blob: 8a89bf32d1f300cda1e172ceda651f28968eda5c [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/channel.h>
#endif // __Fuchsia__
#include <exampleusing/llcpp/fidl.h>
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace placementofattributes {
class ExampleXUnion;
class ExampleUnion;
class ExampleTable;
struct ExampleStruct;
enum class ExampleEnum : uint32_t {
MEMBER = 1u,
};
// |ExampleBits| is strict, hence is guaranteed to only contain
// members defined in the FIDL schema when receiving it in a message.
// Sending unknown members will fail at runtime.
class ExampleBits final {
public:
constexpr ExampleBits() = default;
constexpr ExampleBits(const ExampleBits& other) = default;
// Constructs an instance of |ExampleBits| from an underlying primitive value,
// preserving any bit member not defined in the FIDL schema.
explicit constexpr ExampleBits(uint32_t value) : value_(value) {}
const static ExampleBits MEMBER;
const static ExampleBits kMask;
explicit constexpr inline operator uint32_t() const { return value_; }
explicit constexpr inline operator bool() const {
return static_cast<bool>(value_);
}
constexpr inline bool operator==(const ExampleBits& other) const {
return value_ == other.value_;
}
constexpr inline bool operator!=(const ExampleBits& other) const {
return value_ != other.value_;
}
constexpr inline ExampleBits operator~() const;
constexpr inline ExampleBits operator|(const ExampleBits& other) const;
constexpr inline ExampleBits operator&(const ExampleBits& other) const;
constexpr inline ExampleBits operator^(const ExampleBits& other) const;
constexpr inline void operator|=(const ExampleBits& other);
constexpr inline void operator&=(const ExampleBits& other);
constexpr inline void operator^=(const ExampleBits& other);
// Constructs an instance of |ExampleBits| from an underlying primitive value
// if the primitive does not contain any unknown members not defined in the
// FIDL schema. Otherwise, returns |fit::nullopt|.
constexpr inline static fit::optional<ExampleBits> TryFrom(uint32_t value) {
if (value & ~kMask.value_) {
return fit::nullopt;
}
return ExampleBits(value & ExampleBits::kMask.value_);
}
// Constructs an instance of |ExampleBits| from an underlying primitive value,
// clearing any bit member not defined in the FIDL schema.
constexpr inline static ExampleBits TruncatingUnknown(uint32_t value) {
return ExampleBits(value & ExampleBits::kMask.value_);
}
private:
uint32_t value_ = 0;
};
constexpr const ::llcpp::fidl::test::placementofattributes::ExampleBits
ExampleBits::MEMBER =
::llcpp::fidl::test::placementofattributes::ExampleBits(1u);
constexpr const ::llcpp::fidl::test::placementofattributes::ExampleBits
ExampleBits::kMask =
::llcpp::fidl::test::placementofattributes::ExampleBits(1u);
constexpr inline ::llcpp::fidl::test::placementofattributes::ExampleBits
ExampleBits::operator~() const {
return ::llcpp::fidl::test::placementofattributes::ExampleBits(
static_cast<uint32_t>(~this->value_ & kMask.value_));
}
constexpr inline ::llcpp::fidl::test::placementofattributes::ExampleBits
ExampleBits::operator|(
const ::llcpp::fidl::test::placementofattributes::ExampleBits& other)
const {
return ::llcpp::fidl::test::placementofattributes::ExampleBits(
static_cast<uint32_t>(this->value_ | other.value_));
}
constexpr inline ::llcpp::fidl::test::placementofattributes::ExampleBits
ExampleBits::operator&(
const ::llcpp::fidl::test::placementofattributes::ExampleBits& other)
const {
return ::llcpp::fidl::test::placementofattributes::ExampleBits(
static_cast<uint32_t>(this->value_ & other.value_));
}
constexpr inline ::llcpp::fidl::test::placementofattributes::ExampleBits
ExampleBits::operator^(
const ::llcpp::fidl::test::placementofattributes::ExampleBits& other)
const {
return ::llcpp::fidl::test::placementofattributes::ExampleBits(
static_cast<uint32_t>(this->value_ ^ other.value_));
}
constexpr inline void ExampleBits::operator|=(
const ::llcpp::fidl::test::placementofattributes::ExampleBits& other) {
this->value_ |= other.value_;
}
constexpr inline void ExampleBits::operator&=(
const ::llcpp::fidl::test::placementofattributes::ExampleBits& other) {
this->value_ &= other.value_;
}
constexpr inline void ExampleBits::operator^=(
const ::llcpp::fidl::test::placementofattributes::ExampleBits& other) {
this->value_ ^= other.value_;
}
class ExampleProtocol;
extern "C" const fidl_type_t fidl_test_placementofattributes_ExampleXUnionTable;
class ExampleXUnion {
public:
ExampleXUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
ExampleXUnion(ExampleXUnion&&) = default;
ExampleXUnion& operator=(ExampleXUnion&&) = default;
~ExampleXUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
kUnknown = ::std::numeric_limits<::fidl_union_tag_t>::max(),
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static ExampleXUnion WithVariant(::fidl::tracking_ptr<uint32_t>&& val) {
ExampleXUnion result;
result.set_variant(std::move(val));
return result;
