| // Copyright 2016 The Fuchsia Authors |
| // Copyright (c) 2014 Travis Geiselbrecht |
| // |
| // Use of this source code is governed by a MIT-style |
| // license that can be found in the LICENSE file or at |
| // https://opensource.org/licenses/MIT |
| |
| #include "kernel/mp.h" |
| |
| #include <assert.h> |
| #include <debug.h> |
| #include <inttypes.h> |
| #include <lib/arch/intrin.h> |
| #include <lib/console.h> |
| #include <lib/fit/defer.h> |
| #include <lib/lockup_detector.h> |
| #include <lib/zircon-internal/macros.h> |
| #include <platform.h> |
| #include <stdlib.h> |
| #include <trace.h> |
| #include <zircon/errors.h> |
| #include <zircon/types.h> |
| |
| #include <arch/mp.h> |
| #include <arch/ops.h> |
| #include <dev/interrupt.h> |
| #include <fbl/algorithm.h> |
| #include <kernel/align.h> |
| #include <kernel/cpu.h> |
| #include <kernel/deadline.h> |
| #include <kernel/dpc.h> |
| #include <kernel/event.h> |
| #include <kernel/mp.h> |
| #include <kernel/mutex.h> |
| #include <kernel/scheduler.h> |
| #include <kernel/spinlock.h> |
| #include <kernel/stats.h> |
| #include <kernel/thread_lock.h> |
| #include <kernel/timer.h> |
| #include <lk/init.h> |
| #include <platform/timer.h> |
| |
| #define LOCAL_TRACE 0 |
| |
| // a global state structure, aligned on cpu cache line to minimize aliasing |
| struct mp_state mp __CPU_ALIGN_EXCLUSIVE; |
| |
| // Helpers used for implementing mp_sync |
| struct mp_sync_context; |
| static void mp_sync_task(void* context); |
| |
| void mp_init() {} |
| |
| void mp_prepare_current_cpu_idle_state(bool idle) { arch_prepare_current_cpu_idle_state(idle); } |
| |
| void mp_reschedule(cpu_mask_t mask, uint flags) { |
| DEBUG_ASSERT(arch_ints_disabled()); |
| |
| const cpu_num_t local_cpu = arch_curr_cpu_num(); |
| |
| LTRACEF("local %u, mask %#x\n", local_cpu, mask); |
| |
| // mask out cpus that are not active and the local cpu |
| mask &= mp.active_cpus.load(); |
| mask &= ~cpu_num_to_mask(local_cpu); |
| |
| LTRACEF("local %u, post mask target now 0x%x\n", local_cpu, mask); |
| |
| // if we have no work to do, return |
| if (mask == 0) { |
| return; |
| } |
| |
| arch_mp_reschedule(mask); |
| } |
| |
| void mp_interrupt(mp_ipi_target_t target, cpu_mask_t mask) { |
| arch_mp_send_ipi(target, mask, MP_IPI_INTERRUPT); |
| } |
| |
| struct mp_sync_context { |
| mp_sync_task_t task; |
| void* task_context; |
| // Mask of which CPUs need to finish the task |
| ktl::atomic<cpu_mask_t> outstanding_cpus; |
| }; |
| |
| static void mp_sync_task(void* raw_context) { |
| auto context = reinterpret_cast<mp_sync_context*>(raw_context); |
| context->task(context->task_context); |
| // use seq-cst atomic to ensure this update is not seen before the |
| // side-effects of context->task |
| context->outstanding_cpus.fetch_and(~cpu_num_to_mask(arch_curr_cpu_num())); |
| } |
| |
| /* @brief Execute a task on the specified CPUs, and block on the calling |
| * CPU until all CPUs have finished the task. |
| * |
| * If MP_IPI_TARGET_ALL or MP_IPI_TARGET_ALL_BUT_LOCAL is the target, the online CPU |
| * mask will be used to determine actual targets. |
| * |
