blob: 2e034ccf33b6de94fcc1d5793b222ca59235cd4b [file] [log] [blame]
/*!
**A fast bump allocation arena for Rust.**
[![](https://docs.rs/bumpalo/badge.svg)](https://docs.rs/bumpalo/)
[![](https://img.shields.io/crates/v/bumpalo.svg)](https://crates.io/crates/bumpalo)
[![](https://img.shields.io/crates/d/bumpalo.svg)](https://crates.io/crates/bumpalo)
[![Build Status](https://dev.azure.com/fitzgen/bumpalo/_apis/build/status/fitzgen.bumpalo?branchName=master)](https://dev.azure.com/fitzgen/bumpalo/_build/latest?definitionId=2&branchName=master)
![](https://github.com/fitzgen/bumpalo/raw/master/bumpalo.png)
## Bump Allocation
Bump allocation is a fast, but limited approach to allocation. We have a chunk
of memory, and we maintain a pointer within that memory. Whenever we allocate an
object, we do a quick test that we have enough capacity left in our chunk to
allocate the object and then update the pointer by the object's size. *That's
it!*
The disadvantage of bump allocation is that there is no general way to
deallocate individual objects or reclaim the memory region for a
no-longer-in-use object.
These trade offs make bump allocation well-suited for *phase-oriented*
allocations. That is, a group of objects that will all be allocated during the
same program phase, used, and then can all be deallocated together as a group.
## Deallocation en Masse, but No `Drop`
To deallocate all the objects in the arena at once, we can simply reset the bump
pointer back to the start of the arena's memory chunk. This makes mass
deallocation *extremely* fast, but allocated objects' `Drop` implementations are
not invoked.
## What happens when the memory chunk is full?
This implementation will allocate a new memory chunk from the global allocator
and then start bump allocating into this new memory chunk.
## Example
```
use bumpalo::Bump;
use std::u64;
struct Doggo {
cuteness: u64,
age: u8,
scritches_required: bool,
}
// Create a new arena to bump allocate into.
let bump = Bump::new();
// Allocate values into the arena.
let scooter = bump.alloc(Doggo {
cuteness: u64::max_value(),
age: 8,
scritches_required: true,
});
assert!(scooter.scritches_required);
```
## Collections
When the `"collections"` cargo feature is enabled, a fork of some of the `std`
library's collections are available in the `collections` module. These
collection types are modified to allocate their space inside `bumpalo::Bump`
arenas.
```rust
# #[cfg(feature = "collections")]
# {
use bumpalo::{Bump, collections::Vec};
// Create a new bump arena.
let bump = Bump::new();
// Create a vector of integers whose storage is backed by the bump arena. The
// vector cannot outlive its backing arena, and this property is enforced with
// Rust's lifetime rules.
let mut v = Vec::new_in(&bump);
// Push a bunch of integers onto `v`!
for i in 0..100 {
v.push(i);
}
# }
```
Eventually [all `std` collection types will be parameterized by an
allocator](https://github.com/rust-lang/rust/issues/42774) and we can remove
this `collections` module and use the `std` versions.
## `#![no_std]` Support
Bumpalo is a `no_std` crate. It depends only on the `alloc` and `core` crates.
*/
#![deny(missing_debug_implementations)]
#![deny(missing_docs)]
#![no_std]
extern crate alloc as core_alloc;
#[cfg(feature = "collections")]
pub mod collections;
mod alloc;
use core::cell::Cell;
use core::iter;
use core::marker::PhantomData;
use core::mem;
use core::ptr::{self, NonNull};
use core::slice;
use core::str;
use core_alloc::alloc::{alloc, dealloc, Layout};
/// An arena to bump allocate into.
///
/// ## No `Drop`s
///
/// Objects that are bump-allocated will never have their `Drop` implementation
/// called — unless you do it manually yourself. This makes it relatively
/// easy to leak memory or other resources.
///
/// If you have a type which internally manages
///
/// * an allocation from the global heap (e.g. `Vec<T>`),
/// * open file descriptors (e.g. `std::fs::File`), or
/// * any other resource that must be cleaned up (e.g. an `mmap`)
///
/// and relies on its `Drop` implementation to clean up the internal resource,
/// then if you allocate that type with a `Bump`, you need to find a new way to
/// clean up after it yourself.
