blob: 60ca4c5174a2986e1c570934a252a7847c12d69d [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/handle.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace encapsulatedstructs {
struct NonInlineStructTestStruct;
struct Int8Int32;
struct Int16Int8;
struct ArrayInt16Int8;
struct StructPaddingTestStruct;
struct TopLevelStruct;
#ifdef __Fuchsia__
extern "C" const fidl_type_t
fidl_test_encapsulatedstructs_NonInlineStructTestStructTable;
struct NonInlineStructTestStruct {
static constexpr const fidl_type_t* Type =
&fidl_test_encapsulatedstructs_NonInlineStructTestStructTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
::fidl::tracking_ptr<::llcpp::fidl::test::encapsulatedstructs::Int16Int8>
element = {};
::zx::handle h = {};
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
NonInlineStructTestStruct* value)
: message_(bytes, byte_size, sizeof(NonInlineStructTestStruct),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<NonInlineStructTestStruct>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(NonInlineStructTestStruct* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct NonInlineStructTestStruct>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct NonInlineStructTestStruct>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
struct NonInlineStructTestStruct* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct NonInlineStructTestStruct*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<struct NonInlineStructTestStruct>();
}
}
};
};
#endif // __Fuchsia__
extern "C" const fidl_type_t fidl_test_encapsulatedstructs_Int8Int32Table;
struct Int8Int32 {
static constexpr const fidl_type_t* Type =
&fidl_test_encapsulatedstructs_Int8Int32Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 8;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
int8_t a = {};
int32_t b = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size, Int8Int32* value)
: message_(bytes, byte_size, sizeof(Int8Int32), nullptr, 0, 0) {
message_.LinearizeAndEncode<Int8Int32>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(Int8Int32* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct Int8Int32>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct Int8Int32>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct Int8Int32* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct Int8Int32*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct Int8Int32>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_encapsulatedstructs_Int16Int8Table;
struct Int16Int8 {
static constexpr const fidl_type_t* Type =
&fidl_test_encapsulatedstructs_Int16Int8Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
int16_t a = {};
int8_t b = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size, Int16Int8* value)
: message_(bytes, byte_size, sizeof(Int16Int8), nullptr, 0, 0) {
message_.LinearizeAndEncode<Int16Int8>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(Int16Int8* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct Int16Int8>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct Int16Int8>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct Int16Int8* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct Int16Int8*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct Int16Int8>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_encapsulatedstructs_ArrayInt16Int8Table;
struct ArrayInt16Int8 {
static constexpr const fidl_type_t* Type =
&fidl_test_encapsulatedstructs_ArrayInt16Int8Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 12;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::fidl::Array<::llcpp::fidl::test::encapsulatedstructs::Int16Int8, 3> arr =
{};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
ArrayInt16Int8* value)
: message_(bytes, byte_size, sizeof(ArrayInt16Int8), nullptr, 0, 0) {
message_.LinearizeAndEncode<ArrayInt16Int8>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(ArrayInt16Int8* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct ArrayInt16Int8>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct ArrayInt16Int8>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct ArrayInt16Int8* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct ArrayInt16Int8*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct ArrayInt16Int8>();
}
}
};
};
extern "C" const fidl_type_t
fidl_test_encapsulatedstructs_StructPaddingTestStructTable;
struct StructPaddingTestStruct {
static constexpr const fidl_type_t* Type =
&fidl_test_encapsulatedstructs_StructPaddingTestStructTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::llcpp::fidl::test::encapsulatedstructs::Int16Int8 trailing = {};
::llcpp::fidl::test::encapsulatedstructs::Int8Int32 inner = {};
::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8 array = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructPaddingTestStruct* value)
: message_(bytes, byte_size, sizeof(StructPaddingTestStruct), nullptr,
0, 0) {
message_.LinearizeAndEncode<StructPaddingTestStruct>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructPaddingTestStruct* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructPaddingTestStruct>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructPaddingTestStruct>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructPaddingTestStruct* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructPaddingTestStruct*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructPaddingTestStruct>();
}
}
};
};
#ifdef __Fuchsia__
extern "C" const fidl_type_t fidl_test_encapsulatedstructs_TopLevelStructTable;
struct TopLevelStruct {
static constexpr const fidl_type_t* Type =
&fidl_test_encapsulatedstructs_TopLevelStructTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 40;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct a = {};
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct b = {};
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
TopLevelStruct* value)
: message_(bytes, byte_size, sizeof(TopLevelStruct), handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<TopLevelStruct>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(TopLevelStruct* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct TopLevelStruct>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct TopLevelStruct>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
struct TopLevelStruct* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct TopLevelStruct*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<struct TopLevelStruct>();
}
}
};
};
#endif // __Fuchsia__
} // namespace encapsulatedstructs
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
#ifdef __Fuchsia__
template <>
struct IsFidlType<
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct>
: public std::true_type {};
template <>
struct IsStruct<
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct>);
static_assert(
offsetof(
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct,
element) == 0);
static_assert(
offsetof(
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct,
h) == 8);
static_assert(
sizeof(
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct) ==
::llcpp::fidl::test::encapsulatedstructs::NonInlineStructTestStruct::
PrimarySize);
#endif // __Fuchsia__
template <>
struct IsFidlType<::llcpp::fidl::test::encapsulatedstructs::Int8Int32>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::encapsulatedstructs::Int8Int32>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::encapsulatedstructs::Int8Int32>);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::Int8Int32,
a) == 0);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::Int8Int32,
b) == 4);
static_assert(sizeof(::llcpp::fidl::test::encapsulatedstructs::Int8Int32) ==
::llcpp::fidl::test::encapsulatedstructs::Int8Int32::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::encapsulatedstructs::Int16Int8>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::encapsulatedstructs::Int16Int8>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::encapsulatedstructs::Int16Int8>);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::Int16Int8,
a) == 0);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::Int16Int8,
b) == 2);
static_assert(sizeof(::llcpp::fidl::test::encapsulatedstructs::Int16Int8) ==
::llcpp::fidl::test::encapsulatedstructs::Int16Int8::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8>);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8,
arr) == 0);
static_assert(
sizeof(::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8) ==
::llcpp::fidl::test::encapsulatedstructs::ArrayInt16Int8::PrimarySize);
template <>
struct IsFidlType<
::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct>
: public std::true_type {};
template <>
struct IsStruct<
::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<
::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct>);
static_assert(
offsetof(::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct,
trailing) == 0);
static_assert(
offsetof(::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct,
inner) == 4);
static_assert(
offsetof(::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct,
array) == 12);
static_assert(
sizeof(::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct) ==
::llcpp::fidl::test::encapsulatedstructs::StructPaddingTestStruct::
PrimarySize);
#ifdef __Fuchsia__
template <>
struct IsFidlType<::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct>);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct,
a) == 0);
static_assert(offsetof(::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct,
b) == 24);
static_assert(
sizeof(::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct) ==
::llcpp::fidl::test::encapsulatedstructs::TopLevelStruct::PrimarySize);
#endif // __Fuchsia__
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace encapsulatedstructs {} // namespace encapsulatedstructs
} // namespace test
} // namespace fidl
} // namespace llcpp