blob: 72642a9ed38765c073b9013133f0c53ee02860a0 [file] [log] [blame] [edit]
use crate::raw::{Bucket, RawDrain, RawIntoIter, RawIter, RawTable};
use crate::CollectionAllocErr;
use core::borrow::Borrow;
use core::fmt::{self, Debug};
use core::hash::{BuildHasher, Hash, Hasher};
use core::iter::{FromIterator, FusedIterator};
use core::marker::PhantomData;
use core::mem;
use core::ops::Index;
pub use crate::fx::FxHashBuilder as DefaultHashBuilder;
/// A hash map implemented with quadratic probing and SIMD lookup.
///
/// The default hashing algorithm is currently `fx`, though this is
/// subject to change at any point in the future. This hash function is very
/// fast for all types of keys, but this algorithm will typically *not* protect
/// against attacks such as HashDoS.
///
/// The hashing algorithm can be replaced on a per-`HashMap` basis using the
/// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many
/// alternative algorithms are available on crates.io, such as the [`fnv`] crate.
///
/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although
/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
/// If you implement these yourself, it is important that the following
/// property holds:
///
/// ```text
/// k1 == k2 -> hash(k1) == hash(k2)
/// ```
///
/// In other words, if two keys are equal, their hashes must be equal.
///
/// It is a logic error for a key to be modified in such a way that the key's
/// hash, as determined by the [`Hash`] trait, or its equality, as determined by
/// the [`Eq`] trait, changes while it is in the map. This is normally only
/// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
///
/// It is also a logic error for the [`Hash`] implementation of a key to panic.
/// This is generally only possible if the trait is implemented manually. If a
/// panic does occur then the contents of the `HashMap` may become corrupted and
/// some items may be dropped from the table.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// // Type inference lets us omit an explicit type signature (which
/// // would be `HashMap<String, String>` in this example).
/// let mut book_reviews = HashMap::new();
///
/// // Review some books.
/// book_reviews.insert(
/// "Adventures of Huckleberry Finn".to_string(),
/// "My favorite book.".to_string(),
/// );
/// book_reviews.insert(
/// "Grimms' Fairy Tales".to_string(),
/// "Masterpiece.".to_string(),
/// );
/// book_reviews.insert(
/// "Pride and Prejudice".to_string(),
/// "Very enjoyable.".to_string(),
/// );
/// book_reviews.insert(
/// "The Adventures of Sherlock Holmes".to_string(),
/// "Eye lyked it alot.".to_string(),
/// );
///
/// // Check for a specific one.
/// // When collections store owned values (String), they can still be
/// // queried using references (&str).
/// if !book_reviews.contains_key("Les Misérables") {
/// println!("We've got {} reviews, but Les Misérables ain't one.",
/// book_reviews.len());
/// }
///
/// // oops, this review has a lot of spelling mistakes, let's delete it.
/// book_reviews.remove("The Adventures of Sherlock Holmes");
///
/// // Look up the values associated with some keys.
/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
/// for &book in &to_find {
/// match book_reviews.get(book) {
/// Some(review) => println!("{}: {}", book, review),
/// None => println!("{} is unreviewed.", book)
/// }
/// }
///
/// // Look up the value for a key (will panic if the key is not found).
/// println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]);
///
/// // Iterate over everything.
/// for (book, review) in &book_reviews {
/// println!("{}: \"{}\"", book, review);
/// }
/// ```
///
/// `HashMap` also implements an [`Entry API`](#method.entry), which allows
/// for more complex methods of getting, setting, updating and removing keys and
/// their values:
///
/// ```
/// use hashbrown::HashMap;
///
/// // type inference lets us omit an explicit type signature (which
/// // would be `HashMap<&str, u8>` in this example).
/// let mut player_stats = HashMap::new();
///
/// fn random_stat_buff() -> u8 {
/// // could actually return some random value here - let's just return
/// // some fixed value for now
/// 42
/// }
///
/// // insert a key only if it doesn't already exist
/// player_stats.entry("health").or_insert(100);
///
/// // insert a key using a function that provides a new value only if it
/// // doesn't already exist
/// player_stats.entry("defence").or_insert_with(random_stat_buff);
///
/// // update a key, guarding against the key possibly not being set
/// let stat = player_stats.entry("attack").or_insert(100);
/// *stat += random_stat_buff();
/// ```
///
/// The easiest way to use `HashMap` with a custom key type is to derive [`Eq`] and [`Hash`].
/// We must also derive [`PartialEq`].
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
/// [`PartialEq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
/// [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
/// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html
/// [`default`]: #method.default
/// [`with_hasher`]: #method.with_hasher
/// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher
/// [`fnv`]: https://crates.io/crates/fnv
///
/// ```
/// use hashbrown::HashMap;
///
/// #[derive(Hash, Eq, PartialEq, Debug)]
/// struct Viking {
/// name: String,
/// country: String,
/// }
///
/// impl Viking {
/// /// Creates a new Viking.
/// fn new(name: &str, country: &str) -> Viking {
/// Viking { name: name.to_string(), country: country.to_string() }
/// }
/// }
///
/// // Use a HashMap to store the vikings' health points.
/// let mut vikings = HashMap::new();
///
/// vikings.insert(Viking::new("Einar", "Norway"), 25);
/// vikings.insert(Viking::new("Olaf", "Denmark"), 24);
/// vikings.insert(Viking::new("Harald", "Iceland"), 12);
///
/// // Use derived implementation to print the status of the vikings.
/// for (viking, health) in &vikings {
/// println!("{:?} has {} hp", viking, health);
/// }
/// ```
///
/// A `HashMap` with fixed list of elements can be initialized from an array:
///
/// ```
/// use hashbrown::HashMap;
///
/// fn main() {
/// let timber_resources: HashMap<&str, i32> =
/// [("Norway", 100),
/// ("Denmark", 50),
/// ("Iceland", 10)]
/// .iter().cloned().collect();
/// // use the values stored in map
/// }
/// ```
#[derive(Clone)]
pub struct HashMap<K, V, S = DefaultHashBuilder> {
pub(crate) hash_builder: S,
pub(crate) table: RawTable<(K, V)>,
}
#[inline]
pub(crate) fn make_hash<K: Hash + ?Sized>(hash_builder: &impl BuildHasher, val: &K) -> u64 {
let mut state = hash_builder.build_hasher();
val.hash(&mut state);
state.finish()
}
impl<K, V> HashMap<K, V, DefaultHashBuilder> {
/// Creates an empty `HashMap`.
///
/// The hash map is initially created with a capacity of 0, so it will not allocate until it
/// is first inserted into.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// let mut map: HashMap<&str, i32> = HashMap::new();
/// ```
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Creates an empty `HashMap` with the specified capacity.
///
/// The hash map will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash map will not allocate.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_and_hasher(capacity, DefaultHashBuilder::default())
}
}
impl<K, V, S> HashMap<K, V, S> {
/// Creates an empty `HashMap` which will use the given hash builder to hash
/// keys.
///
/// The created map has the default initial capacity.
///
/// Warning: `hash_builder` is normally randomly generated, and
/// is designed to allow HashMaps to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::DefaultHashBuilder;
///
/// let s = DefaultHashBuilder::default();
/// let mut map = HashMap::with_hasher(s);
/// map.insert(1, 2);
/// ```
#[inline]
pub fn with_hasher(hash_builder: S) -> Self {
Self {
hash_builder,
table: RawTable::new(),
}
}
/// Creates an empty `HashMap` with the specified capacity, using `hash_builder`
/// to hash the keys.
///
/// The hash map will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash map will not allocate.
///
/// Warning: `hash_builder` is normally randomly generated, and
/// is designed to allow HashMaps to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::DefaultHashBuilder;
///
/// let s = DefaultHashBuilder::default();
/// let mut map = HashMap::with_capacity_and_hasher(10, s);
/// map.insert(1, 2);
/// ```
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
Self {
hash_builder,
table: RawTable::with_capacity(capacity),
}
}
/// Returns a reference to the map's [`BuildHasher`].
