blob: 84752cc7b7aaf00f26c62bc38fa1856ad6181f20 [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/storage/f2fs/mkfs.h"
#include <lib/syslog/cpp/macros.h>
#include <iostream>
#include <safemath/checked_math.h>
#include "src/lib/uuid/uuid.h"
#include "src/storage/f2fs/segment.h"
namespace f2fs {
zx::result<std::unique_ptr<BcacheMapper>> MkfsWorker::DoMkfs() {
InitGlobalParameters();
if (zx_status_t ret = GetDeviceInfo(); ret != ZX_OK)
return zx::error(ret);
if (zx_status_t ret = FormatDevice(); ret != ZX_OK)
return zx::error(ret);
return zx::ok(std::move(bc_));
}
void AsciiToUnicode(const std::string_view in_string, std::u16string &out_string) {
out_string.assign(in_string.begin(), in_string.end());
}
void MkfsWorker::InitGlobalParameters() {
static_assert(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
params_.sector_size = kDefaultSectorSize;
params_.sectors_per_blk = kDefaultSectorsPerBlock;
params_.blks_per_seg = kDefaultBlocksPerSegment;
params_.reserved_segments = 0;
params_.overprovision = mkfs_options_.overprovision_ratio;
params_.segs_per_sec = mkfs_options_.segs_per_sec;
params_.secs_per_zone = mkfs_options_.secs_per_zone;
params_.heap = (mkfs_options_.heap_based_allocation ? 1 : 0);
if (mkfs_options_.label.length() != 0) {
ZX_ASSERT(mkfs_options_.label.length() + 1 <= kVolumeLabelLength);
memcpy(params_.vol_label, mkfs_options_.label.c_str(), mkfs_options_.label.length() + 1);
} else {
memset(params_.vol_label, 0, sizeof(params_.vol_label));
params_.vol_label[0] = 'F';
params_.vol_label[1] = '2';
params_.vol_label[2] = 'F';
params_.vol_label[3] = 'S';
params_.vol_label[4] = '\0';
}
params_.device_name = nullptr;
params_.extension_list = mkfs_options_.extension_list;
}
zx_status_t MkfsWorker::GetDeviceInfo() {
fuchsia_hardware_block::wire::BlockInfo info;
bc_->BlockGetInfo(&info);
params_.sector_size = info.block_size;
params_.sectors_per_blk = kBlockSize / info.block_size;
params_.total_sectors = info.block_count;
params_.start_sector = kSuperblockStart;
if (info.block_size < kDefaultSectorSize || info.block_size > kBlockSize) {
FX_LOGS(ERROR) << info.block_size << " of block size is not supported";
return ZX_ERR_INVALID_ARGS;
}
if (info.flags & fuchsia_hardware_block::wire::Flag::kReadonly) {
FX_LOGS(ERROR) << "cannot format read-only block device";
return ZX_ERR_INVALID_ARGS;
}
return ZX_OK;
}
void MkfsWorker::ConfigureExtensionList() {
super_block_.extension_count = 0;
memset(super_block_.extension_list, 0, sizeof(super_block_.extension_list));
int i = 0;
for (const char *ext : kMediaExtList) {
memcpy(super_block_.extension_list[i++], ext, strlen(ext));
}
super_block_.extension_count = i;
if (params_.extension_list.empty())
return;
// add user ext list
for (const auto &ext : params_.extension_list) {
memcpy(super_block_.extension_list[i++], ext.data(), ext.size());
if (i >= kMaxExtension)
break;
}
super_block_.extension_count = i;
}
zx_status_t MkfsWorker::WriteToDisk(void *buf, block_t bno) { return bc_->Writeblk(bno, buf); }
zx::result<uint32_t> MkfsWorker::GetCalculatedOp(uint32_t user_op) const {
uint32_t max_op = 0;
uint32_t max_user_segments = 0;
if (user_op < 100 && user_op > 0)
return zx::ok(user_op);
for (uint32_t calc_op = 1; calc_op < 100; ++calc_op) {
uint32_t reserved_segments =
(2 * (100 / calc_op + 1) + kNrCursegType) * super_block_.segs_per_sec;
if ((safemath::CheckSub(LeToCpu(super_block_.segment_count_main), 2).ValueOrDie()) <
reserved_segments) {
continue;
}
uint32_t user_segments =
(super_block_.segment_count_main -
(safemath::CheckSub(super_block_.segment_count_main, reserved_segments) * calc_op / 100) -
reserved_segments)
.ValueOrDie();
if (user_segments > max_user_segments &&
safemath::CheckSub(super_block_.segment_count_main, 2).ValueOrDie() >= reserved_segments) {
max_user_segments = user_segments;
max_op = calc_op;
}
}
if (max_op == 0)
return zx::error(ZX_ERR_INVALID_ARGS);
return zx::ok(max_op);
}
zx_status_t MkfsWorker::PrepareSuperblock() {
super_block_.magic = CpuToLe(uint32_t{kF2fsSuperMagic});
