blob: 9654b8874fc60af97ca0a3e84879a23ad5145ab7 [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/channel.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace doccomments {
class Table;
struct Struct;
class StrictUnion;
class Interface;
class Service;
// strict enum comment #1.
//
// strict enum comment #2.
enum class MyStrictEnum : uint32_t {
// FOO member comment #1
//
// FOO member comment #3
FOO = 1u,
// BAR member comment #1
//
// BAR member comment #3
BAR = 2u,
};
// strict bits comment #1
//
// strict bits comment #2
// |MyStrictBits| is strict, hence is guaranteed to only contain
// members defined in the FIDL schema when receiving it in a message.
// Sending unknown members will fail at runtime.
class MyStrictBits final {
public:
constexpr MyStrictBits() = default;
constexpr MyStrictBits(const MyStrictBits& other) = default;
// Constructs an instance of |MyStrictBits| from an underlying primitive
// value, preserving any bit member not defined in the FIDL schema.
explicit constexpr MyStrictBits(uint32_t value) : value_(value) {}
const static MyStrictBits MY_FIRST_BIT;
const static MyStrictBits MY_OTHER_BIT;
const static MyStrictBits kMask;
explicit constexpr inline operator uint32_t() const { return value_; }
explicit constexpr inline operator bool() const {
return static_cast<bool>(value_);
}
constexpr inline bool operator==(const MyStrictBits& other) const {
return value_ == other.value_;
}
constexpr inline bool operator!=(const MyStrictBits& other) const {
return value_ != other.value_;
}
constexpr inline MyStrictBits operator~() const;
constexpr inline MyStrictBits operator|(const MyStrictBits& other) const;
constexpr inline MyStrictBits operator&(const MyStrictBits& other) const;
constexpr inline MyStrictBits operator^(const MyStrictBits& other) const;
constexpr inline void operator|=(const MyStrictBits& other);
constexpr inline void operator&=(const MyStrictBits& other);
constexpr inline void operator^=(const MyStrictBits& other);
// Constructs an instance of |MyStrictBits| from an underlying primitive value
// if the primitive does not contain any unknown members not defined in the
// FIDL schema. Otherwise, returns |fit::nullopt|.
constexpr inline static fit::optional<MyStrictBits> TryFrom(uint32_t value) {
if (value & ~kMask.value_) {
return fit::nullopt;
}
return MyStrictBits(value & MyStrictBits::kMask.value_);
}
// Constructs an instance of |MyStrictBits| from an underlying primitive
// value, clearing any bit member not defined in the FIDL schema.
constexpr inline static MyStrictBits TruncatingUnknown(uint32_t value) {
return MyStrictBits(value & MyStrictBits::kMask.value_);
}
private:
uint32_t value_ = 0;
};
constexpr const ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::MY_FIRST_BIT =
::llcpp::fidl::test::doccomments::MyStrictBits(1u);
constexpr const ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::MY_OTHER_BIT =
::llcpp::fidl::test::doccomments::MyStrictBits(2u);
constexpr const ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::kMask = ::llcpp::fidl::test::doccomments::MyStrictBits(3u);
constexpr inline ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::operator~() const {
return ::llcpp::fidl::test::doccomments::MyStrictBits(
static_cast<uint32_t>(~this->value_ & kMask.value_));
}
constexpr inline ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::operator|(
const ::llcpp::fidl::test::doccomments::MyStrictBits& other) const {
return ::llcpp::fidl::test::doccomments::MyStrictBits(
static_cast<uint32_t>(this->value_ | other.value_));
}
constexpr inline ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::operator&(
const ::llcpp::fidl::test::doccomments::MyStrictBits& other) const {
return ::llcpp::fidl::test::doccomments::MyStrictBits(
static_cast<uint32_t>(this->value_ & other.value_));
}
constexpr inline ::llcpp::fidl::test::doccomments::MyStrictBits
MyStrictBits::operator^(
const ::llcpp::fidl::test::doccomments::MyStrictBits& other) const {
return ::llcpp::fidl::test::doccomments::MyStrictBits(
static_cast<uint32_t>(this->value_ ^ other.value_));
}
constexpr inline void MyStrictBits::operator|=(
const ::llcpp::fidl::test::doccomments::MyStrictBits& other) {
this->value_ |= other.value_;
}
constexpr inline void MyStrictBits::operator&=(
const ::llcpp::fidl::test::doccomments::MyStrictBits& other) {
this->value_ &= other.value_;
}
constexpr inline void MyStrictBits::operator^=(
const ::llcpp::fidl::test::doccomments::MyStrictBits& other) {
this->value_ ^= other.value_;
}
// flexible enum comment #1.