///
/// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::DefaultHashBuilder;
///
/// let hasher = DefaultHashBuilder::default();
/// let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
/// let hasher: &DefaultHashBuilder = map.hasher();
/// ```
#[inline]
pub fn hasher(&self) -> &S {
&self.hash_builder
}
/// Returns the number of elements the map can hold without reallocating.
///
/// This number is a lower bound; the `HashMap<K, V>` might be able to hold
/// more, but is guaranteed to be able to hold at least this many.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// let map: HashMap<i32, i32> = HashMap::with_capacity(100);
/// assert!(map.capacity() >= 100);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.table.capacity()
}
/// An iterator visiting all keys in arbitrary order.
/// The iterator element type is `&'a K`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert("a", 1);
/// map.insert("b", 2);
/// map.insert("c", 3);
///
/// for key in map.keys() {
/// println!("{}", key);
/// }
/// ```
#[inline]
pub fn keys(&self) -> Keys<'_, K, V> {
Keys { inner: self.iter() }
}
/// An iterator visiting all values in arbitrary order.
/// The iterator element type is `&'a V`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert("a", 1);
/// map.insert("b", 2);
/// map.insert("c", 3);
///
/// for val in map.values() {
/// println!("{}", val);
/// }
/// ```
#[inline]
pub fn values(&self) -> Values<'_, K, V> {
Values { inner: self.iter() }
}
/// An iterator visiting all values mutably in arbitrary order.
/// The iterator element type is `&'a mut V`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
///
/// map.insert("a", 1);
/// map.insert("b", 2);
/// map.insert("c", 3);
///
/// for val in map.values_mut() {
/// *val = *val + 10;
/// }
///
/// for val in map.values() {
/// println!("{}", val);
/// }
/// ```
#[inline]
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
ValuesMut {
inner: self.iter_mut(),
}
}
/// An iterator visiting all key-value pairs in arbitrary order.
/// The iterator element type is `(&'a K, &'a V)`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert("a", 1);
/// map.insert("b", 2);
/// map.insert("c", 3);
///
/// for (key, val) in map.iter() {
/// println!("key: {} val: {}", key, val);
/// }
/// ```
#[inline]
pub fn iter(&self) -> Iter<'_, K, V> {
// Here we tie the lifetime of self to the iter.
unsafe {
Iter {
inner: self.table.iter(),
marker: PhantomData,
}
}
}
/// An iterator visiting all key-value pairs in arbitrary order,
/// with mutable references to the values.
/// The iterator element type is `(&'a K, &'a mut V)`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert("a", 1);
/// map.insert("b", 2);
/// map.insert("c", 3);
///
/// // Update all values
/// for (_, val) in map.iter_mut() {
/// *val *= 2;
/// }
///
/// for (key, val) in &map {
/// println!("key: {} val: {}", key, val);
/// }
/// ```
#[inline]
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
// Here we tie the lifetime of self to the iter.
unsafe {
IterMut {
inner: self.table.iter(),
marker: PhantomData,
}
}
}
#[cfg(test)]
#[inline]
fn raw_capacity(&self) -> usize {
self.table.buckets()
}
/// Returns the number of elements in the map.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut a = HashMap::new();
/// assert_eq!(a.len(), 0);
/// a.insert(1, "a");
/// assert_eq!(a.len(), 1);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.table.len()
}
/// Returns `true` if the map contains no elements.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut a = HashMap::new();
/// assert!(a.is_empty());
/// a.insert(1, "a");
/// assert!(!a.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Clears the map, returning all key-value pairs as an iterator. Keeps the
/// allocated memory for reuse.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut a = HashMap::new();
/// a.insert(1, "a");
/// a.insert(2, "b");
///
/// for (k, v) in a.drain().take(1) {
/// assert!(k == 1 || k == 2);
/// assert!(v == "a" || v == "b");
/// }
///
/// assert!(a.is_empty());
/// ```
#[inline]
pub fn drain(&mut self) -> Drain<'_, K, V> {
// Here we tie the lifetime of self to the iter.
unsafe {
Drain {
inner: self.table.drain(),
}
}
}
/// Clears the map, removing all key-value pairs. Keeps the allocated memory
/// for reuse.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut a = HashMap::new();
/// a.insert(1, "a");
/// a.clear();
/// assert!(a.is_empty());
/// ```
#[inline]
pub fn clear(&mut self) {
self.table.clear();
}
}
impl<K, V, S> HashMap<K, V, S>
where
K: Eq + Hash,
S: BuildHasher,
{
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the `HashMap`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows [`usize`].
///
/// [`usize`]: https://doc.rust-lang.org/std/primitive.usize.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// let mut map: HashMap<&str, i32> = HashMap::new();
/// map.reserve(10);
/// ```
#[inline]
pub fn reserve(&mut self, additional: usize) {
let hash_builder = &self.hash_builder;
self.table
.reserve(additional, |x| make_hash(hash_builder, &x.0));
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `HashMap<K,V>`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// let mut map: HashMap<&str, isize> = HashMap::new();
/// map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
/// ```
#[inline]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
let hash_builder = &self.hash_builder;
self.table
.try_reserve(additional, |x| make_hash(hash_builder, &x.0))
}
/// Shrinks the capacity of the map as much as possible. It will drop
/// down as much as possible while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
/// map.insert(1, 2);
/// map.insert(3, 4);
/// assert!(map.capacity() >= 100);
/// map.shrink_to_fit();
/// assert!(map.capacity() >= 2);
/// ```
#[inline]
pub fn shrink_to_fit(&mut self) {
let hash_builder = &self.hash_builder;
self.table.shrink_to(0, |x| make_hash(hash_builder, &x.0));
}
/// Shrinks the capacity of the map with a lower limit. It will drop
/// down no lower than the supplied limit while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
/// Panics if the current capacity is smaller than the supplied
/// minimum capacity.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
/// map.insert(1, 2);
/// map.insert(3, 4);
/// assert!(map.capacity() >= 100);
/// map.shrink_to(10);
/// assert!(map.capacity() >= 10);
/// map.shrink_to(0);
/// assert!(map.capacity() >= 2);
/// ```
#[inline]
pub fn shrink_to(&mut self, min_capacity: usize) {
assert!(
self.capacity() >= min_capacity,
"Tried to shrink to a larger capacity"
);
let hash_builder = &self.hash_builder;
self.table
.shrink_to(min_capacity, |x| make_hash(hash_builder, &x.0));
}
/// Gets the given key's corresponding entry in the map for in-place manipulation.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut letters = HashMap::new();
///
/// for ch in "a short treatise on fungi".chars() {
/// let counter = letters.entry(ch).or_insert(0);
/// *counter += 1;
/// }
///
/// assert_eq!(letters[&'s'], 2);
/// assert_eq!(letters[&'t'], 3);
/// assert_eq!(letters[&'u'], 1);
/// assert_eq!(letters.get(&'y'), None);
/// ```
#[inline]
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S> {
let hash = make_hash(&self.hash_builder, &key);
if let Some(elem) = self.table.find(hash, |q| q.0.eq(&key)) {
Entry::Occupied(OccupiedEntry {
key: Some(key),
elem,
table: self,
})
} else {
Entry::Vacant(VacantEntry {
hash,
key,
table: self,
})
}
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.get(&1), Some(&"a"));
/// assert_eq!(map.get(&2), None);
/// ```
#[inline]
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
self.get_key_value(k).map(|(_, v)| v)
}
/// Returns the key-value pair corresponding to the supplied key.
