blob: a1f51ba69586f7336c029f1b0d1abd22e848628e [file] [log] [blame]
/*-
* Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
* Copyright (c) 2017 Matthew Macy <mmacy@mattmacy.io>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $FreeBSD$ */
#include "if_em.h"
#ifdef RSS
#include <net/rss_config.h>
#include <netinet/in_rss.h>
#endif
#ifdef VERBOSE_DEBUG
#define DPRINTF device_printf
#else
#define DPRINTF(...)
#endif
/*********************************************************************
* Local Function prototypes
*********************************************************************/
static int em_tso_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper,
u32 *txd_lower);
static int em_transmit_checksum_setup(struct adapter *adapter, if_pkt_info_t pi,
u32 *txd_upper, u32 *txd_lower);
static int em_isc_txd_encap(void *arg, if_pkt_info_t pi);
static void em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
static int em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
static void em_isc_rxd_refill(void *arg, if_rxd_update_t iru);
static void em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
qidx_t pidx);
static int em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
qidx_t budget);
static int em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
static void lem_isc_rxd_refill(void *arg, if_rxd_update_t iru);
static int lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
qidx_t budget);
static int lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
static void lem_receive_checksum(int status, int errors, if_rxd_info_t ri);
static void em_receive_checksum(uint32_t status, if_rxd_info_t ri);
static int em_determine_rsstype(u32 pkt_info);
extern int em_intr(void *arg);
struct if_txrx em_txrx = {
.ift_txd_encap = em_isc_txd_encap,
.ift_txd_flush = em_isc_txd_flush,
.ift_txd_credits_update = em_isc_txd_credits_update,
.ift_rxd_available = em_isc_rxd_available,
.ift_rxd_pkt_get = em_isc_rxd_pkt_get,
.ift_rxd_refill = em_isc_rxd_refill,
.ift_rxd_flush = em_isc_rxd_flush,
.ift_legacy_intr = em_intr
};
struct if_txrx lem_txrx = {
.ift_txd_encap = em_isc_txd_encap,
.ift_txd_flush = em_isc_txd_flush,
.ift_txd_credits_update = em_isc_txd_credits_update,
.ift_rxd_available = lem_isc_rxd_available,
.ift_rxd_pkt_get = lem_isc_rxd_pkt_get,
.ift_rxd_refill = lem_isc_rxd_refill,
.ift_rxd_flush = em_isc_rxd_flush,
.ift_legacy_intr = em_intr
};
extern if_shared_ctx_t em_sctx;
void
em_dump_rs(struct adapter *adapter)
{
if_softc_ctx_t scctx = adapter->shared;
struct em_tx_queue *que;
struct tx_ring *txr;
qidx_t i, ntxd, qid, cur;
int16_t rs_cidx;
uint8_t status;
printf("\n");
ntxd = scctx->isc_ntxd[0];
for (qid = 0; qid < adapter->tx_num_queues; qid++) {
que = &adapter->tx_queues[qid];
txr = &que->txr;
rs_cidx = txr->tx_rs_cidx;
if (rs_cidx != txr->tx_rs_pidx) {
cur = txr->tx_rsq[rs_cidx];
status = txr->tx_base[cur].upper.fields.status;
if (!(status & E1000_TXD_STAT_DD))
printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
} else {
rs_cidx = (rs_cidx-1)&(ntxd-1);
cur = txr->tx_rsq[rs_cidx];
printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d ", qid, rs_cidx, cur);
}
printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx);
for (i = 0; i < ntxd; i++) {
if (txr->tx_base[i].upper.fields.status & E1000_TXD_STAT_DD)
printf("%d set ", i);
}
printf("\n");
}
}
/**********************************************************************
*
* Setup work for hardware segmentation offload (TSO) on
* adapters using advanced tx descriptors
*
**********************************************************************/
static int
em_tso_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower)
{
if_softc_ctx_t scctx = adapter->shared;
struct em_tx_queue *que = &adapter->tx_queues[pi->ipi_qsidx];
struct tx_ring *txr = &que->txr;
struct e1000_context_desc *TXD;
int cur, hdr_len;
hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen + pi->ipi_tcp_hlen;
*txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
E1000_TXD_DTYP_D | /* Data descr type */
E1000_TXD_CMD_TSE); /* Do TSE on this packet */
/* IP and/or TCP header checksum calculation and insertion. */
*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
cur = pi->ipi_pidx;
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
/*
* Start offset for header checksum calculation.