///
/// Potential solutions are
///
/// * calling [`drop_in_place`][drop_in_place] or using
/// [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types,
/// * using `bumpalo::collections::Vec` instead of `std::vec::Vec`, or
/// * simply avoiding allocating these problematic types within a `Bump`.
///
/// Note that not calling `Drop` is memory safe! Destructors are never
/// guaranteed to run in Rust, you can't rely on them for enforcing memory
/// safety.
///
/// [drop_in_place]: https://doc.rust-lang.org/stable/std/ptr/fn.drop_in_place.html
/// [manuallydrop]: https://doc.rust-lang.org/stable/std/mem/struct.ManuallyDrop.html
///
/// ## Example
///
/// ```
/// use bumpalo::Bump;
///
/// // Create a new bump arena.
/// let bump = Bump::new();
///
/// // Allocate values into the arena.
/// let forty_two = bump.alloc(42);
/// assert_eq!(*forty_two, 42);
///
/// // Mutable references are returned from allocation.
/// let mut s = bump.alloc("bumpalo");
/// *s = "the bump allocator; and also is a buffalo";
/// ```
#[derive(Debug)]
pub struct Bump {
// The current chunk we are bump allocating within.
current_chunk_footer: Cell<NonNull<ChunkFooter>>,
}
#[repr(C)]
#[derive(Debug)]
struct ChunkFooter {
// Pointer to the start of this chunk allocation. This footer is always at
// the end of the chunk.
data: NonNull<u8>,
// The layout of this chunk's allocation.
layout: Layout,
// Link to the previous chunk, if any.
prev: Cell<Option<NonNull<ChunkFooter>>>,
// Bump allocation finger that is always in the range `self.data..=self`.
ptr: Cell<NonNull<u8>>,
}
impl Default for Bump {
fn default() -> Bump {
Bump::new()
}
}
impl Drop for Bump {
fn drop(&mut self) {
unsafe {
dealloc_chunk_list(Some(self.current_chunk_footer.get()));
}
}
}
#[inline]
unsafe fn dealloc_chunk_list(mut footer: Option<NonNull<ChunkFooter>>) {
while let Some(f) = footer {
footer = f.as_ref().prev.get();
dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
}
}
// `Bump`s are safe to send between threads because nothing aliases its owned
// chunks until you start allocating from it. But by the time you allocate from
// it, the returned references to allocations borrow the `Bump` and therefore
// prevent sending the `Bump` across threads until the borrows end.
unsafe impl Send for Bump {}
#[inline]
pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
debug_assert!(divisor > 0);
debug_assert!(divisor.is_power_of_two());
Some(n.checked_add(divisor - 1)? & !(divisor - 1))
}
// After this point, we try to hit page boundaries instead of powers of 2
const PAGE_STRATEGY_CUTOFF: usize = 0x1000;
// We only support alignments of up to 16 bytes for iter_allocated_chunks.
const SUPPORTED_ITER_ALIGNMENT: usize = 16;
const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();
// Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case
const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN;
const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()];
// Maximum typical overhead per allocation imposed by allocators.
const MALLOC_OVERHEAD: usize = 16;
// This is the overhead from malloc, footer and alignment. For instance, if
// we want to request a chunk of memory that has at least X bytes usable for
// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
// after adding a footer, malloc overhead and alignment, the chunk of memory
// the allocator actually sets asside for us is X+OVERHEAD rounded up to the
// nearest suitable size boundary.
const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1);
// Choose a relatively small default initial chunk size, since we double chunk
// sizes as we grow bump arenas to amortize costs of hitting the global
// allocator.
const FIRST_ALLOCATION_GOAL: usize = 1 << 9;
// The actual size of the first allocation is going to be a bit smaller
// than the goal. We need to make room for the footer, and we also need
// take the alignment into account.
const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;
#[inline]
fn layout_for_array<T>(len: usize) -> Option<Layout> {
// TODO: use Layout::array once the rust feature `alloc_layout_extra`
// gets stabilized
//
// According to https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment
// the size of a value is always a multiple of it's alignment. But that does not seem to match
// with https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.from_size_align
//
// Let's be on the safe size and round up to the padding in any case.
