blob: d7e62708360a35d8b35f84a15e6663b8d0dba2d9 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include "object/vm_object_dispatcher.h"
#include <assert.h>
#include <inttypes.h>
#include <lib/boot-options/boot-options.h>
#include <lib/counters.h>
#include <trace.h>
#include <zircon/errors.h>
#include <zircon/rights.h>
#include <fbl/alloc_checker.h>
#include <ktl/algorithm.h>
#include <ktl/optional.h>
#include <vm/vm_aspace.h>
#include <vm/vm_object.h>
#include <vm/vm_object_paged.h>
#include <ktl/enforce.h>
#define LOCAL_TRACE 0
KCOUNTER(dispatcher_vmo_create_count, "dispatcher.vmo.create")
KCOUNTER(dispatcher_vmo_destroy_count, "dispatcher.vmo.destroy")
zx_status_t VmObjectDispatcher::parse_create_syscall_flags(uint32_t flags, uint32_t* out_flags) {
uint32_t res = 0;
if (flags & ZX_VMO_RESIZABLE) {
res |= VmObjectPaged::kResizable;
flags &= ~ZX_VMO_RESIZABLE;
}
if (flags & ZX_VMO_DISCARDABLE) {
res |= VmObjectPaged::kDiscardable;
flags &= ~ZX_VMO_DISCARDABLE;
}
if (flags) {
return ZX_ERR_INVALID_ARGS;
}
*out_flags = res;
return ZX_OK;
}
zx_status_t VmObjectDispatcher::Create(fbl::RefPtr<VmObject> vmo, uint64_t content_size,
zx_koid_t pager_koid, InitialMutability initial_mutability,
KernelHandle<VmObjectDispatcher>* handle,
zx_rights_t* rights) {
fbl::AllocChecker ac;
KernelHandle new_handle(fbl::AdoptRef(
new (&ac) VmObjectDispatcher(ktl::move(vmo), content_size, pager_koid, initial_mutability)));
if (!ac.check())
return ZX_ERR_NO_MEMORY;
new_handle.dispatcher()->vmo()->set_user_id(new_handle.dispatcher()->get_koid());
*rights = default_rights();
*handle = ktl::move(new_handle);
return ZX_OK;
}
VmObjectDispatcher::VmObjectDispatcher(fbl::RefPtr<VmObject> vmo, uint64_t content_size,
zx_koid_t pager_koid, InitialMutability initial_mutability)
: SoloDispatcher(ZX_VMO_ZERO_CHILDREN),
vmo_(vmo),
content_size_(content_size),
pager_koid_(pager_koid),
initial_mutability_(initial_mutability) {
kcounter_add(dispatcher_vmo_create_count, 1);
vmo_->SetChildObserver(this);
}
VmObjectDispatcher::~VmObjectDispatcher() {
kcounter_add(dispatcher_vmo_destroy_count, 1);
// Intentionally leave vmo_->user_id() set to our koid even though we're
// dying and the koid will no longer map to a Dispatcher. koids are never
// recycled, and it could be a useful breadcrumb.
}
void VmObjectDispatcher::OnZeroChild() { UpdateState(0, ZX_VMO_ZERO_CHILDREN); }
void VmObjectDispatcher::OnOneChild() { UpdateState(ZX_VMO_ZERO_CHILDREN, 0); }
void VmObjectDispatcher::get_name(char (&out_name)[ZX_MAX_NAME_LEN]) const {
canary_.Assert();
vmo_->get_name(out_name, ZX_MAX_NAME_LEN);
}
zx_status_t VmObjectDispatcher::set_name(const char* name, size_t len) {
canary_.Assert();
return vmo_->set_name(name, len);
}
void VmObjectDispatcher::on_zero_handles() {
// Clear when handle count reaches zero rather in the destructor because we're retaining a
// VmObject that might call back into |this| via VmObjectChildObserver when it's destroyed.