* End offset for header checksum calculation.
* Offset of place put the checksum.
*/
TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
TXD->lower_setup.ip_fields.ipcse =
htole16(pi->ipi_ehdrlen + pi->ipi_ip_hlen - 1);
TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
/*
* Start offset for payload checksum calculation.
* End offset for payload checksum calculation.
* Offset of place to put the checksum.
*/
TXD->upper_setup.tcp_fields.tucss = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
TXD->upper_setup.tcp_fields.tucse = 0;
TXD->upper_setup.tcp_fields.tucso =
pi->ipi_ehdrlen + pi->ipi_ip_hlen + offsetof(struct tcphdr, th_sum);
/*
* Payload size per packet w/o any headers.
* Length of all headers up to payload.
*/
TXD->tcp_seg_setup.fields.mss = htole16(pi->ipi_tso_segsz);
TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
TXD->cmd_and_length = htole32(adapter->txd_cmd |
E1000_TXD_CMD_DEXT | /* Extended descr */
E1000_TXD_CMD_TSE | /* TSE context */
E1000_TXD_CMD_IP | /* Do IP csum */
E1000_TXD_CMD_TCP | /* Do TCP checksum */
(pi->ipi_len - hdr_len)); /* Total len */
txr->tx_tso = TRUE;
if (++cur == scctx->isc_ntxd[0]) {
cur = 0;
}
DPRINTF(iflib_get_dev(adapter->ctx), "%s: pidx: %d cur: %d\n", __FUNCTION__, pi->ipi_pidx, cur);
return (cur);
}
#define TSO_WORKAROUND 4
#define DONT_FORCE_CTX 1
/*********************************************************************
* The offload context is protocol specific (TCP/UDP) and thus
* only needs to be set when the protocol changes. The occasion
* of a context change can be a performance detriment, and
* might be better just disabled. The reason arises in the way
* in which the controller supports pipelined requests from the
* Tx data DMA. Up to four requests can be pipelined, and they may
* belong to the same packet or to multiple packets. However all
* requests for one packet are issued before a request is issued
* for a subsequent packet and if a request for the next packet
* requires a context change, that request will be stalled
* until the previous request completes. This means setting up
* a new context effectively disables pipelined Tx data DMA which
* in turn greatly slow down performance to send small sized
* frames.
**********************************************************************/
static int
em_transmit_checksum_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower)
{
struct e1000_context_desc *TXD = NULL;
if_softc_ctx_t scctx = adapter->shared;
struct em_tx_queue *que = &adapter->tx_queues[pi->ipi_qsidx];
struct tx_ring *txr = &que->txr;
int csum_flags = pi->ipi_csum_flags;
int cur, hdr_len;
u32 cmd;
cur = pi->ipi_pidx;
hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
cmd = adapter->txd_cmd;
/*
* The 82574L can only remember the *last* context used
* regardless of queue that it was use for. We cannot reuse
* contexts on this hardware platform and must generate a new
* context every time. 82574L hardware spec, section 7.2.6,
* second note.
*/
if (DONT_FORCE_CTX &&
adapter->tx_num_queues == 1 &&
txr->csum_lhlen == pi->ipi_ehdrlen &&
txr->csum_iphlen == pi->ipi_ip_hlen &&
txr->csum_flags == csum_flags) {
/*
* Same csum offload context as the previous packets;
* just return.
*/
*txd_upper = txr->csum_txd_upper;
*txd_lower = txr->csum_txd_lower;
return (cur);
}
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
if (csum_flags & CSUM_IP) {
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
/*
* Start offset for header checksum calculation.
* End offset for header checksum calculation.
* Offset of place to put the checksum.