//
// flexible enum comment #2.
class MyFlexibleEnum final {
public:
constexpr MyFlexibleEnum() : value_(0) {}
constexpr explicit MyFlexibleEnum(uint32_t value) : value_(value) {}
constexpr MyFlexibleEnum(const MyFlexibleEnum& other) = default;
constexpr operator uint32_t() const { return value_; };
constexpr bool IsUnknown() const {
switch (value_) {
case 1u:
case 2u:
return false;
default:
return true;
}
}
constexpr static MyFlexibleEnum Unknown() {
return MyFlexibleEnum(0xffffffff);
}
// FOO member comment #1
//
// FOO member comment #3
static const MyFlexibleEnum FOO;
// BAR member comment #1
//
// BAR member comment #3
static const MyFlexibleEnum BAR;
private:
uint32_t value_;
};
constexpr const ::llcpp::fidl::test::doccomments::MyFlexibleEnum
MyFlexibleEnum::FOO = ::llcpp::fidl::test::doccomments::MyFlexibleEnum(1u);
constexpr const ::llcpp::fidl::test::doccomments::MyFlexibleEnum
MyFlexibleEnum::BAR = ::llcpp::fidl::test::doccomments::MyFlexibleEnum(2u);
// flexible bits comment #1
//
// flexible bits comment #2
// |MyFlexibleBits| is flexible, hence may contain unknown members not
// defined in the FIDL schema.
class MyFlexibleBits final {
public:
constexpr MyFlexibleBits() = default;
constexpr MyFlexibleBits(const MyFlexibleBits& other) = default;
// Constructs an instance of |MyFlexibleBits| from an underlying primitive
// value, preserving any bit member not defined in the FIDL schema.
explicit constexpr MyFlexibleBits(uint32_t value) : value_(value) {}
const static MyFlexibleBits MY_FIRST_BIT;
const static MyFlexibleBits MY_OTHER_BIT;
const static MyFlexibleBits kMask;
explicit constexpr inline operator uint32_t() const { return value_; }
explicit constexpr inline operator bool() const {
return static_cast<bool>(value_);
}
constexpr inline bool operator==(const MyFlexibleBits& other) const {
return value_ == other.value_;
}
constexpr inline bool operator!=(const MyFlexibleBits& other) const {
return value_ != other.value_;
}
constexpr inline MyFlexibleBits operator~() const;
constexpr inline MyFlexibleBits operator|(const MyFlexibleBits& other) const;
constexpr inline MyFlexibleBits operator&(const MyFlexibleBits& other) const;
constexpr inline MyFlexibleBits operator^(const MyFlexibleBits& other) const;
constexpr inline void operator|=(const MyFlexibleBits& other);
constexpr inline void operator&=(const MyFlexibleBits& other);
constexpr inline void operator^=(const MyFlexibleBits& other);
// Constructs an instance of |MyFlexibleBits| from an underlying primitive
// value if the primitive does not contain any unknown members not defined in
// the FIDL schema. Otherwise, returns |fit::nullopt|.
constexpr inline static fit::optional<MyFlexibleBits> TryFrom(
uint32_t value) {
if (value & ~kMask.value_) {
return fit::nullopt;
}
return MyFlexibleBits(value & MyFlexibleBits::kMask.value_);
}
// Constructs an instance of |MyFlexibleBits| from an underlying primitive
// value, clearing any bit member not defined in the FIDL schema.