| * Interrupts must be disabled if calling with MP_IPI_TARGET_ALL_BUT_LOCAL as target |
| * |
| * The callback in |task| will always be called with |arch_blocking_disallowed()| |
| * set to true. |
| */ |
| void mp_sync_exec(mp_ipi_target_t target, cpu_mask_t mask, mp_sync_task_t task, void* context) { |
| uint num_cpus = arch_max_num_cpus(); |
| |
| if (target == MP_IPI_TARGET_ALL) { |
| mask = mp_get_online_mask(); |
| } else if (target == MP_IPI_TARGET_ALL_BUT_LOCAL) { |
| // targeting all other CPUs but the current one is hazardous |
| // if the local CPU may be changed underneath us |
| DEBUG_ASSERT(arch_ints_disabled()); |
| mask = mp_get_online_mask() & ~cpu_num_to_mask(arch_curr_cpu_num()); |
| } else { |
| // Mask any offline CPUs from target list |
| mask &= mp_get_online_mask(); |
| } |
| |
| // disable interrupts so our current CPU doesn't change |
| interrupt_saved_state_t irqstate = arch_interrupt_save(); |
| arch::ThreadMemoryBarrier(); |
| |
| const cpu_num_t local_cpu = arch_curr_cpu_num(); |
| |
| // remove self from target lists, since no need to IPI ourselves |
| bool targetting_self = !!(mask & cpu_num_to_mask(local_cpu)); |
| mask &= ~cpu_num_to_mask(local_cpu); |
| |
| // create tasks to enqueue (we need one per target due to each containing |
| // a linked list node |
| struct mp_sync_context sync_context = { |
| .task = task, |
| .task_context = context, |
| .outstanding_cpus = mask, |
| }; |
| |
| struct mp_ipi_task sync_tasks[SMP_MAX_CPUS] = {}; |
| for (cpu_num_t i = 0; i < num_cpus; ++i) { |
| sync_tasks[i].func = mp_sync_task; |
| sync_tasks[i].context = &sync_context; |
| } |
| |
| // enqueue tasks |
| mp.ipi_task_lock.Acquire(); |
| cpu_mask_t remaining = mask; |
| cpu_num_t cpu_id = 0; |
| while (remaining && cpu_id < num_cpus) { |
| if (remaining & 1) { |
| mp.ipi_task_list[cpu_id].push_back(&sync_tasks[cpu_id]); |
| } |
| remaining >>= 1; |
| cpu_id++; |
| } |
| mp.ipi_task_lock.Release(); |
| |
| // let CPUs know to begin executing |
| arch_mp_send_ipi(MP_IPI_TARGET_MASK, mask, MP_IPI_GENERIC); |
| |
| if (targetting_self) { |
| bool previous_blocking_disallowed = arch_blocking_disallowed(); |
| arch_set_blocking_disallowed(true); |
| mp_sync_task(&sync_context); |
| arch_set_blocking_disallowed(previous_blocking_disallowed); |
| } |
| arch::ThreadMemoryBarrier(); |
| |
| // we can take interrupts again once we've executed our task |
| arch_interrupt_restore(irqstate); |
| |
| bool ints_disabled = arch_ints_disabled(); |
| // wait for all other CPUs to be done with the context |
| while (1) { |
| // See comment in mp_unplug_trampoline about related CPU hotplug |
| // guarantees. |
| cpu_mask_t outstanding = sync_context.outstanding_cpus.load(ktl::memory_order_relaxed); |
| cpu_mask_t online = mp_get_online_mask(); |
| if ((outstanding & online) == 0) { |
| break; |
| } |
| |
| // If interrupts are still disabled, we need to attempt to process any |
| // tasks queued for us in order to prevent deadlock. |
| if (ints_disabled) { |
| // Optimistically check if our task list has work without the lock. |
| // mp_mbx_generic_irq will take the lock and check again. |
