blob: 43ec905ad6490fbca6a4a5544b2c0fb96c21f81c [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2014 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <assert.h>
#include <err.h>
#include <platform.h>
#include <trace.h>
#include <zircon/types.h>
#include <arch/mp.h>
#include <arch/ops.h>
#include <dev/interrupt.h>
#include <kernel/event.h>
#define LOCAL_TRACE 0
namespace {
// Mask the MPIDR register to only leave the AFFx ids.
constexpr uint64_t kMpidAffMask = 0xFF00FFFFFF;
struct MpidCpuidPair {
uint64_t mpid;
uint cpu_id;
};
MpidCpuidPair arm64_cpu_list[SMP_MAX_CPUS];
size_t arm64_cpu_list_count = 0;
} // namespace
// cpu id to cluster and id within cluster map
uint arm64_cpu_cluster_ids[SMP_MAX_CPUS] = {0};
uint arm64_cpu_cpu_ids[SMP_MAX_CPUS] = {0};
// total number of detected cpus
uint arm_num_cpus = 1;
// per cpu structures, each cpu will point to theirs using the x18 register
arm64_percpu arm64_percpu_array[SMP_MAX_CPUS];
void arch_register_mpid(uint cpu_id, uint64_t mpid) {
// TODO(ZX-3068) transition off of these maps to the topology.
arm64_cpu_cluster_ids[cpu_id] = (mpid & 0xFF00) >> MPIDR_AFF1_SHIFT; // "cluster" here is AFF1.
arm64_cpu_cpu_ids[cpu_id] = mpid & 0xFF; // "cpu" here is AFF0.
arm64_percpu_array[cpu_id].cpu_num = cpu_id;
arm64_cpu_list[arm64_cpu_list_count++] = {.mpid = mpid, .cpu_id = cpu_id};
}
// do the 'slow' lookup by mpidr to cpu number
static uint arch_curr_cpu_num_slow() {
uint64_t mpidr = __arm_rsr64("mpidr_el1");
mpidr &= kMpidAffMask;
for (size_t i = 0; i < arm64_cpu_list_count; ++i) {
if (arm64_cpu_list[i].mpid == mpidr) {
return arm64_cpu_list[i].cpu_id;
}
}
// The only time we shouldn't find a cpu is when the list isn't
// defined yet during early boot, in this case the only processor up is 0
// so returning 0 is correct.
DEBUG_ASSERT(arm64_cpu_list_count == 0);
return 0;
}
void arch_prepare_current_cpu_idle_state(bool idle) {
// no-op
}
zx_status_t arch_mp_reschedule(cpu_mask_t mask) {
return arch_mp_send_ipi(MP_IPI_TARGET_MASK, mask, MP_IPI_RESCHEDULE);
}
zx_status_t arch_mp_send_ipi(mp_ipi_target_t target, cpu_mask_t mask, mp_ipi_t ipi) {
LTRACEF("target %d mask %#x, ipi %d\n", target, mask, ipi);
// translate the high level target + mask mechanism into just a mask
switch (target) {
case MP_IPI_TARGET_ALL:
mask = (1ul << SMP_MAX_CPUS) - 1;
break;
case MP_IPI_TARGET_ALL_BUT_LOCAL:
mask = (1ul << SMP_MAX_CPUS) - 1;
mask &= ~cpu_num_to_mask(arch_curr_cpu_num());
break;
case MP_IPI_TARGET_MASK:;
}
return interrupt_send_ipi(mask, ipi);
}
void arm64_init_percpu_early(void) {
// slow lookup the current cpu id and setup the percpu structure
uint cpu = arch_curr_cpu_num_slow();
arm64_write_percpu_ptr(&arm64_percpu_array[cpu]);
}
void arch_mp_init_percpu(void) { interrupt_init_percpu(); }
void arch_flush_state_and_halt(event_t* flush_done) {
DEBUG_ASSERT(arch_ints_disabled());
event_signal(flush_done, false);
platform_halt_cpu();
panic("control should never reach here\n");
}
zx_status_t arch_mp_prep_cpu_unplug(uint cpu_id) {
if (cpu_id == 0 || cpu_id >= arm_num_cpus) {
return ZX_ERR_INVALID_ARGS;
}
return ZX_OK;
}
zx_status_t arch_mp_cpu_unplug(uint cpu_id) {
// we do not allow unplugging the bootstrap processor
if (cpu_id == 0 || cpu_id >= arm_num_cpus) {
return ZX_ERR_INVALID_ARGS;
}
return ZX_OK;
}