super_block_.major_ver = CpuToLe(kMajorVersion);
super_block_.minor_ver = CpuToLe(kMinorVersion);
uint32_t log_sectorsize = static_cast<uint32_t>(log2(static_cast<double>(params_.sector_size)));
uint32_t log_sectors_per_block =
static_cast<uint32_t>(log2(static_cast<double>(params_.sectors_per_blk)));
uint32_t log_blocksize = log_sectorsize + log_sectors_per_block;
uint32_t log_blks_per_seg =
static_cast<uint32_t>(log2(static_cast<double>(params_.blks_per_seg)));
super_block_.log_sectorsize = CpuToLe(log_sectorsize);
if (log_sectorsize < kMinLogSectorSize || log_sectorsize > kMaxLogSectorSize) {
FX_LOGS(ERROR) << params_.sector_size << " of sector size is not supported";
return ZX_ERR_INVALID_ARGS;
}
super_block_.log_sectors_per_block = CpuToLe(log_sectors_per_block);
if (log_sectors_per_block < 0 ||
log_sectors_per_block > (kMaxLogSectorSize - kMinLogSectorSize)) {
FX_LOGS(ERROR) << "failed to get sectors per block: " << params_.sectors_per_blk;
return ZX_ERR_INVALID_ARGS;
}
super_block_.log_blocksize = CpuToLe(log_blocksize);
super_block_.log_blocks_per_seg = CpuToLe(log_blks_per_seg);
if (log_blks_per_seg !=
static_cast<uint32_t>(log2(static_cast<double>(kDefaultBlocksPerSegment)))) {
FX_LOGS(ERROR) << "failed to get blocks per segment: " << params_.blks_per_seg;
return ZX_ERR_INVALID_ARGS;
}
super_block_.segs_per_sec = CpuToLe(params_.segs_per_sec);
super_block_.secs_per_zone = CpuToLe(params_.secs_per_zone);
uint64_t blk_size_bytes = 1 << log_blocksize;
uint32_t segment_size_bytes = static_cast<uint32_t>(blk_size_bytes * params_.blks_per_seg);
uint32_t zone_size_bytes = static_cast<uint32_t>(blk_size_bytes * params_.secs_per_zone *
params_.segs_per_sec * params_.blks_per_seg);
super_block_.checksum_offset = 0;
super_block_.block_count =
CpuToLe((params_.total_sectors * params_.sector_size) / blk_size_bytes);
uint64_t zone_align_start_offset =
(params_.start_sector * params_.sector_size + 2 * kBlockSize + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
params_.start_sector * params_.sector_size;
if (params_.start_sector % params_.sectors_per_blk) {
FX_LOGS(WARNING) << "start sector number is not aligned with the page size";
FX_LOGS(WARNING) << "\ti.e., start sector: " << params_.start_sector
<< ", ofs: " << params_.start_sector % params_.sectors_per_blk
<< " (sectors per page: " << params_.sectors_per_blk << ")";
}
super_block_.segment_count = static_cast<uint32_t>(CpuToLe(
(safemath::CheckSub(params_.total_sectors * params_.sector_size, zone_align_start_offset) /
segment_size_bytes)
.ValueOrDie()));
super_block_.segment0_blkaddr =
static_cast<uint32_t>(CpuToLe(zone_align_start_offset / blk_size_bytes));
super_block_.cp_blkaddr = super_block_.segment0_blkaddr;
super_block_.segment_count_ckpt = CpuToLe(kNumberOfCheckpointPack);
super_block_.sit_blkaddr =
CpuToLe(LeToCpu(super_block_.segment0_blkaddr) +
(LeToCpu(super_block_.segment_count_ckpt) * (1 << log_blks_per_seg)));
uint32_t blocks_for_sit =
(safemath::CheckSub(LeToCpu(super_block_.segment_count) + kSitEntryPerBlock, 1) /
kSitEntryPerBlock)
.ValueOrDie();
uint32_t sit_segments =
(safemath::CheckSub(blocks_for_sit + params_.blks_per_seg, 1) / params_.blks_per_seg)
.ValueOrDie();
super_block_.segment_count_sit = CpuToLe(sit_segments * 2);
super_block_.nat_blkaddr =
CpuToLe(LeToCpu(super_block_.sit_blkaddr) +
(LeToCpu(super_block_.segment_count_sit) * params_.blks_per_seg));
uint32_t total_valid_blks_available =
(safemath::CheckSub(
LeToCpu(super_block_.segment_count),
LeToCpu(super_block_.segment_count_ckpt) + LeToCpu(super_block_.segment_count_sit)) *
params_.blks_per_seg)
.ValueOrDie();
uint32_t blocks_for_nat =
(safemath::CheckSub(total_valid_blks_available + kNatEntryPerBlock, 1) / kNatEntryPerBlock)
.ValueOrDie();
super_block_.segment_count_nat = CpuToLe(safemath::checked_cast<uint32_t>(
(safemath::CheckSub(blocks_for_nat + params_.blks_per_seg, 1) / params_.blks_per_seg)
.ValueOrDie()));
// The number of node segments should not be exceeded a "Threshold".
