| use std::io::Read; |
| use std::io; |
| use std::cmp; |
| use std::collections::VecDeque; |
| use std::convert; |
| |
| /// This trait specifies rustls's precise requirements doing writes with |
| /// vectored IO. |
| /// |
| /// The purpose of vectored IO is to pass contigious output in many blocks |
| /// to the kernel without either coalescing it in user-mode (by allocating |
| /// and copying) or making many system calls. |
| /// |
| /// We don't directly use types from the vecio crate because the traits |
| /// don't compose well: the most useful trait (`Rawv`) is hard to test |
| /// with (it can't be implemented without an FD) and implies a readable |
| /// source too. You will have to write a trivial adaptor struct which |
| /// glues either `vecio::Rawv` or `vecio::Writev` to this trait. See |
| /// the rustls examples. |
| pub trait WriteV { |
| /// Writes as much data from `vbytes` as possible, returning |
| /// the number of bytes written. |
| fn writev(&mut self, vbytes: &[&[u8]]) -> io::Result<usize>; |
| } |
| |
| /// This is a byte buffer that is built from a vector |
| /// of byte vectors. This avoids extra copies when |
| /// appending a new byte vector, at the expense of |
| /// more complexity when reading out. |
| pub struct ChunkVecBuffer { |
| chunks: VecDeque<Vec<u8>>, |
| limit: usize, |
| } |
| |
| impl ChunkVecBuffer { |
| pub fn new() -> ChunkVecBuffer { |
| ChunkVecBuffer { chunks: VecDeque::new(), limit: 0 } |
| } |
| |
| /// Sets the upper limit on how many bytes this |
| /// object can store. |
| /// |
| /// Setting a lower limit than the currently stored |
| /// data is not an error. |
| /// |
| /// A zero limit is interpreted as no limit. |
| pub fn set_limit(&mut self, new_limit: usize) { |
| self.limit = new_limit; |
| } |
| |
| /// If we're empty |
| pub fn is_empty(&self) -> bool { |
| self.chunks.is_empty() |
| } |
| |
| /// How many bytes we're storing |
| pub fn len(&self) -> usize { |
| let mut len = 0; |
| for ch in &self.chunks { |
| len += ch.len(); |
| } |
| len |
| } |
| |
| /// For a proposed append of `len` bytes, how many |
| /// bytes should we actually append to adhere to the |
| /// currently set `limit`? |
| pub fn apply_limit(&self, len: usize) -> usize { |
| if self.limit == 0 { |
| len |
| } else { |
| let space =self.limit.saturating_sub(self.len()); |
| cmp::min(len, space) |
| } |
| } |
| |
| /// Append a copy of `bytes`, perhaps a prefix if |
| /// we're near the limit. |
| pub fn append_limited_copy(&mut self, bytes: &[u8]) -> usize { |
| let take = self.apply_limit(bytes.len()); |
| self.append(bytes[..take].to_vec()); |
| take |
| } |
| |
| /// Take and append the given `bytes`. |
| pub fn append(&mut self, bytes: Vec<u8>) -> usize { |
| let len = bytes.len(); |
| |
| if !bytes.is_empty() { |
| self.chunks.push_back(bytes); |
| } |
| |
| len |
| } |
| |
| /// Take one of the chunks from this object. This |
| /// function panics if the object `is_empty`. |
| pub fn take_one(&mut self) -> Vec<u8> { |
| self.chunks.pop_front().unwrap() |
| } |
| |
| /// Read data out of this object, writing it into `buf` |
| /// and returning how many bytes were written there. |
| pub fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
| let mut offs = 0; |
| |
| while offs < buf.len() && !self.is_empty() { |
| let used = self.chunks[0].as_slice().read(&mut buf[offs..])?; |
| |
| self.consume(used); |
| offs += used; |
| } |
| |
| Ok(offs) |
| } |
| |
| fn consume(&mut self, mut used: usize) { |
| while used > 0 && !self.is_empty() { |
| if used >= self.chunks[0].len() { |
| used -= self.chunks[0].len(); |
| self.take_one(); |
| } else { |
| self.chunks[0] = self.chunks[0].split_off(used); |
| used = 0; |
| } |
| } |
| } |
| |
| /// Read data out of this object, passing it `wr` |
| pub fn write_to(&mut self, wr: &mut dyn io::Write) -> io::Result<usize> { |
| if self.is_empty() { |
| return Ok(0); |
| } |
| |
| let used = wr.write(&self.chunks[0])?; |
| self.consume(used); |
| Ok(used) |
| } |
| |
| pub fn writev_to(&mut self, wr: &mut dyn WriteV) -> io::Result<usize> { |
| if self.is_empty() { |
| return Ok(0); |
| } |
| |
| let used = { |
| let chunks = self.chunks.iter() |
| .map(convert::AsRef::as_ref) |
| .collect::<Vec<&[u8]>>(); |
| |
| wr.writev(&chunks)? |
| }; |
| self.consume(used); |
| Ok(used) |
| } |
| } |
| |
| /// This is a simple wrapper around an object |
| /// which implements `std::io::Write` in order to autoimplement `WriteV`. |
| /// It uses the `write_vectored` method from `std::io::Write` in order |
| /// to do this. |
| pub struct WriteVAdapter<T: io::Write>(T); |
| |
| impl<T: io::Write> WriteVAdapter<T> { |
| /// build an adapter from a Write object |
| pub fn new(inner: T) -> Self { |
| WriteVAdapter(inner) |
| } |
| } |
| |
| impl<T: io::Write> WriteV for WriteVAdapter<T> { |
| fn writev(&mut self, buffers: &[&[u8]]) -> io::Result<usize> { |
| self.0.write_vectored( |
| &buffers |
| .iter() |
| .map(|b| io::IoSlice::new(b)) |
| .collect::<Vec<io::IoSlice>>(), |
| ) |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::ChunkVecBuffer; |
| |
| #[test] |
| fn short_append_copy_with_limit() |
| { |
| let mut cvb = ChunkVecBuffer::new(); |
| cvb.set_limit(12); |
| assert_eq!(cvb.append_limited_copy(b"hello"), 5); |
| assert_eq!(cvb.append_limited_copy(b"world"), 5); |
| assert_eq!(cvb.append_limited_copy(b"hello"), 2); |
| assert_eq!(cvb.append_limited_copy(b"world"), 0); |
| |
| let mut buf = [0u8; 12]; |
| assert_eq!(cvb.read(&mut buf).unwrap(), 12); |
| assert_eq!(buf.to_vec(), |
| b"helloworldhe".to_vec()); |
| } |
| } |