*/
TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len);
TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
cmd |= E1000_TXD_CMD_IP;
}
if (csum_flags & (CSUM_TCP|CSUM_UDP)) {
uint8_t tucso;
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
if (csum_flags & CSUM_TCP) {
tucso = hdr_len + offsetof(struct tcphdr, th_sum);
cmd |= E1000_TXD_CMD_TCP;
} else
tucso = hdr_len + offsetof(struct udphdr, uh_sum);
TXD->upper_setup.tcp_fields.tucss = hdr_len;
TXD->upper_setup.tcp_fields.tucse = htole16(0);
TXD->upper_setup.tcp_fields.tucso = tucso;
}
txr->csum_lhlen = pi->ipi_ehdrlen;
txr->csum_iphlen = pi->ipi_ip_hlen;
txr->csum_flags = csum_flags;
txr->csum_txd_upper = *txd_upper;
txr->csum_txd_lower = *txd_lower;
TXD->tcp_seg_setup.data = htole32(0);
TXD->cmd_and_length =
htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
if (++cur == scctx->isc_ntxd[0]) {
cur = 0;
}
DPRINTF(iflib_get_dev(adapter->ctx), "checksum_setup csum_flags=%x txd_upper=%x txd_lower=%x hdr_len=%d cmd=%x\n",
csum_flags, *txd_upper, *txd_lower, hdr_len, cmd);
return (cur);
}
static int
em_isc_txd_encap(void *arg, if_pkt_info_t pi)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
struct tx_ring *txr = &que->txr;
bus_dma_segment_t *segs = pi->ipi_segs;
int nsegs = pi->ipi_nsegs;
int csum_flags = pi->ipi_csum_flags;
int i, j, first, pidx_last;
u32 txd_flags, txd_upper = 0, txd_lower = 0;
struct e1000_tx_desc *ctxd = NULL;
bool do_tso, tso_desc;
qidx_t ntxd;
txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_TXD_CMD_RS : 0;
i = first = pi->ipi_pidx;
do_tso = (csum_flags & CSUM_TSO);
tso_desc = FALSE;
ntxd = scctx->isc_ntxd[0];
/*
* TSO Hardware workaround, if this packet is not
* TSO, and is only a single descriptor long, and
* it follows a TSO burst, then we need to add a
* sentinel descriptor to prevent premature writeback.
*/
if ((!do_tso) && (txr->tx_tso == TRUE)) {
if (nsegs == 1)
tso_desc = TRUE;
txr->tx_tso = FALSE;
}
/* Do hardware assists */
if (do_tso) {
i = em_tso_setup(sc, pi, &txd_upper, &txd_lower);
tso_desc = TRUE;
} else if (csum_flags & EM_CSUM_OFFLOAD) {
i = em_transmit_checksum_setup(sc, pi, &txd_upper, &txd_lower);
}
if (pi->ipi_mflags & M_VLANTAG) {
/* Set the vlan id. */
txd_upper |= htole16(pi->ipi_vtag) << 16;
/* Tell hardware to add tag */
txd_lower |= htole32(E1000_TXD_CMD_VLE);
}
DPRINTF(iflib_get_dev(sc->ctx), "encap: set up tx: nsegs=%d first=%d i=%d\n", nsegs, first, i);
/* XXX adapter->pcix_82544 -- lem_fill_descriptors */
/* Set up our transmit descriptors */
for (j = 0; j < nsegs; j++) {
bus_size_t seg_len;
bus_addr_t seg_addr;
uint32_t cmd;
ctxd = &txr->tx_base[i];
seg_addr = segs[j].ds_addr;
seg_len = segs[j].ds_len;
cmd = E1000_TXD_CMD_IFCS | sc->txd_cmd;
/*
* TSO Workaround:
* If this is the last descriptor, we want to
* split it so we have a small final sentinel
*/
if (tso_desc && (j == (nsegs - 1)) && (seg_len > 8)) {
seg_len -= TSO_WORKAROUND;
ctxd->buffer_addr = htole64(seg_addr);
ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
ctxd->upper.data = htole32(txd_upper);
if (++i == scctx->isc_ntxd[0])
i = 0;
/* Now make the sentinel */
ctxd = &txr->tx_base[i];
ctxd->buffer_addr = htole64(seg_addr + seg_len);
ctxd->lower.data = htole32(cmd | txd_lower | TSO_WORKAROUND);
ctxd->upper.data = htole32(txd_upper);
pidx_last = i;
if (++i == scctx->isc_ntxd[0])
i = 0;
DPRINTF(iflib_get_dev(sc->ctx), "TSO path pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]);
} else {
ctxd->buffer_addr = htole64(seg_addr);
ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
ctxd->upper.data = htole32(txd_upper);
pidx_last = i;
if (++i == scctx->isc_ntxd[0])
i = 0;
DPRINTF(iflib_get_dev(sc->ctx), "pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]);
}
}
/*