| bool empty = [local_cpu]() TA_NO_THREAD_SAFETY_ANALYSIS { |
| return mp.ipi_task_list[local_cpu].is_empty(); |
| }(); |
| if (!empty) { |
| bool previous_blocking_disallowed = arch_blocking_disallowed(); |
| arch_set_blocking_disallowed(true); |
| mp_mbx_generic_irq(nullptr); |
| arch_set_blocking_disallowed(previous_blocking_disallowed); |
| continue; |
| } |
| } |
| |
| arch::Yield(); |
| } |
| arch::ThreadMemoryBarrier(); |
| |
| // make sure the sync_tasks aren't in lists anymore, since they're |
| // stack allocated |
| mp.ipi_task_lock.AcquireIrqSave(irqstate); |
| for (cpu_num_t i = 0; i < num_cpus; ++i) { |
| // If a task is still around, it's because the CPU went offline. |
| if (sync_tasks[i].InContainer()) { |
| sync_tasks[i].RemoveFromContainer(); |
| } |
| } |
| mp.ipi_task_lock.ReleaseIrqRestore(irqstate); |
| } |
| |
| static void mp_unplug_trampoline() TA_REQ(thread_lock) __NO_RETURN; |
| static void mp_unplug_trampoline() { |
| // We're still holding the thread lock from the reschedule that took us |
| // here. |
| |
| Thread* ct = Thread::Current::Get(); |
| auto unplug_done = reinterpret_cast<Event*>(ct->task_state().arg()); |
| |
| lockup_secondary_shutdown(); |
| |
| Scheduler::MigrateUnpinnedThreads(); |
| DEBUG_ASSERT(!mp_is_cpu_active(arch_curr_cpu_num())); |
| |
| // Now that this CPU is no longer active, it is critical that this thread |
| // never block. If this thread blocks, the scheduler may attempt to select |
| // this CPU's idle thread to run. Doing so would violate an invariant: tasks |
| // may only be scheduled on active CPUs. |
| DEBUG_ASSERT(arch_blocking_disallowed()); |
| |
| // Note that before this invocation, but after we stopped accepting |
| // interrupts, we may have received a synchronous task to perform. |
| // Clearing this flag will cause the mp_sync_exec caller to consider |
| // this CPU done. If this CPU comes back online before other all |
| // of the other CPUs finish their work (very unlikely, since tasks |
| // should be quick), then this CPU may execute the task. |
| mp_set_curr_cpu_online(false); |
| |
| // We had better not be holding any OwnedWaitQueues at this point in time |
| // (it is unclear how we would have ever obtained any in the first place |
| // since everything this thread ever does is in this function). |
| ct->wait_queue_state().AssertNoOwnedWaitQueues(); |
| |
| // do *not* enable interrupts, we want this CPU to never receive another |
| // interrupt |
| thread_lock.Release(); |
| |
| // Stop and then shutdown this CPU's platform timer. |
| platform_stop_timer(); |
| platform_shutdown_timer(); |
| |
| // Shutdown the interrupt controller for this CPU. On some platforms (arm64 with GIC) receiving |
| // an interrupt at a powered off CPU can result in implementation defined behavior (including |
| // resetting the whole system). |
| shutdown_interrupts_curr_cpu(); |
| |
| // flush all of our caches |
| arch_flush_state_and_halt(unplug_done); |
| } |
| |
| // Hotplug the given cpus. Blocks until the CPUs are up, or a failure is |
| // detected. |
| // |
| // This should be called in a thread context |
