in &xs { |
| assert!(set.contains(x)); |
| } |
| } |
| |
| #[test] |
| fn test_move_iter() { |
| let hs = { |
| let mut hs = HashSet::new(); |
| |
| hs.insert('a'); |
| hs.insert('b'); |
| |
| hs |
| }; |
| |
| let v = hs.into_iter().collect::<Vec<char>>(); |
| assert!(v == ['a', 'b'] || v == ['b', 'a']); |
| } |
| |
| #[test] |
| fn test_eq() { |
| // These constants once happened to expose a bug in insert(). |
| // I'm keeping them around to prevent a regression. |
| let mut s1 = HashSet::new(); |
| |
| s1.insert(1); |
| s1.insert(2); |
| s1.insert(3); |
| |
| let mut s2 = HashSet::new(); |
| |
| s2.insert(1); |
| s2.insert(2); |
| |
| assert!(s1 != s2); |
| |
| s2.insert(3); |
| |
| assert_eq!(s1, s2); |
| } |
| |
| #[test] |
| fn test_show() { |
| let mut set = HashSet::new(); |
| let empty = HashSet::<i32>::new(); |
| |
| set.insert(1); |
| set.insert(2); |
| |
| let set_str = format!("{:?}", set); |
| |
| assert!(set_str == "{1, 2}" || set_str == "{2, 1}"); |
| assert_eq!(format!("{:?}", empty), "{}"); |
| } |
| |
| #[test] |
| fn test_trivial_drain() { |
| let mut s = HashSet::<i32>::new(); |
| for _ in s.drain() {} |
| assert!(s.is_empty()); |
| drop(s); |
| |
| let mut s = HashSet::<i32>::new(); |
| drop(s.drain()); |
| assert!(s.is_empty()); |
| } |
| |
| #[test] |
| fn test_drain() { |
| let mut s: HashSet<_> = (1..100).collect(); |
| |
| // try this a bunch of times to make sure we don't screw up internal state. |
| for _ in 0..20 { |
| assert_eq!(s.len(), 99); |
| |
| { |
| let mut last_i = 0; |
| let mut d = s.drain(); |
| for (i, x) in d.by_ref().take(50).enumerate() { |
| last_i = i; |
| assert!(x != 0); |
| } |
| assert_eq!(last_i, 49); |
| } |
| |
| for _ in &s { |
| panic!("s should be empty!"); |
| } |
| |
| // reset to try again. |
| s.extend(1..100); |
| } |
| } |
| |
| #[test] |
| fn test_replace() { |
| use core::hash; |
| |
| #[derive(Debug)] |
| struct Foo(&'static str, i32); |
| |
| impl PartialEq for Foo { |
| fn eq(&self, other: &Self) -> bool { |
| self.0 == other.0 |
| } |
| } |
| |
| impl Eq for Foo {} |
| |
| impl hash::Hash for Foo { |
| fn hash<H: hash::Hasher>(&self, h: &mut H) { |
| self.0.hash(h); |
| } |
| } |
| |
| let mut s = HashSet::new(); |
| assert_eq!(s.replace(Foo("a", 1)), None); |
| assert_eq!(s.len(), 1); |
| assert_eq!(s.replace(Foo("a", 2)), Some(Foo("a", 1))); |
| assert_eq!(s.len(), 1); |
| |
| let mut it = s.iter(); |
| assert_eq!(it.next(), Some(&Foo("a", 2))); |
| assert_eq!(it.next(), None); |
| } |
| |
| #[test] |
| fn test_extend_ref() { |
| let mut a = HashSet::new(); |
| a.insert(1); |
| |
| a.extend(&[2, 3, 4]); |
| |
| assert_eq!(a.len(), 4); |
| assert!(a.contains(&1)); |
| assert!(a.contains(&2)); |
| assert!(a.contains(&3)); |
| assert!(a.contains(&4)); |
| |
| let mut b = HashSet::new(); |
| b.insert(5); |
| b.insert(6); |
| |
| a.extend(&b); |
| |
| assert_eq!(a.len(), 6); |
| assert!(a.contains(&1)); |
| assert!(a.contains(&2)); |
| assert!(a.contains(&3)); |
| assert!(a.contains(&4)); |
| assert!(a.contains(&5)); |
| assert!(a.contains(&6)); |
| } |
| |
| #[test] |
| fn test_retain() { |
| let xs = [1, 2, 3, 4, 5, 6]; |
| let mut set: HashSet<i32> = xs.iter().cloned().collect(); |
| set.retain(|&k| k % 2 == 0); |
| assert_eq!(set.len(), 3); |
| assert!(set.contains(&2)); |
| assert!(set.contains(&4)); |
| assert!(set.contains(&6)); |
| } |
| } |