constexpr inline static MyFlexibleBits TruncatingUnknown(uint32_t value) {
return MyFlexibleBits(value & MyFlexibleBits::kMask.value_);
}
constexpr inline MyFlexibleBits unknown_bits() const {
return *this & MyFlexibleBits(~kMask.value_);
}
constexpr inline bool has_unknown_bits() const {
return static_cast<bool>(unknown_bits());
}
private:
uint32_t value_ = 0;
};
constexpr const ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::MY_FIRST_BIT =
::llcpp::fidl::test::doccomments::MyFlexibleBits(1u);
constexpr const ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::MY_OTHER_BIT =
::llcpp::fidl::test::doccomments::MyFlexibleBits(2u);
constexpr const ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::kMask =
::llcpp::fidl::test::doccomments::MyFlexibleBits(3u);
constexpr inline ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::operator~() const {
return ::llcpp::fidl::test::doccomments::MyFlexibleBits(
static_cast<uint32_t>(~this->value_ & kMask.value_));
}
constexpr inline ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::operator|(
const ::llcpp::fidl::test::doccomments::MyFlexibleBits& other) const {
return ::llcpp::fidl::test::doccomments::MyFlexibleBits(
static_cast<uint32_t>(this->value_ | other.value_));
}
constexpr inline ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::operator&(
const ::llcpp::fidl::test::doccomments::MyFlexibleBits& other) const {
return ::llcpp::fidl::test::doccomments::MyFlexibleBits(
static_cast<uint32_t>(this->value_ & other.value_));
}
constexpr inline ::llcpp::fidl::test::doccomments::MyFlexibleBits
MyFlexibleBits::operator^(
const ::llcpp::fidl::test::doccomments::MyFlexibleBits& other) const {
return ::llcpp::fidl::test::doccomments::MyFlexibleBits(
static_cast<uint32_t>(this->value_ ^ other.value_));
}
constexpr inline void MyFlexibleBits::operator|=(
const ::llcpp::fidl::test::doccomments::MyFlexibleBits& other) {
this->value_ |= other.value_;
}
constexpr inline void MyFlexibleBits::operator&=(
const ::llcpp::fidl::test::doccomments::MyFlexibleBits& other) {
this->value_ &= other.value_;
}
constexpr inline void MyFlexibleBits::operator^=(
const ::llcpp::fidl::test::doccomments::MyFlexibleBits& other) {
this->value_ ^= other.value_;
}
class FlexibleUnion;
extern "C" const fidl_type_t fidl_test_doccomments_TableTable;
// table comment #1
//
// table comment #3
class Table final {
public:
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
// table field comment #1
//
// table field comment #3
const int32_t& Field() const {
ZX_ASSERT(has_Field());
return *frame_ptr_->Field_.data;
}
int32_t& Field() {
ZX_ASSERT(has_Field());
return *frame_ptr_->Field_.data;
}
bool has_Field() const {
return max_ordinal_ >= 1 && frame_ptr_->Field_.data != nullptr;
}
Table() = default;
~Table() = default;
Table(Table&& other) noexcept = default;
Table& operator=(Table&& other) noexcept = default;
static constexpr const fidl_type_t* Type = &fidl_test_doccomments_TableTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 24;
static constexpr bool HasPointer = true;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size, Table* value)
: message_(bytes, byte_size, sizeof(Table), nullptr, 0, 0) {
message_.LinearizeAndEncode<Table>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(Table* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<Table>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<Table>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
Table* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<Table*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<Table>();
}
}
};
class Builder;
class UnownedBuilder;
class Frame final {
public:
Frame() = default;
// In its intended usage, Frame will be referenced by a tracking_ptr. If the
// tracking_ptr is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
Frame(const Frame&) = delete;
Frame& operator=(const Frame&) = delete;
private:
Frame(Frame&&) noexcept = default;
Frame& operator=(Frame&&) noexcept = default;
::fidl::Envelope<int32_t> Field_;
friend class Table;
friend class Table::Builder;
friend class Table::UnownedBuilder;
};
private:
Table(uint64_t max_ordinal, ::fidl::tracking_ptr<Frame>&& frame_ptr)
: max_ordinal_(max_ordinal), frame_ptr_(std::move(frame_ptr)) {}
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<Frame> frame_ptr_;
};
// Table::Builder builds Table.