//
// An interesting question is whether there needs to be padding at the end of
// the last object in the array. Again, we take the safe approach and include it.
let layout = Layout::new::<T>();
let size_rounded_up = round_up_to(layout.size(), layout.align())?;
let total_size = len.checked_mul(size_rounded_up)?;
Layout::from_size_align(total_size, layout.align()).ok()
}
/// Wrapper around `Layout::from_size_align` that adds debug assertions.
#[inline]
unsafe fn layout_from_size_align(size: usize, align: usize) -> Layout {
if cfg!(debug_assertions) {
Layout::from_size_align(size, align).unwrap()
} else {
Layout::from_size_align_unchecked(size, align)
}
}
#[inline(never)]
fn allocation_size_overflow<T>() -> T {
panic!("requested allocation size overflowed")
}
impl Bump {
/// Construct a new arena to bump allocate into.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// # let _ = bump;
/// ```
pub fn new() -> Bump {
Self::with_capacity(0)
}
/// Construct a new arena with the specified capacity to bump allocate into.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::with_capacity(100);
/// # let _ = bump;
/// ```
pub fn with_capacity(capacity: usize) -> Bump {
let chunk_footer = Self::new_chunk(
None,
Some(unsafe { layout_from_size_align(capacity, 1) }),
None,
);
Bump {
current_chunk_footer: Cell::new(chunk_footer),
}
}
/// Allocate a new chunk and return its initialized footer.
///
/// If given, `layouts` is a tuple of the current chunk size and the
/// layout of the allocation request that triggered us to fall back to
/// allocating a new chunk of memory.
fn new_chunk(
old_size_with_footer: Option<usize>,
requested_layout: Option<Layout>,
prev: Option<NonNull<ChunkFooter>>,
) -> NonNull<ChunkFooter> {
unsafe {
// As a sane default, we want our new allocation to be about twice as
// big as the previous allocation
let mut new_size_without_footer =
if let Some(old_size_with_footer) = old_size_with_footer {
let old_size_without_footer = old_size_with_footer - FOOTER_SIZE;
old_size_without_footer
.checked_mul(2)
.unwrap_or_else(|| oom())
} else {
DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
};
// We want to have CHUNK_ALIGN or better alignment
let mut align = CHUNK_ALIGN;
// If we already know we need to fulfill some request,
// make sure we allocate at least enough to satisfy it
if let Some(requested_layout) = requested_layout {
align = align.max(requested_layout.align());
let requested_size = round_up_to(requested_layout.size(), align)
.unwrap_or_else(allocation_size_overflow);
new_size_without_footer = new_size_without_footer.max(requested_size);
}
// We want our allocations to play nice with the memory allocator,
// and waste as little memory as possible.
// For small allocations, this means that the entire allocation
// including the chunk footer and mallocs internal overhead is
// as close to a power of two as we can go without going over.
// For larger allocations, we only need to get close to a page
// boundary without going over.
if new_size_without_footer < PAGE_STRATEGY_CUTOFF {
new_size_without_footer =
(new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
} else {
new_size_without_footer = round_up_to(new_size_without_footer + OVERHEAD, 0x1000)
.unwrap_or_else(|| oom())
- OVERHEAD;
}
debug_assert_eq!(align % CHUNK_ALIGN, 0);
debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
let size = new_size_without_footer
.checked_add(FOOTER_SIZE)
.unwrap_or_else(allocation_size_overflow);
let layout = layout_from_size_align(size, align);
debug_assert!(size >= old_size_with_footer.unwrap_or(0) * 2);
let data = alloc(layout);
let data = NonNull::new(data).unwrap_or_else(|| oom());
// The `ChunkFooter` is at the end of the chunk.
let footer_ptr = data.as_ptr() as usize + new_size_without_footer;
debug_assert_eq!((data.as_ptr() as usize) % align, 0);
debug_assert_eq!(footer_ptr % CHUNK_ALIGN, 0);
let footer_ptr = footer_ptr as *mut ChunkFooter;
// The bump pointer is initialized to the end of the range we will
// bump out of.
let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8));
ptr::write(
footer_ptr,
ChunkFooter {
data,
layout,
prev: Cell::new(prev),
ptr,
},
);
NonNull::new_unchecked(footer_ptr)
}
}
/// Reset this bump allocator.