///
/// The supplied key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
/// assert_eq!(map.get_key_value(&2), None);
/// ```
#[inline]
pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
let hash = make_hash(&self.hash_builder, k);
self.table
.find(hash, |x| k.eq(x.0.borrow()))
.map(|item| unsafe {
let &(ref key, ref value) = item.as_ref();
(key, value)
})
}
/// Returns `true` if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.contains_key(&1), true);
/// assert_eq!(map.contains_key(&2), false);
/// ```
#[inline]
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq,
{
self.get(k).is_some()
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert(1, "a");
/// if let Some(x) = map.get_mut(&1) {
/// *x = "b";
/// }
/// assert_eq!(map[&1], "b");
/// ```
#[inline]
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
let hash = make_hash(&self.hash_builder, k);
self.table
.find(hash, |x| k.eq(x.0.borrow()))
.map(|item| unsafe { &mut item.as_mut().1 })
}
/// Inserts a key-value pair into the map.
///
/// If the map did not have this key present, [`None`] is returned.
///
/// If the map did have this key present, the value is updated, and the old
/// value is returned. The key is not updated, though; this matters for
/// types that can be `==` without being identical. See the [module-level
/// documentation] for more.
///
/// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
/// [module-level documentation]: index.html#insert-and-complex-keys
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// assert_eq!(map.insert(37, "a"), None);
/// assert_eq!(map.is_empty(), false);
///
/// map.insert(37, "b");
/// assert_eq!(map.insert(37, "c"), Some("b"));
/// assert_eq!(map[&37], "c");
/// ```
#[inline]
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
unsafe {
let hash = make_hash(&self.hash_builder, &k);
if let Some(item) = self.table.find(hash, |x| k.eq(&x.0)) {
Some(mem::replace(&mut item.as_mut().1, v))
} else {
let hash_builder = &self.hash_builder;
self.table
.insert(hash, (k, v), |x| make_hash(hash_builder, &x.0));
None
}
}
}
/// Removes a key from the map, returning the value at the key if the key
/// was previously in the map.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.remove(&1), Some("a"));
/// assert_eq!(map.remove(&1), None);
/// ```
#[inline]
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
self.remove_entry(k).map(|(_, v)| v)
}
/// Removes a key from the map, returning the stored key and value if the
/// key was previously in the map.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html
/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// # fn main() {
/// let mut map = HashMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.remove_entry(&1), Some((1, "a")));
/// assert_eq!(map.remove(&1), None);
/// # }
/// ```
#[inline]
pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
unsafe {
let hash = make_hash(&self.hash_builder, &k);
if let Some(item) = self.table.find(hash, |x| k.eq(x.0.borrow())) {
self.table.erase_no_drop(&item);
Some(item.read())
} else {
None
}
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect();
/// map.retain(|&k, _| k % 2 == 0);
/// assert_eq!(map.len(), 4);
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&K, &mut V) -> bool,
{
// Here we only use `iter` as a temporary, preventing use-after-free
unsafe {
for item in self.table.iter() {
let &mut (ref key, ref mut value) = item.as_mut();
if !f(key, value) {
// Erase the element from the table first since drop might panic.
self.table.erase_no_drop(&item);
item.drop();
}
}
}
}
}
impl<K, V, S> HashMap<K, V, S>
where
S: BuildHasher,
{
/// Creates a raw entry builder for the HashMap.
///
/// Raw entries provide the lowest level of control for searching and
/// manipulating a map. They must be manually initialized with a hash and
/// then manually searched. After this, insertions into a vacant entry
/// still require an owned key to be provided.
///
/// Raw entries are useful for such exotic situations as:
///
/// * Hash memoization
/// * Deferring the creation of an owned key until it is known to be required
/// * Using a search key that doesn't work with the Borrow trait
/// * Using custom comparison logic without newtype wrappers
///
/// Because raw entries provide much more low-level control, it's much easier
/// to put the HashMap into an inconsistent state which, while memory-safe,
/// will cause the map to produce seemingly random results. Higher-level and
/// more foolproof APIs like `entry` should be preferred when possible.
///
/// In particular, the hash used to initialized the raw entry must still be
/// consistent with the hash of the key that is ultimately stored in the entry.
/// This is because implementations of HashMap may need to recompute hashes
/// when resizing, at which point only the keys are available.
///
/// Raw entries give mutable access to the keys. This must not be used
/// to modify how the key would compare or hash, as the map will not re-evaluate
/// where the key should go, meaning the keys may become "lost" if their
/// location does not reflect their state. For instance, if you change a key
/// so that the map now contains keys which compare equal, search may start
/// acting erratically, with two keys randomly masking each other. Implementations
/// are free to assume this doesn't happen (within the limits of memory-safety).
#[inline]
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S> {
RawEntryBuilderMut { map: self }
}
/// Creates a raw immutable entry builder for the HashMap.
///
/// Raw entries provide the lowest level of control for searching and
/// manipulating a map. They must be manually initialized with a hash and
/// then manually searched.
///
/// This is useful for
/// * Hash memoization
/// * Using a search key that doesn't work with the Borrow trait
/// * Using custom comparison logic without newtype wrappers
///
/// Unless you are in such a situation, higher-level and more foolproof APIs like
/// `get` should be preferred.
///
/// Immutable raw entries have very limited use; you might instead want `raw_entry_mut`.
#[inline]
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S> {
RawEntryBuilder { map: self }
}
}
impl<K, V, S> PartialEq for HashMap<K, V, S>
where
K: Eq + Hash,
V: PartialEq,
S: BuildHasher,
{
fn eq(&self, other: &Self) -> bool {
if self.len() != other.len() {
return false;
}
self.iter()
.all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
}
}
impl<K, V, S> Eq for HashMap<K, V, S>
where
K: Eq + Hash,
V: Eq,
S: BuildHasher,
{
}
impl<K, V, S> Debug for HashMap<K, V, S>
where
K: Debug,
V: Debug,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_map().entries(self.iter()).finish()
}
}
impl<K, V, S> Default for HashMap<K, V, S>
where
S: BuildHasher + Default,
{
/// Creates an empty `HashMap<K, V, S>`, with the `Default` value for the hasher.
#[inline]
fn default() -> Self {
Self::with_hasher(Default::default())
}
}
impl<K, Q: ?Sized, V, S> Index<&Q> for HashMap<K, V, S>
where
K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash,
S: BuildHasher,
{
type Output = V;
/// Returns a reference to the value corresponding to the supplied key.
///
/// # Panics
///
/// Panics if the key is not present in the `HashMap`.
#[inline]
fn index(&self, key: &Q) -> &V {
self.get(key).expect("no entry found for key")
}
}
/// An iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`iter`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`iter`]: struct.HashMap.html#method.iter
/// [`HashMap`]: struct.HashMap.html
pub struct Iter<'a, K, V> {
inner: RawIter<(K, V)>,
marker: PhantomData<(&'a K, &'a V)>,
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Iter<'_, K, V> {
#[inline]
fn clone(&self) -> Self {
Iter {
inner: self.inner.clone(),
marker: PhantomData,
}
}
}
impl<K: Debug, V: Debug> fmt::Debug for Iter<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A mutable iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`iter_mut`]: struct.HashMap.html#method.iter_mut
/// [`HashMap`]: struct.HashMap.html
pub struct IterMut<'a, K, V> {
inner: RawIter<(K, V)>,
// To ensure invariance with respect to V
marker: PhantomData<(&'a K, &'a mut V)>,
}
impl<K, V> IterMut<'_, K, V> {
/// Returns a iterator of references over the remaining items.
#[inline]
pub(super) fn iter(&self) -> Iter<'_, K, V> {
Iter {
inner: self.inner.clone(),
marker: PhantomData,
}
}
}
/// An owning iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`into_iter`] method on [`HashMap`][`HashMap`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: struct.HashMap.html#method.into_iter
/// [`HashMap`]: struct.HashMap.html
pub struct IntoIter<K, V> {
inner: RawIntoIter<(K, V)>,
}
impl<K, V> IntoIter<K, V> {
/// Returns a iterator of references over the remaining items.