// Usage:
// Table val = Table::Builder(std::make_unique<Table::Frame>())
// .set_Field(ptr)
// .build();
class Table::Builder final {
public:
~Builder() = default;
Builder() = delete;
Builder(::fidl::tracking_ptr<Table::Frame>&& frame_ptr)
: max_ordinal_(0), frame_ptr_(std::move(frame_ptr)) {}
Builder(Builder&& other) noexcept = default;
Builder& operator=(Builder&& other) noexcept = default;
Builder(const Builder& other) = delete;
Builder& operator=(const Builder& other) = delete;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
// table field comment #1
//
// table field comment #3
Builder&& set_Field(::fidl::tracking_ptr<int32_t> elem) {
frame_ptr_->Field_.data = std::move(elem);
if (max_ordinal_ < 1) {
// Note: the table size is not currently reduced if nullptr is set.
// This is possible to reconsider in the future.
max_ordinal_ = 1;
}
return std::move(*this);
}
const int32_t& Field() const {
ZX_ASSERT(has_Field());
return *frame_ptr_->Field_.data;
}
int32_t& Field() {
ZX_ASSERT(has_Field());
return *frame_ptr_->Field_.data;
}
bool has_Field() const {
return max_ordinal_ >= 1 && frame_ptr_->Field_.data != nullptr;
}
Table build() { return Table(max_ordinal_, std::move(frame_ptr_)); }
private:
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<Table::Frame> frame_ptr_;
};
// UnownedBuilder acts like Builder but directly owns its Frame, simplifying
// working with unowned data.
class Table::UnownedBuilder final {
public:
~UnownedBuilder() = default;
UnownedBuilder() noexcept = default;
UnownedBuilder(UnownedBuilder&& other) noexcept = default;
UnownedBuilder& operator=(UnownedBuilder&& other) noexcept = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
// table field comment #1
//
// table field comment #3
UnownedBuilder&& set_Field(::fidl::tracking_ptr<int32_t> elem) {
ZX_ASSERT(elem);
frame_.Field_.data = std::move(elem);
if (max_ordinal_ < 1) {
max_ordinal_ = 1;
}
return std::move(*this);
}
const int32_t& Field() const {
ZX_ASSERT(has_Field());
return *frame_.Field_.data;
}
int32_t& Field() {
ZX_ASSERT(has_Field());
return *frame_.Field_.data;
}
bool has_Field() const {
return max_ordinal_ >= 1 && frame_.Field_.data != nullptr;
}
Table build() { return Table(max_ordinal_, ::fidl::unowned_ptr(&frame_)); }
private:
uint64_t max_ordinal_ = 0;
Table::Frame frame_;
};
extern "C" const fidl_type_t fidl_test_doccomments_StrictUnionTable;
// strict union comment #1
//
// strict union comment #3
class StrictUnion {
public:
StrictUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
StrictUnion(StrictUnion&&) = default;
StrictUnion& operator=(StrictUnion&&) = default;
~StrictUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kField = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_Field() const { return ordinal_ == Ordinal::kField; }
static StrictUnion WithField(::fidl::tracking_ptr<int32_t>&& val) {
StrictUnion result;
result.set_Field(std::move(val));
return result;
}
// union member comment #1
//
// union member comment #3
void set_Field(::fidl::tracking_ptr<int32_t>&& elem) {
ordinal_ = Ordinal::kField;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
// union member comment #1
//
// union member comment #3
int32_t& mutable_Field() {
ZX_ASSERT(ordinal_ == Ordinal::kField);
return *static_cast<int32_t*>(envelope_.data.get());
}
const int32_t& Field() const {
ZX_ASSERT(ordinal_ == Ordinal::kField);
return *static_cast<int32_t*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_doccomments_StrictUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kField = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<int32_t> to_destroy =
static_cast<::fidl::tracking_ptr<int32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_doccomments_FlexibleUnionTable;
// flexible union comment #1
//
// flexible union comment #3
class FlexibleUnion {
public:
FlexibleUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
FlexibleUnion(FlexibleUnion&&) = default;
FlexibleUnion& operator=(FlexibleUnion&&) = default;
~FlexibleUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kField = 1, // 0x1
kUnknown = ::std::numeric_limits<::fidl_union_tag_t>::max(),
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_Field() const { return ordinal_ == Ordinal::kField; }
static FlexibleUnion WithField(::fidl::tracking_ptr<int32_t>&& val) {
FlexibleUnion result;
result.set_Field(std::move(val));
return result;
}
// union member comment #1
//
// union member comment #3
void set_Field(::fidl::tracking_ptr<int32_t>&& elem) {
ordinal_ = Ordinal::kField;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
// union member comment #1
//
// union member comment #3
int32_t& mutable_Field() {
ZX_ASSERT(ordinal_ == Ordinal::kField);
return *static_cast<int32_t*>(envelope_.data.get());
}
const int32_t& Field() const {