// This number resizes NAT bitmap area in a CP page.
// So the threshold is determined not to overflow one CP page
uint32_t sit_bitmap_size =
((LeToCpu(super_block_.segment_count_sit) / 2) << log_blks_per_seg) / 8;
uint32_t max_sit_bitmap_size = std::min(sit_bitmap_size, kMaxSitBitmapSize);
uint32_t max_nat_bitmap_size;
if (max_sit_bitmap_size >
kChecksumOffset - sizeof(Checkpoint) + 1 + (kDefaultBlocksPerSegment >> kShiftForBitSize)) {
max_nat_bitmap_size = kChecksumOffset - sizeof(Checkpoint) + 1;
super_block_.cp_payload = (max_sit_bitmap_size + kBlockSize - 1) / kBlockSize;
} else {
max_nat_bitmap_size = kChecksumOffset - sizeof(Checkpoint) + 1 - max_sit_bitmap_size;
super_block_.cp_payload = 0;
}
uint32_t max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
if (LeToCpu(super_block_.segment_count_nat) > max_nat_segments)
super_block_.segment_count_nat = CpuToLe(max_nat_segments);
super_block_.segment_count_nat = CpuToLe(LeToCpu(super_block_.segment_count_nat) * 2);
super_block_.ssa_blkaddr =
CpuToLe(LeToCpu(super_block_.nat_blkaddr) +
LeToCpu(super_block_.segment_count_nat) * params_.blks_per_seg);
total_valid_blks_available =
(LeToCpu(super_block_.segment_count) -
(LeToCpu(super_block_.segment_count_ckpt) + LeToCpu(super_block_.segment_count_sit) +
LeToCpu(super_block_.segment_count_nat))) *
params_.blks_per_seg;
uint32_t blocks_for_ssa = total_valid_blks_available / params_.blks_per_seg + 1;
super_block_.segment_count_ssa = CpuToLe(safemath::checked_cast<uint32_t>(
((blocks_for_ssa + safemath::CheckSub(params_.blks_per_seg, 1)) / params_.blks_per_seg)
.ValueOrDie()));
uint64_t total_meta_segments =
LeToCpu(super_block_.segment_count_ckpt) + LeToCpu(super_block_.segment_count_sit) +
LeToCpu(super_block_.segment_count_nat) + LeToCpu(super_block_.segment_count_ssa);
if (uint64_t diff =
total_meta_segments % static_cast<uint64_t>(params_.segs_per_sec * params_.secs_per_zone);
diff != 0) {
super_block_.segment_count_ssa = static_cast<uint32_t>(CpuToLe(
LeToCpu(super_block_.segment_count_ssa) +
(params_.segs_per_sec * params_.secs_per_zone - safemath::checked_cast<uint32_t>(diff))));
}
super_block_.main_blkaddr =
CpuToLe(LeToCpu(super_block_.ssa_blkaddr) +
(LeToCpu(super_block_.segment_count_ssa) * params_.blks_per_seg));
super_block_.segment_count_main = CpuToLe(safemath::checked_cast<uint32_t>(
safemath::CheckSub(
LeToCpu(super_block_.segment_count),
(LeToCpu(super_block_.segment_count_ckpt)) + LeToCpu(super_block_.segment_count_sit) +
LeToCpu(super_block_.segment_count_nat) + LeToCpu(super_block_.segment_count_ssa))
.ValueOrDie()));
super_block_.section_count =
CpuToLe(LeToCpu(super_block_.segment_count_main) / params_.segs_per_sec);
super_block_.segment_count_main =
CpuToLe(LeToCpu(super_block_.section_count) * params_.segs_per_sec);
auto op = GetCalculatedOp(params_.overprovision);
if (op.is_error()) {
FX_LOGS(WARNING) << "device size is not sufficient for F2FS volume";
return ZX_ERR_NO_SPACE;
}
params_.overprovision = op.value();
// The number of reserved_segments depends on the OP value. Assuming OP is 20%, 20% of a dirty
// segment is invalid. That is, running GC on 5 dirty segments can obtain one free segment.