#[inline]
pub(super) fn iter(&self) -> Iter<'_, K, V> {
Iter {
inner: self.inner.iter(),
marker: PhantomData,
}
}
}
/// An iterator over the keys of a `HashMap`.
///
/// This `struct` is created by the [`keys`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`keys`]: struct.HashMap.html#method.keys
/// [`HashMap`]: struct.HashMap.html
pub struct Keys<'a, K, V> {
inner: Iter<'a, K, V>,
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Keys<'_, K, V> {
#[inline]
fn clone(&self) -> Self {
Keys {
inner: self.inner.clone(),
}
}
}
impl<K: Debug, V> fmt::Debug for Keys<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// An iterator over the values of a `HashMap`.
///
/// This `struct` is created by the [`values`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`values`]: struct.HashMap.html#method.values
/// [`HashMap`]: struct.HashMap.html
pub struct Values<'a, K, V> {
inner: Iter<'a, K, V>,
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Values<'_, K, V> {
#[inline]
fn clone(&self) -> Self {
Values {
inner: self.inner.clone(),
}
}
}
impl<K, V: Debug> fmt::Debug for Values<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A draining iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`drain`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`drain`]: struct.HashMap.html#method.drain
/// [`HashMap`]: struct.HashMap.html
pub struct Drain<'a, K, V> {
inner: RawDrain<'a, (K, V)>,
}
impl<K, V> Drain<'_, K, V> {
/// Returns a iterator of references over the remaining items.
#[inline]
pub(super) fn iter(&self) -> Iter<'_, K, V> {
Iter {
inner: self.inner.iter(),
marker: PhantomData,
}
}
}
/// A mutable iterator over the values of a `HashMap`.
///
/// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`values_mut`]: struct.HashMap.html#method.values_mut
/// [`HashMap`]: struct.HashMap.html
pub struct ValuesMut<'a, K, V> {
inner: IterMut<'a, K, V>,
}
/// A builder for computing where in a [`HashMap`] a key-value pair would be stored.
///
/// See the [`HashMap::raw_entry_mut`] docs for usage examples.
///
/// [`HashMap::raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut
pub struct RawEntryBuilderMut<'a, K, V, S> {
map: &'a mut HashMap<K, V, S>,
}
/// A view into a single entry in a map, which may either be vacant or occupied.
///
/// This is a lower-level version of [`Entry`].
///
/// This `enum` is constructed from the [`raw_entry`] method on [`HashMap`].
///
/// [`HashMap`]: struct.HashMap.html
/// [`Entry`]: enum.Entry.html
/// [`raw_entry`]: struct.HashMap.html#method.raw_entry
pub enum RawEntryMut<'a, K: 'a, V: 'a, S: 'a> {
/// An occupied entry.
Occupied(RawOccupiedEntryMut<'a, K, V>),
/// A vacant entry.
Vacant(RawVacantEntryMut<'a, K, V, S>),
}
/// A view into an occupied entry in a `HashMap`.
/// It is part of the [`RawEntryMut`] enum.
///
/// [`RawEntryMut`]: enum.RawEntryMut.html
pub struct RawOccupiedEntryMut<'a, K, V> {
elem: Bucket<(K, V)>,
table: &'a mut RawTable<(K, V)>,
}
/// A view into a vacant entry in a `HashMap`.
/// It is part of the [`RawEntryMut`] enum.
///
/// [`RawEntryMut`]: enum.RawEntryMut.html
pub struct RawVacantEntryMut<'a, K, V, S> {
table: &'a mut RawTable<(K, V)>,
hash_builder: &'a S,
}
/// A builder for computing where in a [`HashMap`] a key-value pair would be stored.
///
/// See the [`HashMap::raw_entry`] docs for usage examples.
///
/// [`HashMap::raw_entry`]: struct.HashMap.html#method.raw_entry
pub struct RawEntryBuilder<'a, K, V, S> {
map: &'a HashMap<K, V, S>,
}
impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S>
where
S: BuildHasher,
{
/// Creates a `RawEntryMut` from the given key.
#[inline]
#[allow(clippy::wrong_self_convention)]
pub fn from_key<Q: ?Sized>(self, k: &Q) -> RawEntryMut<'a, K, V, S>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
let mut hasher = self.map.hash_builder.build_hasher();
k.hash(&mut hasher);
self.from_key_hashed_nocheck(hasher.finish(), k)
}
/// Creates a `RawEntryMut` from the given key and its hash.
#[inline]
#[allow(clippy::wrong_self_convention)]
pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S>
where
K: Borrow<Q>,
Q: Eq,
{
self.from_hash(hash, |q| q.borrow().eq(k))
}
}
impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S>
where
S: BuildHasher,
{
/// Creates a `RawEntryMut` from the given hash.
#[inline]
#[allow(clippy::wrong_self_convention)]
pub fn from_hash<F>(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S>
where
for<'b> F: FnMut(&'b K) -> bool,
{
self.search(hash, is_match)
}
#[inline]
fn search<F>(self, hash: u64, mut is_match: F) -> RawEntryMut<'a, K, V, S>
where
for<'b> F: FnMut(&'b K) -> bool,
{
match self.map.table.find(hash, |(k, _)| is_match(k)) {
Some(elem) => RawEntryMut::Occupied(RawOccupiedEntryMut {
elem,
table: &mut self.map.table,
}),
None => RawEntryMut::Vacant(RawVacantEntryMut {
table: &mut self.map.table,
hash_builder: &self.map.hash_builder,
}),
}
}
}
impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S>
where
S: BuildHasher,
{
/// Access an entry by key.
#[inline]
#[allow(clippy::wrong_self_convention)]
pub fn from_key<Q: ?Sized>(self, k: &Q) -> Option<(&'a K, &'a V)>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
let mut hasher = self.map.hash_builder.build_hasher();
k.hash(&mut hasher);
self.from_key_hashed_nocheck(hasher.finish(), k)
}
/// Access an entry by a key and its hash.
#[inline]
#[allow(clippy::wrong_self_convention)]
pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)>
where
K: Borrow<Q>,
Q: Hash + Eq,
{
self.from_hash(hash, |q| q.borrow().eq(k))
}
#[inline]
fn search<F>(self, hash: u64, mut is_match: F) -> Option<(&'a K, &'a V)>
where
F: FnMut(&K) -> bool,
{
self.map
.table
.find(hash, |(k, _)| is_match(k))
.map(|item| unsafe {
let &(ref key, ref value) = item.as_ref();
(key, value)
})
}
/// Access an entry by hash.
#[inline]
#[allow(clippy::wrong_self_convention)]
pub fn from_hash<F>(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)>
where
F: FnMut(&K) -> bool,
{
self.search(hash, is_match)
}
}
impl<'a, K, V, S> RawEntryMut<'a, K, V, S> {
/// Ensures a value is in the entry by inserting the default if empty, and returns
/// mutable references to the key and value in the entry.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
///
/// map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 3);
/// assert_eq!(map["poneyland"], 3);
///
/// *map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 10).1 *= 2;
/// assert_eq!(map["poneyland"], 6);
/// ```
#[inline]
pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
match self {
RawEntryMut::Occupied(entry) => entry.into_key_value(),
RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val),
}
}
/// Ensures a value is in the entry by inserting the result of the default function if empty,
/// and returns mutable references to the key and value in the entry.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, String> = HashMap::new();
///
/// map.raw_entry_mut().from_key("poneyland").or_insert_with(|| {
/// ("poneyland", "hoho".to_string())
/// });
///
/// assert_eq!(map["poneyland"], "hoho".to_string());
/// ```
#[inline]
pub fn or_insert_with<F>(self, default: F) -> (&'a mut K, &'a mut V)
where
F: FnOnce() -> (K, V),
K: Hash,
S: BuildHasher,
{
match self {
RawEntryMut::Occupied(entry) => entry.into_key_value(),
RawEntryMut::Vacant(entry) => {
let (k, v) = default();
entry.insert(k, v)
}
}
}
/// Provides in-place mutable access to an occupied entry before any
/// potential inserts into the map.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
///
/// map.raw_entry_mut()
/// .from_key("poneyland")
/// .and_modify(|_k, v| { *v += 1 })
/// .or_insert("poneyland", 42);
/// assert_eq!(map["poneyland"], 42);
///
/// map.raw_entry_mut()
/// .from_key("poneyland")
/// .and_modify(|_k, v| { *v += 1 })
/// .or_insert("poneyland", 0);
/// assert_eq!(map["poneyland"], 43);
/// ```
#[inline]
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut K, &mut V),
{
match self {
RawEntryMut::Occupied(mut entry) => {
{
let (k, v) = entry.get_key_value_mut();
f(k, v);
}
RawEntryMut::Occupied(entry)
}
RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry),
}
}
}
impl<'a, K, V> RawOccupiedEntryMut<'a, K, V> {
/// Gets a reference to the key in the entry.