ZX_ASSERT(ordinal_ == Ordinal::kField);
return *static_cast<int32_t*>(envelope_.data.get());
}
Tag which() const;
static constexpr const fidl_type_t* Type =
&fidl_test_doccomments_FlexibleUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kField = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<int32_t> to_destroy =
static_cast<::fidl::tracking_ptr<int32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_doccomments_StructTable;
// struct comment #1
//
// struct comment #3
struct Struct {
static constexpr const fidl_type_t* Type = &fidl_test_doccomments_StructTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
// struct member comment #1
//
// struct member comment #3
int32_t Field = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size, Struct* value)
: message_(bytes, byte_size, sizeof(Struct), nullptr, 0, 0) {
message_.LinearizeAndEncode<Struct>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(Struct* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct Struct>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct Struct>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct Struct* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct Struct*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct Struct>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_doccomments_InterfaceMethodRequestTable;
extern "C" const fidl_type_t fidl_test_doccomments_InterfaceMethodResponseTable;
extern "C" const fidl_type_t fidl_test_doccomments_InterfaceOnEventRequestTable;
extern "C" const fidl_type_t fidl_test_doccomments_InterfaceOnEventEventTable;
// interface comment #1
//
// interface comment #3
class Interface final {
Interface() = delete;
public:
struct MethodRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
explicit MethodRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&::fidl::_llcpp_coding_AnyZeroArgMessageTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 16;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid)
: message_(_bytes, _byte_size, sizeof(MethodRequest), nullptr, 0, 0) {
FIDL_ALIGNDECL MethodRequest _request(_txid);
message_.LinearizeAndEncode<MethodRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
MethodRequest* request)
: message_(bytes, byte_size, sizeof(MethodRequest), nullptr, 0, 0) {
message_.LinearizeAndEncode<MethodRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
MethodRequest& Message() {
return *reinterpret_cast<MethodRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid)
: message_(bytes_, sizeof(bytes_), _txid) {}
explicit OwnedEncodedMessage(MethodRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<MethodRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<MethodRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
MethodRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<MethodRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<MethodRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
struct OnEventResponse final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
OnEventResponse() { _InitHeader(); }
static constexpr const fidl_type_t* Type =
&::fidl::_llcpp_coding_AnyZeroArgMessageTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size)
: message_(_bytes, _byte_size, sizeof(OnEventResponse), nullptr, 0,
0) {
FIDL_ALIGNDECL OnEventResponse _response{};
message_.LinearizeAndEncode<OnEventResponse>(&_response);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
OnEventResponse* response)
: message_(bytes, byte_size, sizeof(OnEventResponse), nullptr, 0, 0) {
message_.LinearizeAndEncode<OnEventResponse>(response);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
OnEventResponse& Message() {
return *reinterpret_cast<OnEventResponse*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage() : message_(bytes_, sizeof(bytes_)) {}
explicit OwnedEncodedMessage(OnEventResponse* response)
: message_(bytes_, sizeof(bytes_), response) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<OnEventResponse>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<OnEventResponse>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
OnEventResponse* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<OnEventResponse*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<OnEventResponse>();
}
}
};
private:
void _InitHeader();
};
class EventHandler {
public:
EventHandler() = default;
virtual ~EventHandler() = default;
// event comment #1
//
// event comment #3
virtual void OnEvent(OnEventResponse* event) = 0;
// Method called when an unknown event is found. This methods gives the
// status which, in this case, is returned by HandleOneEvent.
virtual zx_status_t Unknown() = 0;
// Handle all possible events defined in this protocol.
// Blocks to consume exactly one message from the channel, then call the
// corresponding virtual method.