// Therefore, the required reserved_segments can be obtained with 100 / OP.
// If the data page is moved to another segment due to GC, the dnode that refers to it should be
// modified. This requires twice the reserved_segments.
// Current active segments have the next segment in advance, of which require 6 additional
// segments.
params_.reserved_segments =
(2 * (100 / params_.overprovision + 1) + kNrCursegType) * params_.segs_per_sec;
if ((safemath::CheckSub(LeToCpu(super_block_.segment_count_main), 2).ValueOrDie()) <
params_.reserved_segments) {
FX_LOGS(ERROR) << "device size is not sufficient for F2FS volume which needs "
<< params_.reserved_segments - (LeToCpu(super_block_.segment_count_main) - 2)
<< " more segments";
return ZX_ERR_NO_SPACE;
}
memcpy(super_block_.uuid, uuid::Uuid::Generate().bytes(), 16);
std::string vol_label(reinterpret_cast<char const *>(params_.vol_label));
std::u16string volume_name;
AsciiToUnicode(vol_label, volume_name);
volume_name.copy(reinterpret_cast<char16_t *>(super_block_.volume_name), vol_label.size());
super_block_.volume_name[vol_label.size()] = '\0';
super_block_.node_ino = CpuToLe(1U);
super_block_.meta_ino = CpuToLe(2U);
super_block_.root_ino = CpuToLe(3U);
uint32_t total_zones =
((safemath::CheckSub(LeToCpu(super_block_.segment_count_main), 1) / params_.segs_per_sec) /
params_.secs_per_zone)
.ValueOrDie();
if (total_zones <= kNrCursegType) {
FX_LOGS(ERROR) << "requires more zones than " << total_zones;
return ZX_ERR_NO_SPACE;
}
if (params_.heap) {
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] =
(total_zones - 1) * params_.segs_per_sec * params_.secs_per_zone +
((params_.secs_per_zone - 1) * params_.segs_per_sec);
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmNode)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] -
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegColdNode)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmNode)] -
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegHotData)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegColdNode)] -
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegColdData)] = 0;
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmData)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegColdData)] +
params_.segs_per_sec * params_.secs_per_zone;
} else {
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] = 0;
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmNode)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] +
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegColdNode)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmNode)] +
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegHotData)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegColdNode)] +
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegColdData)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegHotData)] +
params_.segs_per_sec * params_.secs_per_zone;
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmData)] =
params_.cur_seg[static_cast<int>(CursegType::kCursegColdData)] +
params_.segs_per_sec * params_.secs_per_zone;
}
ConfigureExtensionList();
return ZX_OK;
}
zx_status_t MkfsWorker::InitSitArea() {
BlockBuffer sit_block;
uint32_t segment_count_sit_blocks = (1 << LeToCpu(super_block_.log_blocks_per_seg)) *
(LeToCpu(super_block_.segment_count_sit) / 2);
block_t sit_segment_block_num = LeToCpu(super_block_.sit_blkaddr);
for (block_t index = 0; index < segment_count_sit_blocks; ++index) {
if (zx_status_t ret = WriteToDisk(sit_block.get(), sit_segment_block_num + index);
ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to zero out the sit area on disk " << zx_status_get_string(ret);
return ret;
}
}
return ZX_OK;
}
zx_status_t MkfsWorker::InitNatArea() {
BlockBuffer nat_block;
uint32_t segment_count_nat_blocks = (1 << LeToCpu(super_block_.log_blocks_per_seg)) *
(LeToCpu(super_block_.segment_count_nat) / 2);
block_t nat_segment_block_num = LeToCpu(super_block_.nat_blkaddr);
for (block_t index = 0; index < segment_count_nat_blocks; ++index) {
if (zx_status_t ret = WriteToDisk(nat_block.get(), nat_segment_block_num + index);
ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to zero out the nat area on disk " << zx_status_get_string(ret);
return ret;
}
}
return ZX_OK;
}
zx_status_t MkfsWorker::WriteCheckPointPack() {
BlockBuffer<Checkpoint> checkpoint;
// 1. cp page 1 of checkpoint pack 1
checkpoint->checkpoint_ver = 1;
checkpoint->cur_node_segno[0] =
CpuToLe(params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)]);
checkpoint->cur_node_segno[1] =
CpuToLe(params_.cur_seg[static_cast<int>(CursegType::kCursegWarmNode)]);
checkpoint->cur_node_segno[2] =
CpuToLe(params_.cur_seg[static_cast<int>(CursegType::kCursegColdNode)]);
checkpoint->cur_data_segno[0] =
CpuToLe(params_.cur_seg[static_cast<int>(CursegType::kCursegHotData)]);
checkpoint->cur_data_segno[1] =
CpuToLe(params_.cur_seg[static_cast<int>(CursegType::kCursegWarmData)]);
checkpoint->cur_data_segno[2] =
CpuToLe(params_.cur_seg[static_cast<int>(CursegType::kCursegColdData)]);
for (int i = 3; i < kMaxActiveNodeLogs; ++i) {
checkpoint->cur_node_segno[i] = 0xffffffff;
checkpoint->cur_data_segno[i] = 0xffffffff;
}
checkpoint->cur_node_blkoff[0] = CpuToLe(uint16_t{1});
checkpoint->cur_data_blkoff[0] = CpuToLe(uint16_t{1});
checkpoint->valid_block_count = CpuToLe(2UL);
checkpoint->rsvd_segment_count = CpuToLe(params_.reserved_segments);
checkpoint->overprov_segment_count = CpuToLe(safemath::checked_cast<uint32_t>(
(safemath::CheckSub(LeToCpu(super_block_.segment_count_main),
LeToCpu(checkpoint->rsvd_segment_count)) *
params_.overprovision / 100)
.ValueOrDie()));
checkpoint->overprov_segment_count = CpuToLe(LeToCpu(checkpoint->overprov_segment_count) +
LeToCpu(checkpoint->rsvd_segment_count));
// main segments - reserved segments - (node + data segments)
checkpoint->free_segment_count = CpuToLe(safemath::checked_cast<uint32_t>(
safemath::CheckSub(LeToCpu(super_block_.segment_count_main), kNrCursegType).ValueOrDie()));
checkpoint->user_block_count = CpuToLe(safemath::checked_cast<uint64_t>(
(safemath::CheckSub(LeToCpu(checkpoint->free_segment_count) + kNrCursegType,
LeToCpu(checkpoint->overprov_segment_count)) *
params_.blks_per_seg)
.ValueOrDie()));
checkpoint->cp_pack_total_block_count = CpuToLe(8U + LeToCpu(super_block_.cp_payload));
checkpoint->ckpt_flags |= CpuToLe(static_cast<uint32_t>(CpFlag::kCpUmountFlag));
checkpoint->cp_pack_start_sum = CpuToLe(1U + LeToCpu(super_block_.cp_payload));
checkpoint->valid_node_count = CpuToLe(1U);
checkpoint->valid_inode_count = CpuToLe(1U);
checkpoint->next_free_nid = CpuToLe(LeToCpu(super_block_.root_ino) + 1);
checkpoint->sit_ver_bitmap_bytesize = CpuToLe(
((LeToCpu(super_block_.segment_count_sit) / 2) << LeToCpu(super_block_.log_blocks_per_seg)) /
8);
checkpoint->nat_ver_bitmap_bytesize = CpuToLe(
((LeToCpu(super_block_.segment_count_nat) / 2) << LeToCpu(super_block_.log_blocks_per_seg)) /
8);
checkpoint->checksum_offset = CpuToLe(kChecksumOffset);
uint32_t crc =
F2fsCalCrc32(kF2fsSuperMagic, checkpoint.get(), LeToCpu(checkpoint->checksum_offset));
*(reinterpret_cast<uint32_t *>(checkpoint.get<uint8_t>() +
LeToCpu(checkpoint->checksum_offset))) = crc;
block_t cp_segment_block_num = LeToCpu(super_block_.segment0_blkaddr);
if (zx_status_t ret = WriteToDisk(checkpoint.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write out ckeckpoint pack to disk " << zx_status_get_string(ret);
return ret;
}
for (uint32_t i = 0; i < super_block_.cp_payload; ++i) {
++cp_segment_block_num;
BlockBuffer zero_block;
if (zx_status_t ret = WriteToDisk(zero_block.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to zero out the sit bitmap on disk " << zx_status_get_string(ret);
return ret;
}
}
// 2. Prepare and write Segment summary for data blocks
BlockBuffer<SummaryBlock> summary;
SetSumType((&summary->footer), kSumTypeData);
summary->entries[0].nid = super_block_.root_ino;
summary->entries[0].ofs_in_node = 0;
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(summary.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the summary_block to disk " << zx_status_get_string(ret);
return ret;
}
// 3. Fill segment summary for data block to zero.