#[inline]
pub fn key(&self) -> &K {
unsafe { &self.elem.as_ref().0 }
}
/// Gets a mutable reference to the key in the entry.
#[inline]
pub fn key_mut(&mut self) -> &mut K {
unsafe { &mut self.elem.as_mut().0 }
}
/// Converts the entry into a mutable reference to the key in the entry
/// with a lifetime bound to the map itself.
#[inline]
pub fn into_key(self) -> &'a mut K {
unsafe { &mut self.elem.as_mut().0 }
}
/// Gets a reference to the value in the entry.
#[inline]
pub fn get(&self) -> &V {
unsafe { &self.elem.as_ref().1 }
}
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
/// with a lifetime bound to the map itself.
#[inline]
pub fn into_mut(self) -> &'a mut V {
unsafe { &mut self.elem.as_mut().1 }
}
/// Gets a mutable reference to the value in the entry.
#[inline]
pub fn get_mut(&mut self) -> &mut V {
unsafe { &mut self.elem.as_mut().1 }
}
/// Gets a reference to the key and value in the entry.
#[inline]
pub fn get_key_value(&mut self) -> (&K, &V) {
unsafe {
let &(ref key, ref value) = self.elem.as_ref();
(key, value)
}
}
/// Gets a mutable reference to the key and value in the entry.
#[inline]
pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) {
unsafe {
let &mut (ref mut key, ref mut value) = self.elem.as_mut();
(key, value)
}
}
/// Converts the OccupiedEntry into a mutable reference to the key and value in the entry
/// with a lifetime bound to the map itself.
#[inline]
pub fn into_key_value(self) -> (&'a mut K, &'a mut V) {
unsafe {
let &mut (ref mut key, ref mut value) = self.elem.as_mut();
(key, value)
}
}
/// Sets the value of the entry, and returns the entry's old value.
#[inline]
pub fn insert(&mut self, value: V) -> V {
mem::replace(self.get_mut(), value)
}
/// Sets the value of the entry, and returns the entry's old value.
#[inline]
pub fn insert_key(&mut self, key: K) -> K {
mem::replace(self.key_mut(), key)
}
/// Takes the value out of the entry, and returns it.
#[inline]
pub fn remove(self) -> V {
self.remove_entry().1
}
/// Take the ownership of the key and value from the map.
#[inline]
pub fn remove_entry(self) -> (K, V) {
unsafe {
self.table.erase_no_drop(&self.elem);
self.elem.read()
}
}
}
impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> {
/// Sets the value of the entry with the VacantEntry's key,
/// and returns a mutable reference to it.
#[inline]
pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
let mut hasher = self.hash_builder.build_hasher();
key.hash(&mut hasher);
self.insert_hashed_nocheck(hasher.finish(), key, value)
}
/// Sets the value of the entry with the VacantEntry's key,
/// and returns a mutable reference to it.
#[inline]
#[allow(clippy::shadow_unrelated)]
pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
let hash_builder = self.hash_builder;
self.insert_with_hasher(hash, key, value, |k| make_hash(hash_builder, k))
}
/// Set the value of an entry with a custom hasher function.
#[inline]
pub fn insert_with_hasher<H>(
self,
hash: u64,
key: K,
value: V,
hasher: H,
) -> (&'a mut K, &'a mut V)
where
S: BuildHasher,
H: Fn(&K) -> u64,
{
unsafe {
let elem = self.table.insert(hash, (key, value), |x| hasher(&x.0));
let &mut (ref mut k, ref mut v) = elem.as_mut();
(k, v)
}
}
}
impl<K, V, S> Debug for RawEntryBuilderMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawEntryBuilder").finish()
}
}
impl<K: Debug, V: Debug, S> Debug for RawEntryMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
RawEntryMut::Vacant(ref v) => f.debug_tuple("RawEntry").field(v).finish(),
RawEntryMut::Occupied(ref o) => f.debug_tuple("RawEntry").field(o).finish(),
}
}
}
impl<K: Debug, V: Debug> Debug for RawOccupiedEntryMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawOccupiedEntryMut")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
impl<K, V, S> Debug for RawVacantEntryMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawVacantEntryMut").finish()
}
}
impl<K, V, S> Debug for RawEntryBuilder<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawEntryBuilder").finish()
}
}
/// A view into a single entry in a map, which may either be vacant or occupied.
///
/// This `enum` is constructed from the [`entry`] method on [`HashMap`].
///
/// [`HashMap`]: struct.HashMap.html
/// [`entry`]: struct.HashMap.html#method.entry
pub enum Entry<'a, K: 'a, V: 'a, S: 'a> {
/// An occupied entry.
Occupied(OccupiedEntry<'a, K, V, S>),
/// A vacant entry.
Vacant(VacantEntry<'a, K, V, S>),
}
impl<K: Debug, V: Debug, S> Debug for Entry<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Entry::Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(),
Entry::Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(),
}
}
}
/// A view into an occupied entry in a `HashMap`.
/// It is part of the [`Entry`] enum.
///
/// [`Entry`]: enum.Entry.html
pub struct OccupiedEntry<'a, K, V, S> {
key: Option<K>,
elem: Bucket<(K, V)>,
table: &'a mut HashMap<K, V, S>,
}
unsafe impl<K, V, S> Send for OccupiedEntry<'_, K, V, S>
where
K: Send,
V: Send,
S: Send,
{
}
unsafe impl<K, V, S> Sync for OccupiedEntry<'_, K, V, S>
where
K: Sync,
V: Sync,
S: Sync,
{
}
impl<K: Debug, V: Debug, S> Debug for OccupiedEntry<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OccupiedEntry")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
/// A view into a vacant entry in a `HashMap`.
/// It is part of the [`Entry`] enum.