* Last Descriptor of Packet
* needs End Of Packet (EOP)
* and Report Status (RS)
*/
if (txd_flags && nsegs) {
txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
DPRINTF(iflib_get_dev(sc->ctx), "setting to RS on %d rs_pidx %d first: %d\n", pidx_last, txr->tx_rs_pidx, first);
txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
}
ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | txd_flags);
DPRINTF(iflib_get_dev(sc->ctx), "tx_buffers[%d]->eop = %d ipi_new_pidx=%d\n", first, pidx_last, i);
pi->ipi_new_pidx = i;
return (0);
}
static void
em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
{
struct adapter *adapter = arg;
struct em_tx_queue *que = &adapter->tx_queues[txqid];
struct tx_ring *txr = &que->txr;
E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx);
}
static int
em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
{
struct adapter *adapter = arg;
if_softc_ctx_t scctx = adapter->shared;
struct em_tx_queue *que = &adapter->tx_queues[txqid];
struct tx_ring *txr = &que->txr;
qidx_t processed = 0;
int updated;
qidx_t cur, prev, ntxd, rs_cidx;
int32_t delta;
uint8_t status;
rs_cidx = txr->tx_rs_cidx;
if (rs_cidx == txr->tx_rs_pidx)
return (0);
cur = txr->tx_rsq[rs_cidx];
MPASS(cur != QIDX_INVALID);
status = txr->tx_base[cur].upper.fields.status;
updated = !!(status & E1000_TXD_STAT_DD);
if (clear == false || updated == 0)
return (updated);
prev = txr->tx_cidx_processed;
ntxd = scctx->isc_ntxd[0];
do {
delta = (int32_t)cur - (int32_t)prev;
MPASS(prev == 0 || delta != 0);
if (delta < 0)
delta += ntxd;
DPRINTF(iflib_get_dev(adapter->ctx),
"%s: cidx_processed=%u cur=%u clear=%d delta=%d\n",
__FUNCTION__, prev, cur, clear, delta);
processed += delta;
prev = cur;
rs_cidx = (rs_cidx + 1) & (ntxd-1);
if (rs_cidx == txr->tx_rs_pidx)
break;
cur = txr->tx_rsq[rs_cidx];
MPASS(cur != QIDX_INVALID);
status = txr->tx_base[cur].upper.fields.status;
} while ((status & E1000_TXD_STAT_DD));
txr->tx_rs_cidx = rs_cidx;
txr->tx_cidx_processed = prev;
return(processed);
}
static void
lem_isc_rxd_refill(void *arg, if_rxd_update_t iru)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
struct em_rx_queue *que = &sc->rx_queues[iru->iru_qsidx];
struct rx_ring *rxr = &que->rxr;
struct e1000_rx_desc *rxd;
uint64_t *paddrs;
uint32_t next_pidx, pidx;
uint16_t count;
int i;
paddrs = iru->iru_paddrs;
pidx = iru->iru_pidx;
count = iru->iru_count;
for (i = 0, next_pidx = pidx; i < count; i++) {
rxd = (struct e1000_rx_desc *)&rxr->rx_base[next_pidx];
rxd->buffer_addr = htole64(paddrs[i]);
/* status bits must be cleared */
rxd->status = 0;
if (++next_pidx == scctx->isc_nrxd[0])
next_pidx = 0;
}
}
static void
em_isc_rxd_refill(void *arg, if_rxd_update_t iru)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
uint16_t rxqid = iru->iru_qsidx;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
struct rx_ring *rxr = &que->rxr;
union e1000_rx_desc_extended *rxd;
uint64_t *paddrs;
uint32_t next_pidx, pidx;
uint16_t count;
int i;
paddrs = iru->iru_paddrs;
pidx = iru->iru_pidx;
count = iru->iru_count;
for (i = 0, next_pidx = pidx; i < count; i++) {
rxd = &rxr->rx_base[next_pidx];
rxd->read.buffer_addr = htole64(paddrs[i]);
/* DD bits must be cleared */
rxd->wb.upper.status_error = 0;
if (++next_pidx == scctx->isc_nrxd[0])
next_pidx = 0;
}
}
static void
em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
{
struct adapter *sc = arg;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
struct rx_ring *rxr = &que->rxr;
E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
}
static int
lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
struct rx_ring *rxr = &que->rxr;
struct e1000_rx_desc *rxd;
u32 staterr = 0;
int cnt, i;
if (budget == 1) {
rxd = (struct e1000_rx_desc *)&rxr->rx_base[idx];