memset(summary.get(), 0, sizeof(SummaryBlock));
SetSumType((&summary->footer), kSumTypeData);
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(summary.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the summary_block to disk " << zx_status_get_string(ret);
return ret;
}
// 4. Fill segment summary for data block to zero.
memset(summary.get(), 0, sizeof(SummaryBlock));
SetSumType((&summary->footer), kSumTypeData);
// inode sit for root
summary->n_sits = CpuToLe(uint16_t{6});
summary->sit_j.entries[0].segno = checkpoint->cur_node_segno[0];
summary->sit_j.entries[0].se.vblocks =
CpuToLe(uint16_t{(static_cast<int>(CursegType::kCursegHotNode) << 10) | 1});
summary->sit_j.entries[0].se.valid_map[0] |= GetMask(1, ToMsbFirst(0));
summary->sit_j.entries[1].segno = checkpoint->cur_node_segno[1];
summary->sit_j.entries[1].se.vblocks =
CpuToLe(uint16_t{(static_cast<int>(CursegType::kCursegWarmNode) << 10)});
summary->sit_j.entries[2].segno = checkpoint->cur_node_segno[2];
summary->sit_j.entries[2].se.vblocks =
CpuToLe(uint16_t{(static_cast<int>(CursegType::kCursegColdNode) << 10)});
// data sit for root
summary->sit_j.entries[3].segno = checkpoint->cur_data_segno[0];
summary->sit_j.entries[3].se.vblocks =
CpuToLe(uint16_t{(static_cast<uint16_t>(CursegType::kCursegHotData) << 10) | 1});
summary->sit_j.entries[3].se.valid_map[0] |= GetMask(1, ToMsbFirst(0));
summary->sit_j.entries[4].segno = checkpoint->cur_data_segno[1];
summary->sit_j.entries[4].se.vblocks =
CpuToLe(uint16_t{(static_cast<int>(CursegType::kCursegWarmData) << 10)});
summary->sit_j.entries[5].segno = checkpoint->cur_data_segno[2];
summary->sit_j.entries[5].se.vblocks =
CpuToLe(uint16_t{(static_cast<int>(CursegType::kCursegColdData) << 10)});
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(summary.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the summary_block to disk " << zx_status_get_string(ret);
return ret;
}
// 5. Prepare and write Segment summary for node blocks
memset(summary.get(), 0, sizeof(SummaryBlock));
SetSumType((&summary->footer), kSumTypeNode);
summary->entries[0].nid = super_block_.root_ino;
summary->entries[0].ofs_in_node = 0;
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(summary.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to while write the summary_block to disk"
<< zx_status_get_string(ret);
return ret;
}
// 6. Fill segment summary for data block to zero.
memset(summary.get(), 0, sizeof(SummaryBlock));
SetSumType((&summary->footer), kSumTypeNode);
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(summary.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the summary_block to disk " << zx_status_get_string(ret);
return ret;
}
// 7. Fill segment summary for data block to zero.
memset(summary.get(), 0, sizeof(SummaryBlock));
SetSumType((&summary->footer), kSumTypeNode);
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(summary.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the summary_block to disk " << zx_status_get_string(ret);
return ret;
}
// 8. cp page2
++cp_segment_block_num;
if (zx_status_t ret = WriteToDisk(checkpoint.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the checkpoint to disk " << zx_status_get_string(ret);
return ret;
}
// 9. cp pages of check point pack 2
// Initiatialize other checkpoint pack with version zero
checkpoint->checkpoint_ver = 0;
crc = F2fsCalCrc32(kF2fsSuperMagic, checkpoint.get(), LeToCpu(checkpoint->checksum_offset));
*(reinterpret_cast<uint32_t *>(checkpoint.get<uint8_t>() +
LeToCpu(checkpoint->checksum_offset))) = crc;
cp_segment_block_num = (LeToCpu(super_block_.segment0_blkaddr) + params_.blks_per_seg);
if (zx_status_t ret = WriteToDisk(checkpoint.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the checkpoint to disk " << zx_status_get_string(ret);
return ret;
}
for (uint32_t i = 0; i < super_block_.cp_payload; ++i) {
++cp_segment_block_num;
BlockBuffer zero_buffer;
if (zx_status_t ret = WriteToDisk(zero_buffer.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to zero out the sit bitmap area on disk "
<< zx_status_get_string(ret);