vmo_->SetChildObserver(nullptr);
}
zx_status_t VmObjectDispatcher::Read(VmAspace* current_aspace, user_out_ptr<char> user_data,
size_t length, uint64_t offset, size_t* out_actual) {
canary_.Assert();
return vmo_->ReadUser(current_aspace, user_data, offset, length, out_actual);
}
zx_status_t VmObjectDispatcher::ReadVector(VmAspace* current_aspace, user_out_iovec_t user_data,
size_t length, uint64_t offset, size_t* out_actual) {
canary_.Assert();
return vmo_->ReadUserVector(current_aspace, user_data, offset, length, out_actual);
}
zx_status_t VmObjectDispatcher::WriteVector(VmAspace* current_aspace, user_in_iovec_t user_data,
size_t length, uint64_t offset, size_t* out_actual) {
canary_.Assert();
return vmo_->WriteUserVector(current_aspace, user_data, offset, length, out_actual);
}
zx_status_t VmObjectDispatcher::Write(VmAspace* current_aspace, user_in_ptr<const char> user_data,
size_t length, uint64_t offset, size_t* out_actual) {
canary_.Assert();
return vmo_->WriteUser(current_aspace, user_data, offset, length, out_actual);
}
zx_status_t VmObjectDispatcher::SetSize(uint64_t size) {
canary_.Assert();
Guard<Mutex> guard{&content_size_lock_};
// If this involves shrinking the VMO, then we need to acquire the shrink lock.
ktl::optional<ShrinkGuard> shrink_guard;
if (size < content_size_) {
// We can't acquire this lock whilst we're holding our lock. It won't matter if this operation
// turns into a grow (if another thread slips in first and changes the VMO's size).
guard.CallUnlocked([&] { shrink_guard.emplace(&shrink_lock_); });
}
zx_status_t status = vmo_->Resize(size);
if (status != ZX_OK) {
return status;
}
uint64_t remaining = ROUNDUP(size, PAGE_SIZE) - size;
if (remaining > 0) {
vmo_->ZeroRange(size, remaining);
}
content_size_ = size;
return ZX_OK;
}
zx_status_t VmObjectDispatcher::GetSize(uint64_t* size) {
canary_.Assert();
*size = vmo_->size();
return ZX_OK;
}
zx_info_vmo_t VmoToInfoEntry(const VmObject* vmo, bool is_handle, zx_rights_t handle_rights) {
zx_info_vmo_t entry = {};
entry.koid = vmo->user_id();
vmo->get_name(entry.name, sizeof(entry.name));
entry.size_bytes = vmo->size();
entry.parent_koid = vmo->parent_user_id();
entry.num_children = vmo->num_user_children();
entry.num_mappings = vmo->num_mappings();
entry.share_count = vmo->share_count();
entry.flags = (vmo->is_paged() ? ZX_INFO_VMO_TYPE_PAGED : ZX_INFO_VMO_TYPE_PHYSICAL) |
(vmo->is_resizable() ? ZX_INFO_VMO_RESIZABLE : 0) |
(vmo->is_discardable() ? ZX_INFO_VMO_DISCARDABLE : 0) |
(vmo->is_user_pager_backed() ? ZX_INFO_VMO_PAGER_BACKED : 0) |
(vmo->is_contiguous() ? ZX_INFO_VMO_CONTIGUOUS : 0);
entry.committed_bytes = vmo->AttributedPages() * PAGE_SIZE;
entry.cache_policy = vmo->GetMappingCachePolicy();
if (is_handle) {
entry.flags |= ZX_INFO_VMO_VIA_HANDLE;
entry.handle_rights = handle_rights;
} else {
entry.flags |= ZX_INFO_VMO_VIA_MAPPING;
}
if (vmo->child_type() == VmObject::ChildType::kCowClone) {
entry.flags |= ZX_INFO_VMO_IS_COW_CLONE;
}
entry.metadata_bytes = vmo->HeapAllocationBytes();
// Only events that change committed pages are evictions at the moment.