///
/// Performs mass deallocation on everything allocated in this arena by
/// resetting the pointer into the underlying chunk of memory to the start
/// of the chunk. Does not run any `Drop` implementations on deallocated
/// objects; see [the `Bump` type's top-level
/// documentation](./struct.Bump.html) for details.
///
/// If this arena has allocated multiple chunks to bump allocate into, then
/// the excess chunks are returned to the global allocator.
///
/// ## Example
///
/// ```
/// let mut bump = bumpalo::Bump::new();
///
/// // Allocate a bunch of things.
/// {
/// for i in 0..100 {
/// bump.alloc(i);
/// }
/// }
///
/// // Reset the arena.
/// bump.reset();
///
/// // Allocate some new things in the space previously occupied by the
/// // original things.
/// for j in 200..400 {
/// bump.alloc(j);
/// }
///```
pub fn reset(&mut self) {
// Takes `&mut self` so `self` must be unique and there can't be any
// borrows active that would get invalidated by resetting.
unsafe {
let cur_chunk = self.current_chunk_footer.get();
// Deallocate all chunks except the current one
let prev_chunk = cur_chunk.as_ref().prev.replace(None);
dealloc_chunk_list(prev_chunk);
// Reset the bump finger to the end of the chunk.
cur_chunk.as_ref().ptr.set(cur_chunk.cast());
debug_assert!(
self.current_chunk_footer
.get()
.as_ref()
.prev
.get()
.is_none(),
"We should only have a single chunk"
);
debug_assert_eq!(
self.current_chunk_footer.get().as_ref().ptr.get(),
self.current_chunk_footer.get().cast(),
"Our chunk's bump finger should be reset to the start of its allocation"
);
}
}
/// Allocate an object in this `Bump` and return an exclusive reference to
/// it.
///
/// ## Panics
///
/// Panics if reserving space for `T` would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc("hello");
/// assert_eq!(*x, "hello");
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc<T>(&self, val: T) -> &mut T {
self.alloc_with(|| val)
}
/// Pre-allocate space for an object in this `Bump`, initializes it using
/// the closure, then returns an exclusive reference to it.
///
/// Calling `bump.alloc(x)` is essentially equivalent to calling
/// `bump.alloc_with(|| x)`. However if you use `alloc_with`, then the
/// closure will not be invoked until after allocating space for storing
/// `x` on the heap.
///
/// This can be useful in certain edge-cases related to compiler
/// optimizations. When evaluating `bump.alloc(x)`, semantically `x` is
/// first put on the stack and then moved onto the heap. In some cases,
/// the compiler is able to optimize this into constructing `x` directly
/// on the heap, however in many cases it does not.
///
/// The function `alloc_with` tries to help the compiler be smarter. In
/// most cases doing `bump.alloc_with(|| x)` on release mode will be
/// enough to help the compiler to realize this optimization is valid
/// and construct `x` directly onto the heap.
///
/// ## Warning
///
/// This function critically depends on compiler optimizations to achieve
/// its desired effect. This means that it is not an effective tool when
/// compiling without optimizations on.
///
/// Even when optimizations are on, this function does not **guarantee**
/// that the value is constructed on the heap. To the best of our
/// knowledge no such guarantee can be made in stable Rust as of 1.33.
///
/// ## Panics
///
/// Panics if reserving space for `T` would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_with(|| "hello");
/// assert_eq!(*x, "hello");
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_with<F, T>(&self, f: F) -> &mut T
where
F: FnOnce() -> T,
{
#[inline(always)]
unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
where
F: FnOnce() -> T,
{
// This function is translated as:
// - allocate space for a T on the stack
// - call f() with the return value being put onto this stack space
// - memcpy from the stack to the heap
//
// Ideally we want LLVM to always realize that doing a stack
// allocation is unnecessary and optimize the code so it writes
// directly into the heap instead. It seems we get it to realize
// this most consistently if we put this critical line into it's
// own function instead of inlining it into the surrounding code.