return ret;
}
}
cp_segment_block_num +=
checkpoint->cp_pack_total_block_count - 1 - LeToCpu(super_block_.cp_payload);
if (zx_status_t ret = WriteToDisk(checkpoint.get(), cp_segment_block_num); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write the checkpoint to disk " << zx_status_get_string(ret);
return ret;
}
return ZX_OK;
}
zx_status_t MkfsWorker::WriteSuperblock() {
BlockBuffer super_block;
memcpy(super_block.get<uint8_t>() + kSuperOffset, &super_block_, sizeof(super_block_));
for (block_t index = 0; index < 2; ++index) {
if (zx_status_t ret = WriteToDisk(super_block.get(), index); ret != ZX_OK) {
FX_LOGS(ERROR) << "failed to write super block at " << index << " "
<< zx_status_get_string(ret);
return ret;
}
}
return ZX_OK;
}
zx_status_t MkfsWorker::WriteRootInode() {
BlockBuffer<Node> raw_node;
raw_node->footer.nid = super_block_.root_ino;
raw_node->footer.ino = super_block_.root_ino;
raw_node->footer.cp_ver = CpuToLe(1UL);
raw_node->footer.next_blkaddr = CpuToLe(
LeToCpu(super_block_.main_blkaddr) +
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] * params_.blks_per_seg + 1);
raw_node->i.i_mode = CpuToLe(uint16_t{0x41ed});
raw_node->i.i_links = CpuToLe(2U);
raw_node->i.i_uid = CpuToLe(getuid());
raw_node->i.i_gid = CpuToLe(getgid());
uint64_t blk_size_bytes = 1 << LeToCpu(super_block_.log_blocksize);
raw_node->i.i_size = CpuToLe(1 * blk_size_bytes); // dentry
raw_node->i.i_blocks = CpuToLe(2UL);
timespec cur_time;
clock_gettime(CLOCK_REALTIME, &cur_time);
raw_node->i.i_atime = static_cast<uint64_t>(cur_time.tv_sec);
raw_node->i.i_atime_nsec = static_cast<uint32_t>(cur_time.tv_nsec);
raw_node->i.i_ctime = static_cast<uint64_t>(cur_time.tv_sec);
raw_node->i.i_ctime_nsec = static_cast<uint32_t>(cur_time.tv_nsec);
raw_node->i.i_mtime = static_cast<uint64_t>(cur_time.tv_sec);
raw_node->i.i_mtime_nsec = static_cast<uint32_t>(cur_time.tv_nsec);
raw_node->i.i_generation = 0;
raw_node->i.i_xattr_nid = 0;
raw_node->i.i_flags = 0;
raw_node->i.i_current_depth = CpuToLe(1U);
uint64_t data_blk_nor =
LeToCpu(super_block_.main_blkaddr) +
params_.cur_seg[static_cast<int>(CursegType::kCursegHotData)] * params_.blks_per_seg;
raw_node->i.i_addr[0] = static_cast<uint32_t>(CpuToLe(data_blk_nor));
raw_node->i.i_ext.fofs = 0;
raw_node->i.i_ext.blk_addr = static_cast<uint32_t>(CpuToLe(data_blk_nor));
raw_node->i.i_ext.len = CpuToLe(1U);
block_t node_segment_block_num = LeToCpu(super_block_.main_blkaddr);
node_segment_block_num += safemath::checked_cast<uint64_t>(
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] * params_.blks_per_seg);
return WriteToDisk(raw_node.get(), node_segment_block_num);
}
zx_status_t MkfsWorker::UpdateNatRoot() {
BlockBuffer<NatBlock> nat_block;
// update root
nat_block->entries[super_block_.root_ino].block_addr =
CpuToLe(LeToCpu(super_block_.main_blkaddr) +
params_.cur_seg[static_cast<int>(CursegType::kCursegHotNode)] * params_.blks_per_seg);
nat_block->entries[super_block_.root_ino].ino = super_block_.root_ino;
// update node nat
nat_block->entries[super_block_.node_ino].block_addr = CpuToLe(1U);
nat_block->entries[super_block_.node_ino].ino = super_block_.node_ino;
// update meta nat
nat_block->entries[super_block_.meta_ino].block_addr = CpuToLe(1U);
nat_block->entries[super_block_.meta_ino].ino = super_block_.meta_ino;
block_t nat_segment_block_num = LeToCpu(super_block_.nat_blkaddr);
return WriteToDisk(nat_block.get(), nat_segment_block_num);
}
zx_status_t MkfsWorker::AddDefaultDentryRoot() {
BlockBuffer<DentryBlock> dent_block;
dent_block->dentry[0].hash_code = 0;
dent_block->dentry[0].ino = super_block_.root_ino;
dent_block->dentry[0].name_len = CpuToLe(uint16_t{1});
dent_block->dentry[0].file_type = static_cast<uint8_t>(FileType::kFtDir);
memcpy(dent_block->filename[0], ".", 1);
dent_block->dentry[1].hash_code = 0;
dent_block->dentry[1].ino = super_block_.root_ino;
dent_block->dentry[1].name_len = CpuToLe(uint16_t{2});
dent_block->dentry[1].file_type = static_cast<uint8_t>(FileType::kFtDir);
memcpy(dent_block->filename[1], "..", 2);
// bitmap for . and ..