entry.committed_change_events = vmo->EvictionEventCount();
return entry;
}
zx_info_vmo_t VmObjectDispatcher::GetVmoInfo(zx_rights_t rights) {
zx_info_vmo_t info = VmoToInfoEntry(vmo().get(), true, rights);
if (initial_mutability_ == InitialMutability::kImmutable) {
info.flags |= ZX_INFO_VMO_IMMUTABLE;
}
return info;
}
zx_status_t VmObjectDispatcher::SetContentSize(uint64_t content_size) {
canary_.Assert();
Guard<Mutex> guard{&content_size_lock_};
content_size_ = content_size;
return ZX_OK;
}
uint64_t VmObjectDispatcher::GetContentSize() const {
canary_.Assert();
Guard<Mutex> guard{&content_size_lock_};
return content_size_;
}
zx::status<uint64_t> VmObjectDispatcher::ExpandContentIfNeeded(uint64_t requested_content_size,
uint64_t zero_until_offset) {
canary_.Assert();
Guard<Mutex> guard{&content_size_lock_};
if (requested_content_size <= content_size_) {
return zx::ok(content_size_);
}
uint64_t previous_content_size = content_size_;
uint64_t required_vmo_size = ROUNDUP(requested_content_size, PAGE_SIZE);
// Overflow when rounding up.
if (required_vmo_size < requested_content_size) {
return zx::error(ZX_ERR_OUT_OF_RANGE);
}
uint64_t current_vmo_size = vmo_->size();
if (required_vmo_size > current_vmo_size) {
zx_status_t status = vmo_->Resize(required_vmo_size);
if (status != ZX_OK) {
content_size_ = current_vmo_size;
} else {
content_size_ = requested_content_size;
}
} else {
content_size_ = requested_content_size;
}
zero_until_offset = ktl::min(content_size_, zero_until_offset);
if (zero_until_offset > previous_content_size) {
vmo_->ZeroRange(previous_content_size, zero_until_offset - previous_content_size);
}
return zx::ok(content_size_);
}
zx_status_t VmObjectDispatcher::RangeOp(uint32_t op, uint64_t offset, uint64_t size,
user_inout_ptr<void> buffer, size_t buffer_size,
zx_rights_t rights) {
canary_.Assert();
LTRACEF("op %u offset %#" PRIx64 " size %#" PRIx64 " buffer %p buffer_size %zu rights %#x\n", op,
offset, size, buffer.get(), buffer_size, rights);
switch (op) {
case ZX_VMO_OP_COMMIT: {
if ((rights & ZX_RIGHT_WRITE) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
// TODO: handle partial commits
auto status = vmo_->CommitRange(offset, size);
return status;
}
case ZX_VMO_OP_DECOMMIT: {
if ((rights & ZX_RIGHT_WRITE) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
// TODO: handle partial decommits
auto status = vmo_->DecommitRange(offset, size);
return status;
}
case ZX_VMO_OP_LOCK: {
if ((rights & (ZX_RIGHT_READ | ZX_RIGHT_WRITE)) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
zx_vmo_lock_state_t lock_state = {};
zx_status_t status = vmo_->LockRange(offset, size, &lock_state);
if (status != ZX_OK) {
return status;
}
// If an error is encountered from this point on, the lock operation MUST be reverted
// before returning.
if (buffer_size < sizeof(zx_vmo_lock_state_t)) {
// Undo the lock before returning an error.
vmo_->UnlockRange(offset, size);
return ZX_ERR_INVALID_ARGS;
}
auto lock_state_out = buffer.reinterpret<zx_vmo_lock_state_t>();
if ((status = lock_state_out.copy_to_user(lock_state)) != ZX_OK) {
// Undo the lock before returning an error.