///
/// [`Entry`]: enum.Entry.html
pub struct VacantEntry<'a, K, V, S> {
hash: u64,
key: K,
table: &'a mut HashMap<K, V, S>,
}
impl<K: Debug, V, S> Debug for VacantEntry<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("VacantEntry").field(self.key()).finish()
}
}
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
#[inline]
fn into_iter(self) -> Iter<'a, K, V> {
self.iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S> {
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
#[inline]
fn into_iter(self) -> IterMut<'a, K, V> {
self.iter_mut()
}
}
impl<K, V, S> IntoIterator for HashMap<K, V, S> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
/// Creates a consuming iterator, that is, one that moves each key-value
/// pair out of the map in arbitrary order. The map cannot be used after
/// calling this.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map = HashMap::new();
/// map.insert("a", 1);
/// map.insert("b", 2);
/// map.insert("c", 3);
///
/// // Not possible with .iter()
/// let vec: Vec<(&str, i32)> = map.into_iter().collect();
/// ```
#[inline]
fn into_iter(self) -> IntoIter<K, V> {
IntoIter {
inner: self.table.into_iter(),
}
}
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
#[inline]
fn next(&mut self) -> Option<(&'a K, &'a V)> {
self.inner.next().map(|x| unsafe {
let r = x.as_ref();
(&r.0, &r.1)
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for Iter<'_, K, V> {}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
#[inline]
fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
self.inner.next().map(|x| unsafe {
let r = x.as_mut();
(&r.0, &mut r.1)
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for IterMut<'_, K, V> {}
impl<K, V> fmt::Debug for IterMut<'_, K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<K, V> Iterator for IntoIter<K, V> {
type Item = (K, V);
#[inline]
fn next(&mut self) -> Option<(K, V)> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for IntoIter<K, V> {}
impl<K: Debug, V: Debug> fmt::Debug for IntoIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
#[inline]
fn next(&mut self) -> Option<(&'a K)> {
self.inner.next().map(|(k, _)| k)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for Keys<'_, K, V> {}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
#[inline]
fn next(&mut self) -> Option<(&'a V)> {
self.inner.next().map(|(_, v)| v)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for Values<'_, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for Values<'_, K, V> {}
impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
type Item = &'a mut V;
#[inline]
fn next(&mut self) -> Option<(&'a mut V)> {
self.inner.next().map(|(_, v)| v)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
impl<K, V> fmt::Debug for ValuesMut<'_, K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.inner.iter()).finish()
}
}
impl<'a, K, V> Iterator for Drain<'a, K, V> {
type Item = (K, V);
#[inline]
fn next(&mut self) -> Option<(K, V)> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for Drain<'_, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for Drain<'_, K, V> {}
impl<K, V> fmt::Debug for Drain<'_, K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<'a, K, V, S> Entry<'a, K, V, S> {
/// Ensures a value is in the entry by inserting the default if empty, and returns
/// a mutable reference to the value in the entry.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
///
/// map.entry("poneyland").or_insert(3);
/// assert_eq!(map["poneyland"], 3);
///
/// *map.entry("poneyland").or_insert(10) *= 2;
/// assert_eq!(map["poneyland"], 6);
/// ```
#[inline]
pub fn or_insert(self, default: V) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default),
}
}
/// Ensures a value is in the entry by inserting the result of the default function if empty,
/// and returns a mutable reference to the value in the entry.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, String> = HashMap::new();
/// let s = "hoho".to_string();
///
/// map.entry("poneyland").or_insert_with(|| s);
///
/// assert_eq!(map["poneyland"], "hoho".to_string());
/// ```
#[inline]
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default()),
}
}
/// Returns a reference to this entry's key.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// assert_eq!(map.entry("poneyland").key(), &"poneyland");
/// ```
#[inline]
pub fn key(&self) -> &K {
match *self {
Entry::Occupied(ref entry) => entry.key(),
Entry::Vacant(ref entry) => entry.key(),
}
}
/// Provides in-place mutable access to an occupied entry before any
/// potential inserts into the map.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
///
/// map.entry("poneyland")
/// .and_modify(|e| { *e += 1 })
/// .or_insert(42);
/// assert_eq!(map["poneyland"], 42);
///
/// map.entry("poneyland")
/// .and_modify(|e| { *e += 1 })
/// .or_insert(42);
/// assert_eq!(map["poneyland"], 43);
/// ```
#[inline]
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut V),
{
match self {
Entry::Occupied(mut entry) => {
f(entry.get_mut());
Entry::Occupied(entry)
}
Entry::Vacant(entry) => Entry::Vacant(entry),
}
}
}
impl<'a, K, V: Default, S> Entry<'a, K, V, S> {
/// Ensures a value is in the entry by inserting the default value if empty,
/// and returns a mutable reference to the value in the entry.
///
/// # Examples
///
/// ```
/// # fn main() {
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, Option<u32>> = HashMap::new();
/// map.entry("poneyland").or_default();
///
/// assert_eq!(map["poneyland"], None);
/// # }
/// ```
#[inline]
pub fn or_default(self) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(Default::default()),
}
}
}
impl<'a, K, V, S> OccupiedEntry<'a, K, V, S> {
/// Gets a reference to the key in the entry.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
/// assert_eq!(map.entry("poneyland").key(), &"poneyland");
/// ```
#[inline]
pub fn key(&self) -> &K {
unsafe { &self.elem.as_ref().0 }
}
/// Take the ownership of the key and value from the map.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
///
/// if let Entry::Occupied(o) = map.entry("poneyland") {
/// // We delete the entry from the map.
/// o.remove_entry();
/// }
///
/// assert_eq!(map.contains_key("poneyland"), false);
/// ```
#[inline]
pub fn remove_entry(self) -> (K, V) {
unsafe {
self.table.table.erase_no_drop(&self.elem);
self.elem.read()
}
}
/// Gets a reference to the value in the entry.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
///
/// if let Entry::Occupied(o) = map.entry("poneyland") {
/// assert_eq!(o.get(), &12);
/// }
/// ```
#[inline]
pub fn get(&self) -> &V {
unsafe { &self.elem.as_ref().1 }
}
/// Gets a mutable reference to the value in the entry.
///
/// If you need a reference to the `OccupiedEntry` which may outlive the
/// destruction of the `Entry` value, see [`into_mut`].
///
/// [`into_mut`]: #method.into_mut
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
///
/// assert_eq!(map["poneyland"], 12);
/// if let Entry::Occupied(mut o) = map.entry("poneyland") {
/// *o.get_mut() += 10;
/// assert_eq!(*o.get(), 22);
///
/// // We can use the same Entry multiple times.
/// *o.get_mut() += 2;
/// }
///
/// assert_eq!(map["poneyland"], 24);
/// ```
#[inline]
pub fn get_mut(&mut self) -> &mut V {
unsafe { &mut self.elem.as_mut().1 }
}
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
/// with a lifetime bound to the map itself.
///
/// If you need multiple references to the `OccupiedEntry`, see [`get_mut`].
///
/// [`get_mut`]: #method.get_mut
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
///
/// assert_eq!(map["poneyland"], 12);
/// if let Entry::Occupied(o) = map.entry("poneyland") {
/// *o.into_mut() += 10;
/// }
///
/// assert_eq!(map["poneyland"], 22);
/// ```
#[inline]
pub fn into_mut(self) -> &'a mut V {
unsafe { &mut self.elem.as_mut().1 }
}
/// Sets the value of the entry, and returns the entry's old value.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
///
/// if let Entry::Occupied(mut o) = map.entry("poneyland") {
/// assert_eq!(o.insert(15), 12);
/// }
///
/// assert_eq!(map["poneyland"], 15);
/// ```
#[inline]
pub fn insert(&mut self, mut value: V) -> V {
let old_value = self.get_mut();
mem::swap(&mut value, old_value);
value
}
/// Takes the value out of the entry, and returns it.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// map.entry("poneyland").or_insert(12);
///
/// if let Entry::Occupied(o) = map.entry("poneyland") {
/// assert_eq!(o.remove(), 12);
/// }
///
/// assert_eq!(map.contains_key("poneyland"), false);
/// ```
#[inline]
pub fn remove(self) -> V {
self.remove_entry().1
}
/// Replaces the entry, returning the old key and value. The new key in the hash map will be
/// the key used to create this entry.
///
/// # Examples
///
/// ```
/// use hashbrown::hash_map::{Entry, HashMap};
/// use std::rc::Rc;
///
/// let mut map: HashMap<Rc<String>, u32> = HashMap::new();
/// map.insert(Rc::new("Stringthing".to_string()), 15);
///
/// let my_key = Rc::new("Stringthing".to_string());
///
/// if let Entry::Occupied(entry) = map.entry(my_key) {
/// // Also replace the key with a handle to our other key.
/// let (old_key, old_value): (Rc<String>, u32) = entry.replace_entry(16);
/// }
///
/// ```
#[inline]
pub fn replace_entry(self, value: V) -> (K, V) {
let entry = unsafe { self.elem.as_mut() };
let old_key = mem::replace(&mut entry.0, self.key.unwrap());
let old_value = mem::replace(&mut entry.1, value);
(old_key, old_value)
}
/// Replaces the key in the hash map with the key used to create this entry.