| zx_status_t mp_hotplug_cpu_mask(cpu_mask_t cpu_mask) { |
| DEBUG_ASSERT(!arch_ints_disabled()); |
| Guard<Mutex> lock(&mp.hotplug_lock); |
| |
| // Make sure all of the requested CPUs are offline |
| if (cpu_mask & mp_get_online_mask()) { |
| return ZX_ERR_BAD_STATE; |
| } |
| |
| while (cpu_mask != 0) { |
| cpu_num_t cpu_id = highest_cpu_set(cpu_mask); |
| cpu_mask &= ~cpu_num_to_mask(cpu_id); |
| |
| zx_status_t status = platform_mp_cpu_hotplug(cpu_id); |
| if (status != ZX_OK) { |
| return status; |
| } |
| } |
| |
| return ZX_OK; |
| } |
| |
| // Unplug a single CPU. Must be called while holding the hotplug lock |
| static zx_status_t mp_unplug_cpu_mask_single_locked(cpu_num_t cpu_id, zx_time_t deadline, |
| Thread** leaked_thread) { |
| percpu& percpu_to_unplug = percpu::Get(cpu_id); |
| |
| Thread* thread = nullptr; |
| auto cleanup_thread = fit::defer([&thread, &leaked_thread, cpu_id]() { |
| // TODO(fxbug.dev/34447): Work around a race in thread cleanup by leaking the thread and stack |
| // structure. Since we're only using this while turning off the system currently, it's not a big |
| // problem leaking the thread structure and stack. |
| if (leaked_thread) { |
| *leaked_thread = thread; |
| } else if (thread != nullptr) { |
| TRACEF("WARNING: leaking thread for cpu %u\n", cpu_id); |
| } |
| }); |
| |
| // Wait for |percpu_to_unplug| to complete any in-progress DPCs and terminate its DPC thread. |
| // Later, once nothing is running on it, we'll migrate its queued DPCs to another CPU. |
| zx_status_t status = percpu_to_unplug.dpc_queue.Shutdown(deadline); |
| if (status != ZX_OK) { |
| return status; |
| } |
| |
| // TODO(maniscalco): |cpu_to_unplug| is about to shutdown. We should ensure it has no pinned |
| // threads (except maybe the idle thread). Once we're confident we've terminated/migrated them |
| // all, this would be a good place to DEBUG_ASSERT. |
| |
| // Create a thread for the unplug. We will cause the target CPU to |
| // context switch to this thread. After this happens, it should no |
| // longer be accessing system state and can be safely shut down. |
| // |
| // This thread is pinned to the target CPU and set to run with the |
| // highest priority. This should cause it to pick up the thread |
| // immediately (or very soon, if for some reason there is another |
| // HIGHEST_PRIORITY task scheduled in between when we resume the |
| // thread and when the CPU is woken up). |
| Event unplug_done; |
| thread = Thread::CreateEtc(nullptr, "unplug_thread", nullptr, &unplug_done, HIGHEST_PRIORITY, |
| mp_unplug_trampoline); |
| if (thread == nullptr) { |
| return ZX_ERR_NO_MEMORY; |
| } |
| |
| status = platform_mp_prep_cpu_unplug(cpu_id); |
| if (status != ZX_OK) { |
| return status; |
| } |
| |
| // Pin to the target CPU |
| thread->SetCpuAffinity(cpu_num_to_mask(cpu_id)); |
| |
| thread->SetDeadline({ZX_MSEC(9), ZX_MSEC(10), ZX_MSEC(10)}); |
| |
| status = thread->DetachAndResume(); |
| if (status != ZX_OK) { |
| return status; |
| } |
| |
| // Wait for the unplug thread to get scheduled on the target. |
| status = unplug_done.WaitDeadline(deadline, Interruptible::No); |