}
void set_variant(::fidl::tracking_ptr<uint32_t>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
uint32_t& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
const uint32_t& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
Tag which() const;
static constexpr const fidl_type_t* Type =
&fidl_test_placementofattributes_ExampleXUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<uint32_t> to_destroy =
static_cast<::fidl::tracking_ptr<uint32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_placementofattributes_ExampleUnionTable;
class ExampleUnion {
public:
ExampleUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
ExampleUnion(ExampleUnion&&) = default;
ExampleUnion& operator=(ExampleUnion&&) = default;
~ExampleUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static ExampleUnion WithVariant(::fidl::tracking_ptr<uint32_t>&& val) {
ExampleUnion result;
result.set_variant(std::move(val));
return result;
}
void set_variant(::fidl::tracking_ptr<uint32_t>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
uint32_t& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
const uint32_t& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_placementofattributes_ExampleUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<uint32_t> to_destroy =
static_cast<::fidl::tracking_ptr<uint32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_placementofattributes_ExampleTableTable;
class ExampleTable final {
public:
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
const uint32_t& member() const {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
uint32_t& member() {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
bool has_member() const {
return max_ordinal_ >= 1 && frame_ptr_->member_.data != nullptr;
}
ExampleTable() = default;
~ExampleTable() = default;
ExampleTable(ExampleTable&& other) noexcept = default;
ExampleTable& operator=(ExampleTable&& other) noexcept = default;
static constexpr const fidl_type_t* Type =
&fidl_test_placementofattributes_ExampleTableTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 24;
static constexpr bool HasPointer = true;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
ExampleTable* value)
: message_(bytes, byte_size, sizeof(ExampleTable), nullptr, 0, 0) {
message_.LinearizeAndEncode<ExampleTable>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(ExampleTable* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<ExampleTable>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<ExampleTable>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
ExampleTable* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<ExampleTable*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<ExampleTable>();
}
}
};
class Builder;
class UnownedBuilder;
class Frame final {
public:
Frame() = default;
// In its intended usage, Frame will be referenced by a tracking_ptr. If the
// tracking_ptr is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
Frame(const Frame&) = delete;
Frame& operator=(const Frame&) = delete;
private:
Frame(Frame&&) noexcept = default;
Frame& operator=(Frame&&) noexcept = default;
::fidl::Envelope<uint32_t> member_;
friend class ExampleTable;
friend class ExampleTable::Builder;
friend class ExampleTable::UnownedBuilder;
};
private:
ExampleTable(uint64_t max_ordinal, ::fidl::tracking_ptr<Frame>&& frame_ptr)
: max_ordinal_(max_ordinal), frame_ptr_(std::move(frame_ptr)) {}
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<Frame> frame_ptr_;
};
// ExampleTable::Builder builds ExampleTable.
// Usage:
// ExampleTable val =
// ExampleTable::Builder(std::make_unique<ExampleTable::Frame>())
// .set_member(ptr)
// .build();
class ExampleTable::Builder final {
public:
~Builder() = default;
Builder() = delete;
Builder(::fidl::tracking_ptr<ExampleTable::Frame>&& frame_ptr)
: max_ordinal_(0), frame_ptr_(std::move(frame_ptr)) {}
Builder(Builder&& other) noexcept = default;
Builder& operator=(Builder&& other) noexcept = default;
Builder(const Builder& other) = delete;
Builder& operator=(const Builder& other) = delete;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
Builder&& set_member(::fidl::tracking_ptr<uint32_t> elem) {
frame_ptr_->member_.data = std::move(elem);
if (max_ordinal_ < 1) {
// Note: the table size is not currently reduced if nullptr is set.
// This is possible to reconsider in the future.
max_ordinal_ = 1;
}
return std::move(*this);
}
const uint32_t& member() const {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
uint32_t& member() {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
bool has_member() const {
return max_ordinal_ >= 1 && frame_ptr_->member_.data != nullptr;
}
ExampleTable build() {
return ExampleTable(max_ordinal_, std::move(frame_ptr_));
}
private:
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<ExampleTable::Frame> frame_ptr_;
};
// UnownedBuilder acts like Builder but directly owns its Frame, simplifying
// working with unowned data.