///
/// # Examples
///
/// ```
/// use hashbrown::hash_map::{Entry, HashMap};
/// use std::rc::Rc;
///
/// let mut map: HashMap<Rc<String>, u32> = HashMap::new();
/// let mut known_strings: Vec<Rc<String>> = Vec::new();
///
/// // Initialise known strings, run program, etc.
///
/// reclaim_memory(&mut map, &known_strings);
///
/// fn reclaim_memory(map: &mut HashMap<Rc<String>, u32>, known_strings: &[Rc<String>] ) {
/// for s in known_strings {
/// if let Entry::Occupied(entry) = map.entry(s.clone()) {
/// // Replaces the entry's key with our version of it in `known_strings`.
/// entry.replace_key();
/// }
/// }
/// }
/// ```
#[inline]
pub fn replace_key(self) -> K {
let entry = unsafe { self.elem.as_mut() };
mem::replace(&mut entry.0, self.key.unwrap())
}
}
impl<'a, K, V, S> VacantEntry<'a, K, V, S> {
/// Gets a reference to the key that would be used when inserting a value
/// through the `VacantEntry`.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
/// assert_eq!(map.entry("poneyland").key(), &"poneyland");
/// ```
#[inline]
pub fn key(&self) -> &K {
&self.key
}
/// Take ownership of the key.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
///
/// if let Entry::Vacant(v) = map.entry("poneyland") {
/// v.into_key();
/// }
/// ```
#[inline]
pub fn into_key(self) -> K {
self.key
}
/// Sets the value of the entry with the VacantEntry's key,
/// and returns a mutable reference to it.
///
/// # Examples
///
/// ```
/// use hashbrown::HashMap;
/// use hashbrown::hash_map::Entry;
///
/// let mut map: HashMap<&str, u32> = HashMap::new();
///
/// if let Entry::Vacant(o) = map.entry("poneyland") {
/// o.insert(37);
/// }
/// assert_eq!(map["poneyland"], 37);
/// ```
#[inline]
pub fn insert(self, value: V) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
let hash_builder = &self.table.hash_builder;
let bucket = self.table.table.insert(self.hash, (self.key, value), |x| {
make_hash(hash_builder, &x.0)
});
unsafe { &mut bucket.as_mut().1 }
}
}
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
where
K: Eq + Hash,
S: BuildHasher + Default,
{
#[inline]
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
let iter = iter.into_iter();
let mut map = Self::with_capacity_and_hasher(iter.size_hint().0, S::default());
iter.for_each(|(k, v)| {
map.insert(k, v);
});
map
}
}
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
where
K: Eq + Hash,
S: BuildHasher,
{
#[inline]
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
// Keys may be already present or show multiple times in the iterator.
// Reserve the entire hint lower bound if the map is empty.
// Otherwise reserve half the hint (rounded up), so the map
// will only resize twice in the worst case.
let iter = iter.into_iter();
let reserve = if self.is_empty() {
iter.size_hint().0
} else {
(iter.size_hint().0 + 1) / 2
};
self.reserve(reserve);
iter.for_each(move |(k, v)| {
self.insert(k, v);
});
}
}
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S>
where
K: Eq + Hash + Copy,
V: Copy,
S: BuildHasher,
{
#[inline]
fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) {
self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
}
}
#[allow(dead_code)]
fn assert_covariance() {
fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> {
v
}
fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> {
v
}
fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> {
v
}
fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> {
v
}
fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> {
v
}
fn into_iter_val<'new>(v: IntoIter<u8, &'static str>) -> IntoIter<u8, &'new str> {
v
}
fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> {
v
}
fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> {
v
}
fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> {
v
}
fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> {
v
}
fn drain<'new>(
d: Drain<'static, &'static str, &'static str>,
) -> Drain<'new, &'new str, &'new str> {
d
}
}
#[cfg(test)]
mod test_map {
use super::DefaultHashBuilder;
use super::Entry::{Occupied, Vacant};
use super::{HashMap, RawEntryMut};
#[cfg(not(miri))]
use crate::CollectionAllocErr::*;
use rand::{rngs::SmallRng, Rng, SeedableRng};
use std::cell::RefCell;
use std::usize;
use std::vec::Vec;
#[test]
fn test_zero_capacities() {
type HM = HashMap<i32, i32>;
let m = HM::new();
assert_eq!(m.capacity(), 0);
let m = HM::default();
assert_eq!(m.capacity(), 0);
let m = HM::with_hasher(DefaultHashBuilder::default());
assert_eq!(m.capacity(), 0);
let m = HM::with_capacity(0);
assert_eq!(m.capacity(), 0);
let m = HM::with_capacity_and_hasher(0, DefaultHashBuilder::default());
assert_eq!(m.capacity(), 0);
let mut m = HM::new();
m.insert(1, 1);
m.insert(2, 2);
m.remove(&1);
m.remove(&2);
m.shrink_to_fit();
assert_eq!(m.capacity(), 0);
let mut m = HM::new();
m.reserve(0);
assert_eq!(m.capacity(), 0);
}
#[test]
fn test_create_capacity_zero() {
let mut m = HashMap::with_capacity(0);
assert!(m.insert(1, 1).is_none());
assert!(m.contains_key(&1));
assert!(!m.contains_key(&0));
}
#[test]
fn test_insert() {
let mut m = HashMap::new();
assert_eq!(m.len(), 0);
assert!(m.insert(1, 2).is_none());
assert_eq!(m.len(), 1);
assert!(m.insert(2, 4).is_none());
assert_eq!(m.len(), 2);
assert_eq!(*m.get(&1).unwrap(), 2);
assert_eq!(*m.get(&2).unwrap(), 4);
}
#[test]
fn test_clone() {
let mut m = HashMap::new();
assert_eq!(m.len(), 0);
assert!(m.insert(1, 2).is_none());
assert_eq!(m.len(), 1);
assert!(m.insert(2, 4).is_none());
assert_eq!(m.len(), 2);
let m2 = m.clone();
assert_eq!(*m2.get(&1).unwrap(), 2);
assert_eq!(*m2.get(&2).unwrap(), 4);
assert_eq!(m2.len(), 2);
}
thread_local! { static DROP_VECTOR: RefCell<Vec<i32>> = RefCell::new(Vec::new()) }
#[derive(Hash, PartialEq, Eq)]
struct Droppable {
k: usize,
}
impl Droppable {
fn new(k: usize) -> Droppable {
DROP_VECTOR.with(|slot| {
slot.borrow_mut()[k] += 1;
});
Droppable { k }
}
}
impl Drop for Droppable {
fn drop(&mut self) {
DROP_VECTOR.with(|slot| {
slot.borrow_mut()[self.k] -= 1;
});
}
}
impl Clone for Droppable {
fn clone(&self) -> Self {
Droppable::new(self.k)
}
}
#[test]
fn test_drops() {
DROP_VECTOR.with(|slot| {
*slot.borrow_mut() = vec![0; 200];
});
{
let mut m = HashMap::new();
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 0);
}
});
for i in 0..100 {
let d1 = Droppable::new(i);
let d2 = Droppable::new(i + 100);
m.insert(d1, d2);
}
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 1);
}
});
for i in 0..50 {
let k = Droppable::new(i);
let v = m.remove(&k);
assert!(v.is_some());
DROP_VECTOR.with(|v| {
assert_eq!(v.borrow()[i], 1);
assert_eq!(v.borrow()[i + 100], 1);
});
}
DROP_VECTOR.with(|v| {
for i in 0..50 {
assert_eq!(v.borrow()[i], 0);
assert_eq!(v.borrow()[i + 100], 0);
}
for i in 50..100 {
assert_eq!(v.borrow()[i], 1);
assert_eq!(v.borrow()[i + 100], 1);
}
});
}
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 0);
}
});
}
#[test]
fn test_into_iter_drops() {
DROP_VECTOR.with(|v| {
*v.borrow_mut() = vec![0; 200];
});
let hm = {
let mut hm = HashMap::new();
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 0);
}
});
for i in 0..100 {
let d1 = Droppable::new(i);
let d2 = Droppable::new(i + 100);
hm.insert(d1, d2);
}
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 1);
}
});
hm
};
// By the way, ensure that cloning doesn't screw up the dropping.