ptr::write(ptr, f())
}
let layout = Layout::new::<T>();
unsafe {
let p = self.alloc_layout(layout);
let p = p.as_ptr() as *mut T;
inner_writer(p, f);
&mut *p
}
}
/// `Copy` a slice into this `Bump` and return an exclusive reference to
/// the copy.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_copy(&[1, 2, 3]);
/// assert_eq!(x, &[1, 2, 3]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
where
T: Copy,
{
let layout = Layout::for_value(src);
let dst = self.alloc_layout(layout).cast::<T>();
unsafe {
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
slice::from_raw_parts_mut(dst.as_ptr(), src.len())
}
}
/// `Clone` a slice into this `Bump` and return an exclusive reference to
/// the clone. Prefer `alloc_slice_copy` if `T` is `Copy`.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow.
///
/// ## Example
///
/// ```
/// #[derive(Clone, Debug, Eq, PartialEq)]
/// struct Sheep {
/// name: String,
/// }
///
/// let originals = vec![
/// Sheep { name: "Alice".into() },
/// Sheep { name: "Bob".into() },
/// Sheep { name: "Cathy".into() },
/// ];
///
/// let bump = bumpalo::Bump::new();
/// let clones = bump.alloc_slice_clone(&originals);
/// assert_eq!(originals, clones);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
where
T: Clone,
{
let layout = Layout::for_value(src);
let dst = self.alloc_layout(layout).cast::<T>();
unsafe {
for (i, val) in src.iter().cloned().enumerate() {
ptr::write(dst.as_ptr().add(i), val);
}
slice::from_raw_parts_mut(dst.as_ptr(), src.len())
}
}
/// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
///
/// ## Panics
///
/// Panics if reserving space for the string would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let hello = bump.alloc_str("hello world");
/// assert_eq!("hello world", hello);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_str(&self, src: &str) -> &mut str {
let buffer = self.alloc_slice_copy(src.as_bytes());
unsafe {
// This is OK, because it already came in as str, so it is guaranteed to be utf8
str::from_utf8_unchecked_mut(buffer)
}
}
/// Allocates a new slice of size `len` into this `Bump` and returns an
/// exclusive reference to the copy.
///
/// The elements of the slice are initialized using the supplied closure.
/// The closure argument is the position in the slice.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_fill_with(5, |i| 5*(i+1));
/// assert_eq!(x, &[5, 10, 15, 20, 25]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
where
F: FnMut(usize) -> T,
{
let layout = layout_for_array::<T>(len).unwrap_or_else(|| oom());
let dst = self.alloc_layout(layout).cast::<T>();
unsafe {
for i in 0..len {
ptr::write(dst.as_ptr().add(i), f(i));
}
let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
debug_assert_eq!(Layout::for_value(result), layout);
result
}
}
/// Allocates a new slice of size `len` into this `Bump` and returns an
/// exclusive reference to the copy.
///
/// All elements of the slice are initialized to `value`.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_fill_copy(5, 42);
/// assert_eq!(x, &[42, 42, 42, 42, 42]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
self.alloc_slice_fill_with(len, |_| value)
}
/// Allocates a new slice of size `len` slice into this `Bump` and return an
/// exclusive reference to the copy.
///
/// All elements of the slice are initialized to `value.clone()`.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let s: String = "Hello Bump!".to_string();
/// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
/// assert_eq!(x.len(), 2);
/// assert_eq!(&x[0], &s);
/// assert_eq!(&x[1], &s);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
self.alloc_slice_fill_with(len, |_| value.clone())
}
/// Allocates a new slice of size `len` slice into this `Bump` and return an
/// exclusive reference to the copy.
///
/// The elements are initialized using the supplied iterator.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow, or if the supplied
/// iterator returns fewer elements than it promised.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
/// assert_eq!(x, [4, 9, 25]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
where
I: IntoIterator<Item = T>,
I::IntoIter: ExactSizeIterator,
{
let mut iter = iter.into_iter();
self.alloc_slice_fill_with(iter.len(), |_| {
iter.next().expect("Iterator supplied too few elements")
})
}
/// Allocates a new slice of size `len` slice into this `Bump` and return an
/// exclusive reference to the copy.