::fidl::Result HandleOneEvent(::zx::unowned_channel client_end);
};
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
class Method final : public ::fidl::Result {
public:
explicit Method(zx_handle_t _client);
explicit Method(const ::fidl::Result& result) : ::fidl::Result(result) {}
Method(Method&&) = delete;
Method(const Method&) = delete;
Method* operator=(Method&&) = delete;
Method* operator=(const Method&) = delete;
~Method() = default;
private:
};
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
class Method final : public ::fidl::Result {
public:
explicit Method(zx_handle_t _client);
explicit Method(const ::fidl::Result& result) : ::fidl::Result(result) {}
Method(Method&&) = delete;
Method(const Method&) = delete;
Method* operator=(Method&&) = delete;
Method* operator=(const Method&) = delete;
~Method() = default;
};
};
// Methods to make a sync FIDL call directly on an unowned channel, avoiding
// setting up a client.
class Call final {
Call() = delete;
public:
// method comment #1
//
// method comment #3
// Allocates 16 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::Method Method(::zx::unowned_channel _client_end) {
return ResultOf::Method(_client_end->get());
}
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::zx::channel channel) : channel_(std::move(channel)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::zx::channel& channel() const { return channel_; }
::zx::channel* mutable_channel() { return &channel_; }
// method comment #1
//
// method comment #3
// Allocates 16 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::Method Method() {
return ResultOf::Method(this->channel().get());
}
// Handle all possible events defined in this protocol.
// Blocks to consume exactly one message from the channel, then call the
// corresponding virtual method defined in |EventHandler|. The return status
// of the handler function is folded with any transport-level errors and
// returned.
::fidl::Result HandleOneEvent(EventHandler& event_handler) {
return event_handler.HandleOneEvent(::zx::unowned_channel(channel_));
}
private:
::zx::channel channel_;
};
struct AsyncEventHandlers;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
class Interface : public ::fidl::internal::IncomingMessageDispatcher {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using _EnclosingProtocol = Interface;
using MethodCompleter = ::fidl::Completer<>;
virtual void Method(MethodCompleter::Sync& _completer) = 0;
private:
::fidl::DispatchResult dispatch_message(fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) final;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of |Interface*|.
// Only used with |fidl::BindServer| to reduce template expansion.
// Do not call this method manually. Use |Dispatch| instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<Interface*>(impl), msg, txn);
}
class EventSender;
class WeakEventSender;
};
// service comment #1
//
// service comment #3
class Service final {
Service() = default;
public:
static constexpr char Name[] = "fidl.test.doccomments.Service";
// Client protocol for connecting to member protocols of a service instance.
class ServiceClient final {
ServiceClient() = delete;
public:
ServiceClient(::zx::channel dir,
::fidl::internal::ConnectMemberFunc connect_func)
: dir_(std::move(dir)), connect_func_(connect_func) {}
// Connects to the member protocol "interface". Returns a
// |fidl::ClientChannel| on success, which can be used with
// |fidl::BindSyncClient| to create a synchronous client.
//
// # Errors
//
// On failure, returns a fit::error with zx_status_t != ZX_OK.
// Failures can occur if channel creation failed, or if there was an issue
// making a |fuchsia.io.Directory::Open| call.
//
// Since the call to |Open| is asynchronous, an error sent by the remote end
// will not result in a failure of this method. Any errors sent by the
// remote will appear on the |ClientChannel| returned from this method.
::fidl::result<::fidl::ClientChannel<Interface>> connect_interface() {
::zx::channel local, remote;
zx_status_t result = ::zx::channel::create(0, &local, &remote);
if (result != ZX_OK) {
return ::fit::error(result);
}
result =
connect_func_(::zx::unowned_channel(dir_),
::fidl::StringView("interface"), std::move(remote));
if (result != ZX_OK) {
return ::fit::error(result);
}
return ::fit::ok(::fidl::ClientChannel<Interface>(std::move(local)));
}
private:
::zx::channel dir_;
::fidl::internal::ConnectMemberFunc connect_func_;
};
// Facilitates member protocol registration for servers.
class Handler final {
public:
// Constructs a FIDL Service-typed handler. Does not take ownership of
// |service_handler|.
explicit Handler(::llcpp::fidl::ServiceHandlerInterface* service_handler)
: service_handler_(service_handler) {}
// Adds member "interface" to the service instance. |handler| will be
// invoked on connection attempts.