dent_block->dentry_bitmap[0] = (1 << 1) | (1 << 0);
block_t data_block_num =
LeToCpu(super_block_.main_blkaddr) +
params_.cur_seg[static_cast<int>(CursegType::kCursegHotData)] * params_.blks_per_seg;
return WriteToDisk(dent_block.get(), data_block_num);
}
zx_status_t MkfsWorker::PurgeNodeChain() {
BlockBuffer<Node> raw_node;
block_t node_segment_block_num = LeToCpu(super_block_.main_blkaddr);
node_segment_block_num += safemath::checked_cast<uint64_t>(
params_.cur_seg[static_cast<int>(CursegType::kCursegWarmNode)] * params_.blks_per_seg);
memset(raw_node.get(), 0xff, sizeof(Node));
// Purge the 1st block of warm node cur_seg to avoid unnecessary roll-forward recovery.
return WriteToDisk(raw_node.get(), node_segment_block_num);
}
zx_status_t MkfsWorker::CreateRootDir() {
if (zx_status_t err = WriteRootInode(); err != ZX_OK) {
FX_LOGS(ERROR) << "failed to write root inode " << zx_status_get_string(err);
return err;
}
if (zx_status_t err = PurgeNodeChain(); err != ZX_OK) {
FX_LOGS(ERROR) << "failed to purge node chain " << zx_status_get_string(err);
return err;
}
if (zx_status_t err = UpdateNatRoot(); err != ZX_OK) {
FX_LOGS(ERROR) << "failed to update NAT for root " << zx_status_get_string(err);
return err;
}
if (zx_status_t err = AddDefaultDentryRoot(); err != ZX_OK) {
FX_LOGS(ERROR) << "failed to add default dentries for root " << zx_status_get_string(err);
return err;
}
return ZX_OK;
}
zx_status_t MkfsWorker::TrimDevice() { return bc_->Trim(0, static_cast<block_t>(bc_->Maxblk())); }
zx_status_t MkfsWorker::FormatDevice() {
if (zx_status_t err = PrepareSuperblock(); err != ZX_OK) {
return err;
}
if (zx_status_t err = TrimDevice(); err != ZX_OK) {
if (err == ZX_ERR_NOT_SUPPORTED) {
FX_LOGS(INFO) << "this device doesn't support TRIM";
} else {
return err;
}
}
if (zx_status_t err = InitSitArea(); err != ZX_OK) {
return err;
}
if (zx_status_t err = InitNatArea(); err != ZX_OK) {
return err;
}
if (zx_status_t err = CreateRootDir(); err != ZX_OK) {
return err;
}
if (zx_status_t err = WriteCheckPointPack(); err != ZX_OK) {
return err;
}
if (zx_status_t err = WriteSuperblock(); err != ZX_OK) {
return err;
}
// Ensure that all cached data is flushed in the underlying block device
return bc_->Flush();
}
zx_status_t ParseOptions(const MkfsOptions &options) {
if (options.label.length() >= kVolumeLabelLength) {
FX_LOGS(ERROR) << "label length should be less than " << kVolumeLabelLength;
return ZX_ERR_INVALID_ARGS;
}
if (options.segs_per_sec == 0) {
FX_LOGS(ERROR) << "# of segments per section should be larger than 0";
return ZX_ERR_INVALID_ARGS;
}
if (options.secs_per_zone == 0) {
FX_LOGS(ERROR) << "# of sections per zone should be larger than 0";
return ZX_ERR_INVALID_ARGS;
}
return ZX_OK;
}
zx::result<std::unique_ptr<BcacheMapper>> Mkfs(const MkfsOptions &options,
std::unique_ptr<BcacheMapper> bc) {
MkfsWorker mkfs(std::move(bc), options);
return mkfs.DoMkfs();
}
} // namespace f2fs