///
/// All elements of the slice are initialized to `T::default()`.
///
/// ## Panics
///
/// Panics if reserving space for the slice would cause an overflow.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_fill_default::<u32>(5);
/// assert_eq!(x, &[0, 0, 0, 0, 0]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
self.alloc_slice_fill_with(len, |_| T::default())
}
/// Allocate space for an object with the given `Layout`.
///
/// The returned pointer points at uninitialized memory, and should be
/// initialized with
/// [`std::ptr::write`](https://doc.rust-lang.org/stable/std/ptr/fn.write.html).
#[inline(always)]
pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
if let Some(p) = self.try_alloc_layout_fast(layout) {
p
} else {
self.alloc_layout_slow(layout)
}
}
#[inline(always)]
fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
unsafe {
if layout.size() == 0 {
// We want to use NonNull::dangling here, but that function uses mem::align_of::<T>
// internally. For our use-case we cannot call dangling::<T>, since we are not generic
// over T; we only have access to the Layout of T. Instead we re-implement the
// functionality here.
//
// See https://github.com/rust-lang/rust/blob/9966af3/src/libcore/ptr/non_null.rs#L70
// for the reference implementation.
let ptr = layout.align() as *mut u8;
return Some(NonNull::new_unchecked(ptr));
}
let footer = self.current_chunk_footer.get();
let footer = footer.as_ref();
let ptr = footer.ptr.get().as_ptr() as usize;
let start = footer.data.as_ptr() as usize;
debug_assert!(start <= ptr);
debug_assert!(ptr <= footer as *const _ as usize);
let ptr = ptr.checked_sub(layout.size())?;
let aligned_ptr = ptr & !(layout.align() - 1);
if aligned_ptr >= start {
let aligned_ptr = NonNull::new_unchecked(aligned_ptr as *mut u8);
footer.ptr.set(aligned_ptr);
Some(aligned_ptr)
} else {
None
}
}
}
// Slow path allocation for when we need to allocate a new chunk from the
// parent bump set because there isn't enough room in our current chunk.
#[inline(never)]
fn alloc_layout_slow(&self, layout: Layout) -> NonNull<u8> {
unsafe {
let size = layout.size();
// Get a new chunk from the global allocator.
let current_footer = self.current_chunk_footer.get();
let current_layout = current_footer.as_ref().layout;
let new_footer = Bump::new_chunk(
Some(current_layout.size()),
Some(layout),
Some(current_footer),
);
debug_assert_eq!(
new_footer.as_ref().data.as_ptr() as usize % layout.align(),
0
);
// Set the new chunk as our new current chunk.
self.current_chunk_footer.set(new_footer);
let new_footer = new_footer.as_ref();
// Move the bump ptr finger down to allocate room for `val`. We know
// this can't overflow because we successfully allocated a chunk of
// at least the requested size.
let ptr = new_footer.ptr.get().as_ptr() as usize - size;
// Round the pointer down to the requested alignment.
let ptr = ptr & !(layout.align() - 1);
debug_assert!(
ptr <= new_footer as *const _ as usize,
"{:#x} <= {:#x}",
ptr,
new_footer as *const _ as usize
);
let ptr = NonNull::new_unchecked(ptr as *mut u8);
new_footer.ptr.set(ptr);
// Return a pointer to the freshly allocated region in this chunk.
ptr
}
}
/// Returns an iterator over each chunk of allocated memory that
/// this arena has bump allocated into.
///
/// The chunks are returned ordered by allocation time, with the most
/// recently allocated chunk being returned first, and the least recently
/// allocated chunk being returned last.
///
/// The values inside each chunk are also ordered by allocation time, with
/// the most recent allocation being earlier in the slice, and the least
/// recent allocation being towards the end of the slice.
///
/// ## Safety
///
/// Because this method takes `&mut self`, we know that the bump arena
/// reference is unique and therefore there aren't any active references to
/// any of the objects we've allocated in it either. This potential aliasing
/// of exclusive references is one common footgun for unsafe code that we
/// don't need to worry about here.
