blob: 3601b6497af333cc3aaaa4683ff32ac653858c3b [file] [log] [blame]
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include <memory>
#include <utility>
#include <ddk/debug.h>
#include <fbl/alloc_checker.h>
#include <soc/aml-common/aml-tdm-audio.h>
// Only enable for testing without configuring loopback in the BT chip.
// Disable metadata::AmlConfig swaps first.
//#define ENABLE_BT_LOOPBACK
// static
std::unique_ptr<AmlTdmDevice> AmlTdmInDevice::Create(ddk::MmioBuffer mmio, ee_audio_mclk_src_t src,
aml_tdm_in_t tdm, aml_toddr_t toddr,
aml_tdm_mclk_t mclk,
metadata::AmlVersion version) {
// TODDR A has 256 64-bit lines in the FIFO, B and C have 128.
uint32_t fifo_depth = 128 * 8; // in bytes.
if (toddr == TODDR_A) {
fifo_depth = 256 * 8;
}
fbl::AllocChecker ac;
auto dev = std::unique_ptr<AmlTdmInDevice>(
new (&ac) AmlTdmInDevice(std::move(mmio), src, tdm, toddr, mclk, fifo_depth, version));
if (!ac.check()) {
return nullptr;
}
return dev;
}
void AmlTdmInDevice::Initialize() {
// Enable the audio domain clocks used by this instance.
AudioClkEna((EE_AUDIO_CLK_GATE_TDMINA << tdm_ch_) | (EE_AUDIO_CLK_GATE_TODDRA << toddr_ch_) |
EE_AUDIO_CLK_GATE_ARB);
InitMclk();
// Set the sclk and lrclk sources to the chosen mclk channel
zx_off_t ptr = EE_AUDIO_CLK_TDMIN_A_CTL + tdm_ch_ * sizeof(uint32_t);
constexpr bool sclk_inv = true; // Invert sclk wrt TDMOUT.
mmio_.Write32((0x03 << 30) | (sclk_inv << 29) | (mclk_ch_ << 24) | (mclk_ch_ << 20), ptr);
// Enable DDR ARB, and enable this ddr channels bit.
mmio_.SetBits32((1 << 31) | (1 << (toddr_ch_)), EE_AUDIO_ARB_CTRL);
// Disable the TODDR Channel
// Only use one buffer
// Interrupts off
// ack delay = 0
// set destination tdm block and enable that selection
switch (version_) {
case metadata::AmlVersion::kS905D2G:
mmio_.Write32((0x00 << 13) | // Packed.
(31 << 8) | // MSB position of data.
(16 << 3) | // LSB position of data.
(tdm_ch_ << 0), // select TDM_IN A/B/C as data source.
GetToddrOffset(TODDR_CTRL0_OFFS));
break;
case metadata::AmlVersion::kS905D3G:
ZX_ASSERT(0); // Not supported.
break;
}
mmio_.Write32((1 << 25) | // set the magic force end bit(25) to cause fetch from start
((fifo_depth_ / 8 / 2) << 16) | // trigger ddr when fifo half full
(0x02 << 8), // STATUS2 source is ddr position
GetToddrOffset(TODDR_CTRL1_OFFS));
// Value to be inserted in a slot if it is muted
mmio_.Write32(0x00000000, GetTdmOffset(TDMIN_MUTE_VAL_OFFS));
mmio_.Write32(0x00000000, GetTdmOffset(TDMIN_MUTE0_OFFS)); // Disable lane 0 muting.
mmio_.Write32(0x00000000, GetTdmOffset(TDMIN_MUTE1_OFFS)); // Disable lane 1 muting.
mmio_.Write32(0x00000000, GetTdmOffset(TDMIN_MUTE2_OFFS)); // Disable lane 2 muting.
mmio_.Write32(0x00000000, GetTdmOffset(TDMIN_MUTE3_OFFS)); // Disable lane 3 muting.
// Datasheets state that PAD_CTRL1 controls sclk and lrclk source selection (which mclk),
// it does this per pad (0, 1, 2). These pads are tied to the TDM channel in use
// (this is not specified in the datasheets but confirmed empirically) such that TDM_IN_A
// corresponds to pad 0, TDM_IN_B to pad 1, and TDM_IN_C to pad 2.
uint32_t pad1 = {};
switch (version_) {
case metadata::AmlVersion::kS905D2G:
pad1 = EE_AUDIO_MST_PAD_CTRL1;
break;
case metadata::AmlVersion::kS905D3G:
ZX_ASSERT(0); // Not supported.
break;
}
switch (tdm_ch_) {
case TDM_IN_A:
mmio_.Write32((mclk_ch_ << 16) | (mclk_ch_ << 0), pad1);
break;
case TDM_IN_B:
mmio_.Write32((mclk_ch_ << 20) | (mclk_ch_ << 4), pad1);
break;
case TDM_IN_C:
mmio_.Write32((mclk_ch_ << 24) | (mclk_ch_ << 8), pad1);
break;
}
}
uint32_t AmlTdmInDevice::GetRingPosition() {
return mmio_.Read32(GetToddrOffset(TODDR_STATUS2_OFFS)) -
mmio_.Read32(GetToddrOffset(TODDR_START_ADDR_OFFS));
}
zx_status_t AmlTdmInDevice::SetBuffer(zx_paddr_t buf, size_t len) {
// Ensure ring buffer resides in lower memory (dma pointers are 32-bit)
// and len is at least 8 (size of each dma operation)
if (((buf + len - 1) > std::numeric_limits<uint32_t>::max()) || (len < 8)) {
return ZX_ERR_INVALID_ARGS;
}
// Write32 the start and end pointers. Each fetch is 64-bits, so end pointer
// is pointer to the last 64-bit fetch (inclusive)
mmio_.Write32(static_cast<uint32_t>(buf), GetToddrOffset(TODDR_START_ADDR_OFFS));
mmio_.Write32(static_cast<uint32_t>(buf + len - 8), GetToddrOffset(TODDR_FINISH_ADDR_OFFS));
return ZX_OK;
}
// bit_offset - bit position in frame where first slot will appear.