drop(hm.clone());
{
let mut half = hm.into_iter().take(50);
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 1);
}
});
for _ in half.by_ref() {}
DROP_VECTOR.with(|v| {
let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count();
let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count();
assert_eq!(nk, 50);
assert_eq!(nv, 50);
});
};
DROP_VECTOR.with(|v| {
for i in 0..200 {
assert_eq!(v.borrow()[i], 0);
}
});
}
#[test]
fn test_empty_remove() {
let mut m: HashMap<i32, bool> = HashMap::new();
assert_eq!(m.remove(&0), None);
}
#[test]
fn test_empty_entry() {
let mut m: HashMap<i32, bool> = HashMap::new();
match m.entry(0) {
Occupied(_) => panic!(),
Vacant(_) => {}
}
assert!(*m.entry(0).or_insert(true));
assert_eq!(m.len(), 1);
}
#[test]
fn test_empty_iter() {
let mut m: HashMap<i32, bool> = HashMap::new();
assert_eq!(m.drain().next(), None);
assert_eq!(m.keys().next(), None);
assert_eq!(m.values().next(), None);
assert_eq!(m.values_mut().next(), None);
assert_eq!(m.iter().next(), None);
assert_eq!(m.iter_mut().next(), None);
assert_eq!(m.len(), 0);
assert!(m.is_empty());
assert_eq!(m.into_iter().next(), None);
}
#[test]
#[cfg(not(miri))] // FIXME: https://github.com/rust-lang/miri/issues/654
fn test_lots_of_insertions() {
let mut m = HashMap::new();
// Try this a few times to make sure we never screw up the hashmap's
// internal state.
for _ in 0..10 {
assert!(m.is_empty());
for i in 1..1001 {
assert!(m.insert(i, i).is_none());
for j in 1..=i {
let r = m.get(&j);
assert_eq!(r, Some(&j));
}
for j in i + 1..1001 {
let r = m.get(&j);
assert_eq!(r, None);
}
}
for i in 1001..2001 {
assert!(!m.contains_key(&i));
}
// remove forwards
for i in 1..1001 {
assert!(m.remove(&i).is_some());
for j in 1..=i {
assert!(!m.contains_key(&j));
}
for j in i + 1..1001 {
assert!(m.contains_key(&j));
}
}
for i in 1..1001 {
assert!(!m.contains_key(&i));
}
for i in 1..1001 {
assert!(m.insert(i, i).is_none());
}
// remove backwards
for i in (1..1001).rev() {
assert!(m.remove(&i).is_some());
for j in i..1001 {
assert!(!m.contains_key(&j));
}
for j in 1..i {
assert!(m.contains_key(&j));
}
}
}
}
#[test]
fn test_find_mut() {
let mut m = HashMap::new();
assert!(m.insert(1, 12).is_none());
assert!(m.insert(2, 8).is_none());
assert!(m.insert(5, 14).is_none());
let new = 100;
match m.get_mut(&5) {
None => panic!(),
Some(x) => *x = new,
}
assert_eq!(m.get(&5), Some(&new));
}
#[test]
fn test_insert_overwrite() {
let mut m = HashMap::new();
assert!(m.insert(1, 2).is_none());
assert_eq!(*m.get(&1).unwrap(), 2);
assert!(!m.insert(1, 3).is_none());
assert_eq!(*m.get(&1).unwrap(), 3);
}
#[test]
fn test_insert_conflicts() {
let mut m = HashMap::with_capacity(4);
assert!(m.insert(1, 2).is_none());
assert!(m.insert(5, 3).is_none());
assert!(m.insert(9, 4).is_none());
assert_eq!(*m.get(&9).unwrap(), 4);
assert_eq!(*m.get(&5).unwrap(), 3);
assert_eq!(*m.get(&1).unwrap(), 2);
}
#[test]
fn test_conflict_remove() {
let mut m = HashMap::with_capacity(4);
assert!(m.insert(1, 2).is_none());
assert_eq!(*m.get(&1).unwrap(), 2);
assert!(m.insert(5, 3).is_none());
assert_eq!(*m.get(&1).unwrap(), 2);
assert_eq!(*m.get(&5).unwrap(), 3);
assert!(m.insert(9, 4).is_none());
assert_eq!(*m.get(&1).unwrap(), 2);
assert_eq!(*m.get(&5).unwrap(), 3);
assert_eq!(*m.get(&9).unwrap(), 4);
assert!(m.remove(&1).is_some());
assert_eq!(*m.get(&9).unwrap(), 4);
assert_eq!(*m.get(&5).unwrap(), 3);
}
#[test]
fn test_is_empty() {
let mut m = HashMap::with_capacity(4);
assert!(m.insert(1, 2).is_none());
assert!(!m.is_empty());
assert!(m.remove(&1).is_some());
assert!(m.is_empty());
}
#[test]
fn test_remove() {
let mut m = HashMap::new();
m.insert(1, 2);
assert_eq!(m.remove(&1), Some(2));
assert_eq!(m.remove(&1), None);
}
#[test]
fn test_remove_entry() {
let mut m = HashMap::new();
m.insert(1, 2);
assert_eq!(m.remove_entry(&1), Some((1, 2)));
assert_eq!(m.remove(&1), None);
}
#[test]
fn test_iterate() {
let mut m = HashMap::with_capacity(4);
for i in 0..32 {
assert!(m.insert(i, i * 2).is_none());
}
assert_eq!(m.len(), 32);
let mut observed: u32 = 0;
for (k, v) in &m {
assert_eq!(*v, *k * 2);
observed |= 1 << *k;
}
assert_eq!(observed, 0xFFFF_FFFF);
}
#[test]
fn test_keys() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: HashMap<_, _> = vec.into_iter().collect();
let keys: Vec<_> = map.keys().cloned().collect();
assert_eq!(keys.len(), 3);
assert!(keys.contains(&1));
assert!(keys.contains(&2));
assert!(keys.contains(&3));
}
#[test]
fn test_values() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: HashMap<_, _> = vec.into_iter().collect();
let values: Vec<_> = map.values().cloned().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&'a'));
assert!(values.contains(&'b'));
assert!(values.contains(&'c'));
}
#[test]
fn test_values_mut() {
let vec = vec![(1, 1), (2, 2), (3, 3)];
let mut map: HashMap<_, _> = vec.into_iter().collect();
for value in map.values_mut() {
*value = (*value) * 2
}
let values: Vec<_> = map.values().cloned().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&2));
assert!(values.contains(&4));
assert!(values.contains(&6));
}
#[test]
fn test_find() {
let mut m = HashMap::new();
assert!(m.get(&1).is_none());
m.insert(1, 2);
match m.get(&1) {
None => panic!(),
Some(v) => assert_eq!(*v, 2),
}
}
#[test]
fn test_eq() {
let mut m1 = HashMap::new();
m1.insert(1, 2);
m1.insert(2, 3);
m1.insert(3, 4);
let mut m2 = HashMap::new();
m2.insert(1, 2);
m2.insert(2, 3);
assert!(m1 != m2);
m2.insert(3, 4);
assert_eq!(m1, m2);
}
#[test]
fn test_show() {
let mut map = HashMap::new();
let empty: HashMap<i32, i32> = HashMap::new();
map.insert(1, 2);
map.insert(3, 4);
let map_str = format!("{:?}", map);
assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}");
assert_eq!(format!("{:?}", empty), "{}");
}
#[test]
fn test_expand() {
let mut m = HashMap::new();
assert_eq!(m.len(), 0);
assert!(m.