class ExampleTable::UnownedBuilder final {
public:
~UnownedBuilder() = default;
UnownedBuilder() noexcept = default;
UnownedBuilder(UnownedBuilder&& other) noexcept = default;
UnownedBuilder& operator=(UnownedBuilder&& other) noexcept = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
UnownedBuilder&& set_member(::fidl::tracking_ptr<uint32_t> elem) {
ZX_ASSERT(elem);
frame_.member_.data = std::move(elem);
if (max_ordinal_ < 1) {
max_ordinal_ = 1;
}
return std::move(*this);
}
const uint32_t& member() const {
ZX_ASSERT(has_member());
return *frame_.member_.data;
}
uint32_t& member() {
ZX_ASSERT(has_member());
return *frame_.member_.data;
}
bool has_member() const {
return max_ordinal_ >= 1 && frame_.member_.data != nullptr;
}
ExampleTable build() {
return ExampleTable(max_ordinal_, ::fidl::unowned_ptr(&frame_));
}
private:
uint64_t max_ordinal_ = 0;
ExampleTable::Frame frame_;
};
extern "C" const fidl_type_t fidl_test_placementofattributes_ExampleStructTable;
struct ExampleStruct {
static constexpr const fidl_type_t* Type =
&fidl_test_placementofattributes_ExampleStructTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
uint32_t member = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
ExampleStruct* value)
: message_(bytes, byte_size, sizeof(ExampleStruct), nullptr, 0, 0) {
message_.LinearizeAndEncode<ExampleStruct>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(ExampleStruct* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct ExampleStruct>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct ExampleStruct>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct ExampleStruct* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct ExampleStruct*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct ExampleStruct>();
}
}
};
};
constexpr uint32_t EXAMPLE_CONST = 0u;
extern "C" const fidl_type_t
fidl_test_placementofattributes_ExampleProtocolMethodRequestTable;
extern "C" const fidl_type_t
fidl_test_placementofattributes_ExampleProtocolMethodResponseTable;
class ExampleProtocol final {
ExampleProtocol() = delete;
public:
struct MethodRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::llcpp::exampleusing::Empty arg;
explicit MethodRequest(zx_txid_t _txid, ::llcpp::exampleusing::Empty& arg)
: arg(std::move(arg)) {
_InitHeader(_txid);
}
explicit MethodRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&fidl_test_placementofattributes_ExampleProtocolMethodRequestTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 24;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid, ::llcpp::exampleusing::Empty& arg)
: message_(_bytes, _byte_size, sizeof(MethodRequest), nullptr, 0, 0) {
FIDL_ALIGNDECL MethodRequest _request(_txid, arg);
message_.LinearizeAndEncode<MethodRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
MethodRequest* request)
: message_(bytes, byte_size, sizeof(MethodRequest), nullptr, 0, 0) {
message_.LinearizeAndEncode<MethodRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
MethodRequest& Message() {
return *reinterpret_cast<MethodRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid,
::llcpp::exampleusing::Empty& arg)
: message_(bytes_, sizeof(bytes_), _txid, arg) {}
explicit OwnedEncodedMessage(MethodRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<MethodRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<MethodRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
MethodRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<MethodRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<MethodRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
class Method final : public ::fidl::Result {
public:
explicit Method(zx_handle_t _client, ::llcpp::exampleusing::Empty& arg);
explicit Method(const ::fidl::Result& result) : ::fidl::Result(result) {}
Method(Method&&) = delete;
Method(const Method&) = delete;
Method* operator=(Method&&) = delete;
Method* operator=(const Method&) = delete;
~Method() = default;
private:
};
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
class Method final : public ::fidl::Result {
public:
explicit Method(zx_handle_t _client, uint8_t* _request_bytes,
uint32_t _request_byte_capacity,
::llcpp::exampleusing::Empty& arg);
explicit Method(const ::fidl::Result& result) : ::fidl::Result(result) {}
Method(Method&&) = delete;
Method(const Method&) = delete;
Method* operator=(Method&&) = delete;
Method* operator=(const Method&) = delete;
~Method() = default;
};
};
// Methods to make a sync FIDL call directly on an unowned channel, avoiding
// setting up a client.
class Call final {
Call() = delete;
public:
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::Method Method(::zx::unowned_channel _client_end,
::llcpp::exampleusing::Empty arg) {
return ResultOf::Method(_client_end->get(), arg);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::Method Method(::zx::unowned_channel _client_end,
::fidl::BufferSpan _request_buffer,
::llcpp::exampleusing::Empty arg) {
return UnownedResultOf::Method(_client_end->get(), _request_buffer.data,
_request_buffer.capacity, arg);
}
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::zx::channel channel) : channel_(std::move(channel)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::zx::channel& channel() const { return channel_; }
::zx::channel* mutable_channel() { return &channel_; }
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::Method Method(::llcpp::exampleusing::Empty arg) {
return ResultOf::Method(this->channel().get(), arg);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::Method Method(::fidl::BufferSpan _request_buffer,
::llcpp::exampleusing::Empty arg) {
return UnownedResultOf::Method(this->channel().get(),
_request_buffer.data,
_request_buffer.capacity, arg);
}
private:
::zx::channel channel_;
};
struct AsyncEventHandlers;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
class Interface : public ::fidl::internal::IncomingMessageDispatcher {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using _EnclosingProtocol = ExampleProtocol;
using MethodCompleter = ::fidl::Completer<>;
virtual void Method(::llcpp::exampleusing::Empty arg,
MethodCompleter::Sync& _completer) = 0;
private:
::fidl::DispatchResult dispatch_message(fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) final;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of |Interface*|.