| if (status != ZX_OK) { |
| return status; |
| } |
| |
| // Now that the cpu is no longer processing tasks, migrate |
| // |percpu_to_unplug|'s TimerQueue and DpcQueue to this cpu. |
| percpu& current_percpu = percpu::GetCurrent(); |
| current_percpu.timer_queue.TransitionOffCpu(percpu_to_unplug.timer_queue); |
| current_percpu.dpc_queue.TransitionOffCpu(percpu_to_unplug.dpc_queue); |
| |
| return platform_mp_cpu_unplug(cpu_id); |
| } |
| |
| // Unplug the given cpus. Blocks until the CPUs are removed or |deadline| has been reached. |
| // |
| // Partial failure may occur (in which some CPUs are removed but not others). |
| // |
| // This should be called in a thread context. |
| // |
| // |leaked_threads| is an optional array of pointers to threads with length |
| // |SMP_MAX_CPUS|. If null, the threads used to "cleanup" each CPU will be |
| // leaked. If non-null, they will be returned to the caller so that the caller |
| // can |thread_forget| them. |
| zx_status_t mp_unplug_cpu_mask(cpu_mask_t cpu_mask, zx_time_t deadline, Thread** leaked_threads) { |
| DEBUG_ASSERT(!arch_ints_disabled()); |
| Guard<Mutex> lock(&mp.hotplug_lock); |
| |
| // Make sure all of the requested CPUs are online |
| if (cpu_mask & ~mp_get_online_mask()) { |
| return ZX_ERR_BAD_STATE; |
| } |
| |
| while (cpu_mask != 0) { |
| cpu_num_t cpu_id = highest_cpu_set(cpu_mask); |
| cpu_mask &= ~cpu_num_to_mask(cpu_id); |
| |
| zx_status_t status = mp_unplug_cpu_mask_single_locked( |
| cpu_id, deadline, leaked_threads ? &leaked_threads[cpu_id] : nullptr); |
| if (status != ZX_OK) { |
| return status; |
| } |
| } |
| |
| return ZX_OK; |
| } |
| |
| interrupt_eoi mp_mbx_generic_irq(void*) { |
| DEBUG_ASSERT(arch_ints_disabled()); |
| const cpu_num_t local_cpu = arch_curr_cpu_num(); |
| |
| CPU_STATS_INC(generic_ipis); |
| |
| while (1) { |
| struct mp_ipi_task* task; |
| mp.ipi_task_lock.Acquire(); |
| task = mp.ipi_task_list[local_cpu].pop_front(); |
| mp.ipi_task_lock.Release(); |
| if (task == NULL) { |
| break; |
| } |
| |
| task->func(task->context); |
| } |
| |
| return IRQ_EOI_DEACTIVATE; |
| } |
| |
| interrupt_eoi mp_mbx_reschedule_irq(void*) { |
| const cpu_num_t cpu = arch_curr_cpu_num(); |
| |
| LTRACEF("cpu %u\n", cpu); |
| |
| CPU_STATS_INC(reschedule_ipis); |
| |
| if (mp.active_cpus.load() & cpu_num_to_mask(cpu)) { |
| Thread::Current::preemption_state().PreemptSetPending(cpu_num_to_mask(cpu)); |
| } |
| |
| return IRQ_EOI_DEACTIVATE; |
| } |
| |
| interrupt_eoi mp_mbx_interrupt_irq(void*) { |
| const cpu_num_t cpu = arch_curr_cpu_num(); |
| |
| LTRACEF("cpu %u\n", cpu); |
| |
| // do nothing, the entire point of this interrupt is to simply have one |
| // delivered to the cpu. |
| |
| return IRQ_EOI_DEACTIVATE; |
| } |
| |
| zx_status_t platform_mp_cpu_hotplug(cpu_num_t cpu_id) { return arch_mp_cpu_hotplug(cpu_id); } |
| |
| namespace { |
| ktl::atomic<uint32_t> mp_all_cpu_startup_count{0}; |
| Event mp_all_cpu_startup_event; |
| } // namespace |
| |
| static void mp_all_cpu_startup_checkin_hook(unsigned int rl) { |
| uint32_t count = mp_all_cpu_startup_count.fetch_add(1) + 1; |