///
/// However, there could be regions of uninitialized memory used as padding
/// between allocations, which is why this iterator has items of type
/// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
///
/// The only way to guarantee that there is no padding between allocations
/// or within allocated objects is if all of these properties hold:
///
/// 1. Every object allocated in this arena has the same alignment,
/// and that alignment is at most 16.
/// 2. Every object's size is a multiple of its alignment.
/// 3. None of the objects allocated in this arena contain any internal
/// padding.
///
/// If you want to use this `iter_allocated_chunks` method, it is *your*
/// responsibility to ensure that these properties hold before calling
/// `MaybeUninit::assume_init` or otherwise reading the returned values.
///
/// ## Example
///
/// ```
/// let mut bump = bumpalo::Bump::new();
///
/// // Allocate a bunch of `i32`s in this bump arena, potentially causing
/// // additional memory chunks to be reserved.
/// for i in 0..10000 {
/// bump.alloc(i);
/// }
///
/// // Iterate over each chunk we've bump allocated into. This is safe
/// // because we have only allocated `i32`s in this arena, which fulfills
/// // the above requirements.
/// for ch in bump.iter_allocated_chunks() {
/// println!("Used a chunk that is {} bytes long", ch.len());
/// println!("The first byte is {:?}", unsafe {
/// ch.get(0).unwrap().assume_init()
/// });
/// }
///
/// // Within a chunk, allocations are ordered from most recent to least
/// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
/// // through the chunk's data, we get them in the order 'c', then 'b',
/// // then 'a'.
///
/// bump.reset();
/// bump.alloc(b'a');
/// bump.alloc(b'b');
/// bump.alloc(b'c');
///
/// assert_eq!(bump.iter_allocated_chunks().count(), 1);
/// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
/// assert_eq!(chunk.len(), 3);
///
/// // Safe because we've only allocated `u8`s in this arena, which
/// // fulfills the above requirements.
/// unsafe {
/// assert_eq!(chunk[0].assume_init(), b'c');
/// assert_eq!(chunk[1].assume_init(), b'b');
/// assert_eq!(chunk[2].assume_init(), b'a');
/// }
/// ```
pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> {
ChunkIter {
footer: Some(self.current_chunk_footer.get()),
bump: PhantomData,
}
}
/// Calculates the number of bytes currently allocated across all chunks.
///
/// If you allocate types of different alignments or types with
/// larger-than-typical alignment in the same arena, some padding
/// bytes might get allocated in the bump arena. Note that those padding
/// bytes will add to this method's resulting sum, so you cannot rely
/// on it only counting the sum of the sizes of the things
/// you've allocated in the arena.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let _x = bump.alloc_slice_fill_default::<u32>(5);
/// let bytes = bump.allocated_bytes();
/// assert!(bytes >= core::mem::size_of::<u32>() * 5);
/// ```
pub fn allocated_bytes(&self) -> usize {
let mut footer = Some(self.current_chunk_footer.get());
let mut bytes = 0;
while let Some(f) = footer {
let foot = unsafe { f.as_ref() };
let ptr = foot.ptr.get().as_ptr() as usize;
debug_assert!(ptr <= foot as *const _ as usize);
bytes += foot as *const _ as usize - ptr;
footer = foot.prev.get();
}
bytes
}
#[inline]
unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
let footer = self.current_chunk_footer.get();
let footer = footer.as_ref();
footer.ptr.get() == ptr
}
}
/// An iterator over each chunk of allocated memory that
/// an arena has bump allocated into.
///
/// The chunks are returned ordered by allocation time, with the most recently
/// allocated chunk being returned first.
///
/// The values inside each chunk is also ordered by allocation time, with the most
/// recent allocation being earlier in the slice.