// Only used with |fidl::BindServer| to reduce template expansion.
// Do not call this method manually. Use |Dispatch| instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<Interface*>(impl), msg, txn);
}
class EventSender;
class WeakEventSender;
};
} // namespace placementofattributes
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::placementofattributes::ExampleXUnion>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::placementofattributes::ExampleXUnion>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::placementofattributes::ExampleXUnion>);
template <>
struct IsFidlType<::llcpp::fidl::test::placementofattributes::ExampleUnion>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::placementofattributes::ExampleUnion>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::placementofattributes::ExampleUnion>);
template <>
struct IsFidlType<::llcpp::fidl::test::placementofattributes::ExampleTable>
: public std::true_type {};
template <>
struct IsTable<::llcpp::fidl::test::placementofattributes::ExampleTable>
: public std::true_type {};
template <>
struct IsTableBuilder<
::llcpp::fidl::test::placementofattributes::ExampleTable::Builder>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::placementofattributes::ExampleTable>);
template <>
struct IsFidlType<::llcpp::fidl::test::placementofattributes::ExampleStruct>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::placementofattributes::ExampleStruct>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::placementofattributes::ExampleStruct>);
static_assert(
offsetof(::llcpp::fidl::test::placementofattributes::ExampleStruct,
member) == 0);
static_assert(
sizeof(::llcpp::fidl::test::placementofattributes::ExampleStruct) ==
::llcpp::fidl::test::placementofattributes::ExampleStruct::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::placementofattributes::ExampleEnum>
: public std::true_type {};
template <>
struct IsFidlType<::llcpp::fidl::test::placementofattributes::ExampleBits>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::placementofattributes::ExampleBits>);
static_assert(sizeof(::llcpp::fidl::test::placementofattributes::ExampleBits) ==
sizeof(uint32_t));
template <>
struct IsFidlType<
::llcpp::fidl::test::placementofattributes::ExampleProtocol::MethodRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::placementofattributes::ExampleProtocol::MethodRequest>
: public std::true_type {};
static_assert(sizeof(::llcpp::fidl::test::placementofattributes::
ExampleProtocol::MethodRequest) ==
::llcpp::fidl::test::placementofattributes::ExampleProtocol::
MethodRequest::PrimarySize);
static_assert(offsetof(::llcpp::fidl::test::placementofattributes::
ExampleProtocol::MethodRequest,
arg) == 16);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace placementofattributes {
struct ExampleProtocol::AsyncEventHandlers {};
class ExampleProtocol::ClientImpl final : private ::fidl::internal::ClientBase {
public:
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
::fidl::Result Method(::llcpp::exampleusing::Empty arg);
// Caller provides the backing storage for FIDL message via request and
// response buffers.
::fidl::Result Method(::fidl::BufferSpan _request_buffer,
::llcpp::exampleusing::Empty arg);
private:
friend class ::fidl::Client<ExampleProtocol>;
explicit ClientImpl(AsyncEventHandlers handlers)
: handlers_(std::move(handlers)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(
fidl_incoming_msg_t* msg) override;
AsyncEventHandlers handlers_;
};
// |EventSender| owns a server endpoint of a channel speaking
// the ExampleProtocol protocol, and can send events in that protocol.
class ExampleProtocol::EventSender {
public:
// Constructs an event sender with an invalid channel.
EventSender() = default;
// TODO(fxbug.dev/65212): EventSender should take a ::fidl::ServerEnd.
explicit EventSender(::zx::channel server_end)
: server_end_(std::move(server_end)) {}
// The underlying server channel endpoint, which may be replaced at run-time.
const ::zx::channel& channel() const { return server_end_; }
::zx::channel& channel() { return server_end_; }
// Whether the underlying channel is valid.
bool is_valid() const { return server_end_.is_valid(); }
private:
::zx::channel server_end_;
};
class ExampleProtocol::WeakEventSender {
public:
private:
friend class ::fidl::ServerBindingRef<ExampleProtocol>;
explicit WeakEventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding<ExampleProtocol>>
binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding<ExampleProtocol>> binding_;
};
} // namespace placementofattributes
} // namespace test
} // namespace fidl
} // namespace llcpp