// num_slots - number of slots per frame minus one.
// bits_per_slot - width of each slot minus one.
// bits_per_sample - number of bits in sample minus one.
// mix_mask - lanes to mix L+R.
void AmlTdmInDevice::ConfigTdmSlot(uint8_t bit_offset, uint8_t num_slots, uint8_t bits_per_slot,
uint8_t bits_per_sample, uint8_t mix_mask, bool i2s_mode) {
switch (version_) {
case metadata::AmlVersion::kS905D2G: {
uint32_t src = 0;
switch (tdm_ch_) {
case TDM_IN_A:
src = 0;
break;
case TDM_IN_B:
src = 1;
break;
case TDM_IN_C:
src = 2;
break;
}
#ifdef ENABLE_BT_LOOPBACK
src += 3;
#endif
uint32_t reg0 = (i2s_mode << 30) | // TDM/I2S mode.
(src << 20) | // Source for TDMIN.
(bit_offset << 16) | // Add delay to ws or data for skew modification.
bits_per_slot;
mmio_.Write32(reg0, GetTdmOffset(TDMIN_CTRL_OFFS));
} break;
case metadata::AmlVersion::kS905D3G: {
ZX_ASSERT(0); // Not supported.
} break;
}
}
zx_status_t AmlTdmInDevice::ConfigTdmLane(size_t lane, uint32_t enable_mask, uint32_t mute_mask) {
switch (lane) {
case 0:
mmio_.Write32(enable_mask, GetTdmOffset(TDMIN_MASK0_OFFS));
mmio_.Write32(mute_mask, GetTdmOffset(TDMIN_MUTE0_OFFS));
break;
case 1:
mmio_.Write32(enable_mask, GetTdmOffset(TDMIN_MASK1_OFFS));
mmio_.Write32(mute_mask, GetTdmOffset(TDMIN_MUTE1_OFFS));
break;
case 2:
mmio_.Write32(enable_mask, GetTdmOffset(TDMIN_MASK2_OFFS));
mmio_.Write32(mute_mask, GetTdmOffset(TDMIN_MUTE2_OFFS));
break;
case 3:
mmio_.Write32(enable_mask, GetTdmOffset(TDMIN_MASK3_OFFS));
mmio_.Write32(mute_mask, GetTdmOffset(TDMIN_MUTE3_OFFS));
break;
default:
return ZX_ERR_INVALID_ARGS;
}
return ZX_OK;
}
void AmlTdmInDevice::ConfigTdmSwaps(uint32_t swaps) {
mmio_.Write32(swaps, GetTdmOffset(TDMIN_SWAP_OFFS));
}
// Stops the tdm from clocking data out of fifo onto bus
void AmlTdmInDevice::TdmInDisable() { mmio_.ClearBits32(1 << 31, GetTdmOffset(TDMIN_CTRL_OFFS)); }
// Enables the tdm to clock data out of fifo onto bus
void AmlTdmInDevice::TdmInEnable() { mmio_.SetBits32(1 << 31, GetTdmOffset(TDMIN_CTRL_OFFS)); }
void AmlTdmInDevice::TODDREnable() { mmio_.SetBits32(1 << 31, GetToddrOffset(TODDR_CTRL0_OFFS)); }
void AmlTdmInDevice::TODDRDisable() {
// Disable the toddr channel
mmio_.ClearBits32(1 << 31, GetToddrOffset(TODDR_CTRL0_OFFS));
}
void AmlTdmInDevice::Sync() {
mmio_.ClearBits32(3 << 28, GetTdmOffset(TDMIN_CTRL_OFFS));
mmio_.SetBits32(1 << 29, GetTdmOffset(TDMIN_CTRL_OFFS));
mmio_.SetBits32(1 << 28, GetTdmOffset(TDMIN_CTRL_OFFS));
}
// Resets toddr mechanisms to start at beginning of buffer
// starts the toddr (this will fill the fifo)
// starts the tdm to clock out data on the bus
// returns the start time
uint64_t AmlTdmInDevice::Start() {
uint64_t a, b;
Sync();
TODDREnable();
a = zx_clock_get_monotonic();
TdmInEnable();
b = zx_clock_get_monotonic();
return ((b - a) >> 1) + a;
}
void AmlTdmInDevice::Stop() {
TdmInDisable();
TODDRDisable();
}
void AmlTdmInDevice::Shutdown() {
Stop();
// Disable the output signals
zx_off_t ptr = EE_AUDIO_CLK_TDMIN_A_CTL + tdm_ch_ * sizeof(uint32_t);
mmio_.ClearBits32(0x03 << 30, ptr);
// Disable the audio domain clocks used by this instance.
AudioClkDis((EE_AUDIO_CLK_GATE_TDMINA << tdm_ch_) | (EE_AUDIO_CLK_GATE_TODDRA << toddr_ch_));
// Note: We are leaving the ARB unit clocked as well as MCLK and
// SCLK generation units since it is possible they are used by
// some other audio driver outside of this instance
}