| if (count >= arch_max_num_cpus()) { |
| mp_all_cpu_startup_event.Signal(); |
| } |
| } |
| |
| zx_status_t mp_wait_for_all_cpus_started(Deadline deadline) { |
| return mp_all_cpu_startup_event.Wait(deadline); |
| } |
| |
| // Notes about the startup check-in. |
| // |
| // In order to know when all of the all CPUs have started, we must first |
| // know the number of CPUs that we plan to start. This happens at different |
| // points in the startup process for ARM64 vs. x64. |
| // |
| // On ARM64, this happens indirectly during arch_init just before |
| // LK_INIT_LEVEL_ARCH is executed. This is where ZBI topology info from the |
| // bootloader is processed just before before the CPUs are started. |
| // |
| // On x64, this happens during platform_init just before LK_INIT_LEVEL_PLATFORM. |
| // ACPI topology info is parsed just before the all CPUs are started. |
| // |
| // The PLATFORM hook comes right after the ARCH hook, so to keep this mechanism |
| // generic, we have all of our CPUs check in once we reach the PLATFORM |
| // initialization level. |
| LK_INIT_HOOK_FLAGS(mp_all_cpu_startup_checkin, mp_all_cpu_startup_checkin_hook, |
| LK_INIT_LEVEL_PLATFORM, LK_INIT_FLAG_ALL_CPUS) |
| |
| static int cmd_mp(int argc, const cmd_args* argv, uint32_t flags) { |
| if (argc < 2) { |
| printf("not enough arguments\n"); |
| usage: |
| printf("usage:\n"); |
| printf("%s unplug <cpu_id>\n", argv[0].str); |
| printf("%s hotplug <cpu_id>\n", argv[0].str); |
| printf("%s reschedule <cpu_id> : send a reschedule ipi to <cpu_id>\n", argv[0].str); |
| return ZX_ERR_INTERNAL; |
| } |
| |
| if (!strcmp(argv[1].str, "unplug")) { |
| if (argc < 3) { |
| printf("specify a cpu_id\n"); |
| goto usage; |
| } |
| zx_status_t status = mp_unplug_cpu((cpu_num_t)argv[2].u); |
| printf("CPU %lu unplug %s %d\n", argv[2].u, (status == ZX_OK ? "succeeded" : "failed"), status); |
| } else if (!strcmp(argv[1].str, "hotplug")) { |
| if (argc < 3) { |
| printf("specify a cpu_id\n"); |
| goto usage; |
| } |
| zx_status_t status = mp_hotplug_cpu((cpu_num_t)argv[2].u); |
| printf("CPU %lu hotplug %s %d\n", argv[2].u, (status == ZX_OK ? "succeeded" : "failed"), |
| status); |
| } else if (!strcmp(argv[1].str, "reschedule")) { |
| if (argc < 3) { |
| printf("specify a cpu_id\n"); |
| goto usage; |
| } |
| |
| auto target_cpu = static_cast<cpu_num_t>(argv[2].u); |
| if (!mp_is_cpu_active(target_cpu)) { |
| printf("target cpu %u is not active\n", target_cpu); |
| return ZX_OK; |
| } |
| |
| cpu_mask_t mask = cpu_num_to_mask(target_cpu); |
| cpu_num_t sending_cpu; |
| { |
| Guard<MonitoredSpinLock, IrqSave> thread_lock_guard{ThreadLock::Get(), SOURCE_TAG}; |
| sending_cpu = arch_curr_cpu_num(); |
| mp_reschedule(mask, 0); |
| } |
| |
| if (sending_cpu == target_cpu) { |
| printf("sending cpu is same as target cpu, no ipi sent\n"); |
| } else { |
| printf("sent reschedule ipi to cpu %u\n", target_cpu); |
| } |
| } else { |
| printf("unknown command\n"); |
| goto usage; |
| } |
| |
| return ZX_OK; |
| } |
| |
| STATIC_COMMAND_START |
| STATIC_COMMAND("mp", "mp test commands", &cmd_mp) |
| STATIC_COMMAND_END(mp) |