//
// # Errors
//
// Returns ZX_ERR_ALREADY_EXISTS if the member was already added.
zx_status_t add_interface(
::llcpp::fidl::ServiceHandlerInterface::MemberHandler handler) {
return service_handler_->AddMember("interface", std::move(handler));
}
private:
::llcpp::fidl::ServiceHandlerInterface* service_handler_; // Not owned.
};
};
// const comment #1
//
// const comment #3
constexpr int32_t C = 4u;
} // namespace doccomments
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::Table>
: public std::true_type {};
template <>
struct IsTable<::llcpp::fidl::test::doccomments::Table>
: public std::true_type {};
template <>
struct IsTableBuilder<::llcpp::fidl::test::doccomments::Table::Builder>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::doccomments::Table>);
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::Struct>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::doccomments::Struct>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::doccomments::Struct>);
static_assert(offsetof(::llcpp::fidl::test::doccomments::Struct, Field) == 0);
static_assert(sizeof(::llcpp::fidl::test::doccomments::Struct) ==
::llcpp::fidl::test::doccomments::Struct::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::StrictUnion>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::doccomments::StrictUnion>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::doccomments::StrictUnion>);
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::Interface::MethodRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<::llcpp::fidl::test::doccomments::Interface::MethodRequest>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::doccomments::Interface::MethodRequest) ==
::llcpp::fidl::test::doccomments::Interface::MethodRequest::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::Interface::OnEventResponse>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::doccomments::Interface::OnEventResponse>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::doccomments::Interface::OnEventResponse) ==
::llcpp::fidl::test::doccomments::Interface::OnEventResponse::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::MyStrictEnum>
: public std::true_type {};
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::MyStrictBits>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::doccomments::MyStrictBits>);
static_assert(sizeof(::llcpp::fidl::test::doccomments::MyStrictBits) ==
sizeof(uint32_t));
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::MyFlexibleEnum>
: public std::true_type {};
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::MyFlexibleBits>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::doccomments::MyFlexibleBits>);
static_assert(sizeof(::llcpp::fidl::test::doccomments::MyFlexibleBits) ==
sizeof(uint32_t));
template <>
struct IsFidlType<::llcpp::fidl::test::doccomments::FlexibleUnion>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::doccomments::FlexibleUnion>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::doccomments::FlexibleUnion>);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace doccomments {
struct Interface::AsyncEventHandlers {
// event comment #1
//
// event comment #3
::fit::function<void()> on_event;
};
class Interface::ClientImpl final : private ::fidl::internal::ClientBase {
public:
// method comment #1
//
// method comment #3
// Allocates 16 bytes of message buffer on the stack. No heap allocation
// necessary.
::fidl::Result Method();
private:
friend class ::fidl::Client<Interface>;
explicit ClientImpl(AsyncEventHandlers handlers)
: handlers_(std::move(handlers)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(
fidl_incoming_msg_t* msg) override;
AsyncEventHandlers handlers_;
};
// |EventSender| owns a server endpoint of a channel speaking
// the Interface protocol, and can send events in that protocol.
class Interface::EventSender {
public:
// Constructs an event sender with an invalid channel.
EventSender() = default;
// TODO(fxbug.dev/65212): EventSender should take a ::fidl::ServerEnd.
explicit EventSender(::zx::channel server_end)
: server_end_(std::move(server_end)) {}
// The underlying server channel endpoint, which may be replaced at run-time.
const ::zx::channel& channel() const { return server_end_; }
::zx::channel& channel() { return server_end_; }
// Whether the underlying channel is valid.
bool is_valid() const { return server_end_.is_valid(); }
// event comment #1
//
// event comment #3
zx_status_t OnEvent() const;
private:
::zx::channel server_end_;
};
class Interface::WeakEventSender {
public:
// event comment #1
//
// event comment #3
zx_status_t OnEvent() const {
if (auto _binding = binding_.lock()) {
return _binding->event_sender().OnEvent();
}
return ZX_ERR_CANCELED;
}
private:
friend class ::fidl::ServerBindingRef<Interface>;
explicit WeakEventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding<Interface>> binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding<Interface>> binding_;
};
} // namespace doccomments
} // namespace test
} // namespace fidl
} // namespace llcpp