///
/// This struct is created by the [`iter_allocated_chunks`] method on
/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
///
/// [`Bump`]: ./struct.Bump.html
/// [`iter_allocated_chunks`]: ./struct.Bump.html#method.iter_allocated_chunks
#[derive(Debug)]
pub struct ChunkIter<'a> {
footer: Option<NonNull<ChunkFooter>>,
bump: PhantomData<&'a mut Bump>,
}
impl<'a> Iterator for ChunkIter<'a> {
type Item = &'a [mem::MaybeUninit<u8>];
fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> {
unsafe {
let foot = self.footer?;
let foot = foot.as_ref();
let data = foot.data.as_ptr() as usize;
let ptr = foot.ptr.get().as_ptr() as usize;
debug_assert!(data <= ptr);
debug_assert!(ptr <= foot as *const _ as usize);
let len = foot as *const _ as usize - ptr;
let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
self.footer = foot.prev.get();
Some(slice)
}
}
}
impl<'a> iter::FusedIterator for ChunkIter<'a> {}
#[inline(never)]
#[cold]
fn oom() -> ! {
panic!("out of memory")
}
unsafe impl<'a> alloc::Alloc for &'a Bump {
#[inline(always)]
unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> {
Ok(self.alloc_layout(layout))
}
#[inline]
unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
// If the pointer is the last allocation we made, we can reuse the bytes,
// otherwise they are simply leaked -- at least until somebody calls reset().
if layout.size() != 0 && self.is_last_allocation(ptr) {
let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size()));
self.current_chunk_footer.get().as_ref().ptr.set(ptr);
}
}
#[inline]
unsafe fn realloc(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize,
) -> Result<NonNull<u8>, alloc::AllocErr> {
let old_size = layout.size();
if old_size == 0 {
return self.alloc(layout);
}
if new_size <= old_size {
if self.is_last_allocation(ptr)
// Only reclaim the excess space (which requires a copy) if it
// is worth it: we are actually going to recover "enough" space
// and we can do a non-overlapping copy.
&& new_size <= old_size / 2
{
let delta = old_size - new_size;
let footer = self.current_chunk_footer.get();
let footer = footer.as_ref();
footer
.ptr
.set(NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta)));
let new_ptr = footer.ptr.get();
// NB: we know it is non-overlapping because of the size check
// in the `if` condition.
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
return Ok(new_ptr);
} else {
return Ok(ptr);
}
}
if self.is_last_allocation(ptr) {
// Try to allocate the delta size within this same block so we can
// reuse the currently allocated space.
let delta = new_size - old_size;
if let Some(p) =
self.try_alloc_layout_fast(layout_from_size_align(delta, layout.align()))
{
ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
return Ok(p);
}
}
// Fallback: do a fresh allocation and copy the existing data into it.
let new_layout = layout_from_size_align(new_size, layout.align());
let new_ptr = self.alloc_layout(new_layout);
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
Ok(new_ptr)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn chunk_footer_is_five_words() {
assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 5);
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_realloc() {
use crate::alloc::Alloc;
unsafe {
const CAPACITY: usize = 1024 - OVERHEAD;
let mut b = Bump::with_capacity(CAPACITY);
// `realloc` doesn't shrink allocations that aren't "worth it".
let layout = Layout::from_size_align(100, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 51).unwrap();
assert_eq!(p, q);
b.reset();
// `realloc` will shrink allocations that are "worth it".
let layout = Layout::from_size_align(100, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 50).unwrap();
assert!(p != q);
b.reset();
// `realloc` will reuse the last allocation when growing.
let layout = Layout::from_size_align(10, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 11).unwrap();
assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
b.reset();
// `realloc` will allocate a new chunk when growing the last
// allocation, if need be.
let layout = Layout::from_size_align(1, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY);
b = Bump::with_capacity(CAPACITY);
// `realloc` will allocate and copy when reallocating anything that
// wasn't the last allocation.
let layout = Layout::from_size_align(1, 1).unwrap();
let p = b.alloc_layout(layout);
let _ = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 2).unwrap();
assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
b.reset();
}
}
#[test]
fn invalid_read() {
use alloc::Alloc;
let mut b = &Bump::new();
unsafe {
let l1 = Layout::from_size_align(12000, 4).unwrap();
let p1 = Alloc::alloc(&mut b, l1).unwrap();
let l2 = Layout::from_size_align(1000, 4).unwrap();
Alloc::alloc(&mut b, l2).unwrap();
let p1 = b.realloc(p1, l1, 24000).unwrap();
let l3 = Layout::from_size_align(24000, 4).unwrap();
b.realloc(p1, l3, 48000).unwrap();
}
}
}