vmo_->UnlockRange(offset, size);
return status;
}
return status;
}
case ZX_VMO_OP_TRY_LOCK:
if ((rights & (ZX_RIGHT_READ | ZX_RIGHT_WRITE)) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->TryLockRange(offset, size);
case ZX_VMO_OP_UNLOCK:
if ((rights & (ZX_RIGHT_READ | ZX_RIGHT_WRITE)) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->UnlockRange(offset, size);
case ZX_VMO_OP_CACHE_SYNC:
if ((rights & ZX_RIGHT_READ) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->CacheOp(offset, size, VmObject::CacheOpType::Sync);
case ZX_VMO_OP_CACHE_INVALIDATE:
if (!gBootOptions->enable_debugging_syscalls) {
return ZX_ERR_NOT_SUPPORTED;
}
// A straight invalidate op requires the write right since
// it may drop dirty cache lines, thus modifying the contents
// of the VMO.
if ((rights & ZX_RIGHT_WRITE) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->CacheOp(offset, size, VmObject::CacheOpType::Invalidate);
case ZX_VMO_OP_CACHE_CLEAN:
if ((rights & ZX_RIGHT_READ) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->CacheOp(offset, size, VmObject::CacheOpType::Clean);
case ZX_VMO_OP_CACHE_CLEAN_INVALIDATE:
if ((rights & ZX_RIGHT_READ) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->CacheOp(offset, size, VmObject::CacheOpType::CleanInvalidate);
case ZX_VMO_OP_ZERO:
if ((rights & ZX_RIGHT_WRITE) == 0) {
return ZX_ERR_ACCESS_DENIED;
}
return vmo_->ZeroRange(offset, size);
case ZX_VMO_OP_ALWAYS_NEED:
return vmo_->HintRange(offset, size, VmObject::EvictionHint::AlwaysNeed);
case ZX_VMO_OP_DONT_NEED:
return vmo_->HintRange(offset, size, VmObject::EvictionHint::DontNeed);
default:
return ZX_ERR_INVALID_ARGS;
}
}
zx_status_t VmObjectDispatcher::SetMappingCachePolicy(uint32_t cache_policy) {
return vmo_->SetMappingCachePolicy(cache_policy);
}
zx_status_t VmObjectDispatcher::CreateChild(uint32_t options, uint64_t offset, uint64_t size,
bool copy_name, fbl::RefPtr<VmObject>* child_vmo) {
canary_.Assert();
LTRACEF("options 0x%x offset %#" PRIx64 " size %#" PRIx64 "\n", options, offset, size);
// Clones are not supported for discardable VMOs.
if (vmo_->is_discardable()) {
return ZX_ERR_NOT_SUPPORTED;
}
if (options & ZX_VMO_CHILD_SLICE) {
// No other flags are valid for slices.
options &= ~ZX_VMO_CHILD_SLICE;
if (options) {
return ZX_ERR_INVALID_ARGS;
}
return vmo_->CreateChildSlice(offset, size, copy_name, child_vmo);
}
// Check for mutually-exclusive child type flags.
CloneType type;
if (options & ZX_VMO_CHILD_SNAPSHOT) {
options &= ~ZX_VMO_CHILD_SNAPSHOT;
type = CloneType::Snapshot;
} else if (options & ZX_VMO_CHILD_SNAPSHOT_AT_LEAST_ON_WRITE) {
options &= ~ZX_VMO_CHILD_SNAPSHOT_AT_LEAST_ON_WRITE;
if (vmo_->is_private_pager_copy_supported()) {
type = CloneType::PrivatePagerCopy;
} else {
type = CloneType::Snapshot;
}
} else {
return ZX_ERR_INVALID_ARGS;
}
Resizability resizable = Resizability::NonResizable;
if (options & ZX_VMO_CHILD_RESIZABLE) {
resizable = Resizability::Resizable;
options &= ~ZX_VMO_CHILD_RESIZABLE;
}
if (options)
return ZX_ERR_INVALID_ARGS;
return vmo_->CreateClone(resizable, type, offset, size, copy_name, child_vmo);
}