staterr = rxd->status;
return (staterr & E1000_RXD_STAT_DD);
}
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
rxd = (struct e1000_rx_desc *)&rxr->rx_base[i];
staterr = rxd->status;
if ((staterr & E1000_RXD_STAT_DD) == 0)
break;
if (++i == scctx->isc_nrxd[0])
i = 0;
if (staterr & E1000_RXD_STAT_EOP)
cnt++;
}
return (cnt);
}
static int
em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
struct rx_ring *rxr = &que->rxr;
union e1000_rx_desc_extended *rxd;
u32 staterr = 0;
int cnt, i;
if (budget == 1) {
rxd = &rxr->rx_base[idx];
staterr = le32toh(rxd->wb.upper.status_error);
return (staterr & E1000_RXD_STAT_DD);
}
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
rxd = &rxr->rx_base[i];
staterr = le32toh(rxd->wb.upper.status_error);
if ((staterr & E1000_RXD_STAT_DD) == 0)
break;
if (++i == scctx->isc_nrxd[0]) {
i = 0;
}
if (staterr & E1000_RXD_STAT_EOP)
cnt++;
}
return (cnt);
}
static int
lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
{
struct adapter *adapter = arg;
if_softc_ctx_t scctx = adapter->shared;
struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
struct rx_ring *rxr = &que->rxr;
struct e1000_rx_desc *rxd;
u16 len;
u32 status, errors;
bool eop;
int i, cidx;
status = errors = i = 0;
cidx = ri->iri_cidx;
do {
rxd = (struct e1000_rx_desc *)&rxr->rx_base[cidx];
status = rxd->status;
errors = rxd->errors;
/* Error Checking then decrement count */
MPASS ((status & E1000_RXD_STAT_DD) != 0);
len = le16toh(rxd->length);
ri->iri_len += len;
eop = (status & E1000_RXD_STAT_EOP) != 0;
/* Make sure bad packets are discarded */
if (errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
adapter->dropped_pkts++;
/* XXX fixup if common */
return (EBADMSG);
}
ri->iri_frags[i].irf_flid = 0;
ri->iri_frags[i].irf_idx = cidx;
ri->iri_frags[i].irf_len = len;
/* Zero out the receive descriptors status. */
rxd->status = 0;
if (++cidx == scctx->isc_nrxd[0])
cidx = 0;
i++;
} while (!eop);
/* XXX add a faster way to look this up */
if (adapter->hw.mac.type >= e1000_82543 && !(status & E1000_RXD_STAT_IXSM))
lem_receive_checksum(status, errors, ri);
if (status & E1000_RXD_STAT_VP) {
ri->iri_vtag = le16toh(rxd->special);
ri->iri_flags |= M_VLANTAG;
}
ri->iri_nfrags = i;
return (0);
}
static int
em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
{
struct adapter *adapter = arg;
if_softc_ctx_t scctx = adapter->shared;
struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
struct rx_ring *rxr = &que->rxr;
union e1000_rx_desc_extended *rxd;
u16 len;
u32 pkt_info;
u32 staterr = 0;
bool eop;
int i, cidx, vtag;
i = vtag = 0;
cidx = ri->iri_cidx;
do {
rxd = &rxr->rx_base[cidx];
staterr = le32toh(rxd->wb.upper.status_error);
pkt_info = le32toh(rxd->wb.lower.mrq);
/* Error Checking then decrement count */
MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
len = le16toh(rxd->wb.upper.length);
ri->iri_len += len;
eop = (staterr & E1000_RXD_STAT_EOP) != 0;
/* Make sure bad packets are discarded */
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
adapter->dropped_pkts++;
return EBADMSG;
}
ri->iri_frags[i].irf_flid = 0;
ri->iri_frags[i].irf_idx = cidx;
ri->iri_frags[i].irf_len = len;
/* Zero out the receive descriptors status. */
rxd->wb.upper.status_error &= htole32(~0xFF);
if (++cidx == scctx->isc_nrxd[0])
cidx = 0;
i++;
} while (!eop);
/* XXX add a faster way to look this up */
if (adapter->hw.mac.type >= e1000_82543)
em_receive_checksum(staterr, ri);
if (staterr & E1000_RXD_STAT_VP) {
vtag = le16toh(rxd->wb.upper.vlan);
}
ri->iri_vtag = vtag;
if (vtag)
ri->iri_flags |= M_VLANTAG;
ri->iri_flowid = le32toh(rxd->wb.lower.hi_dword.rss);
ri->iri_rsstype = em_determine_rsstype(pkt_info);
ri->iri_nfrags = i;
return (0);
}
/*********************************************************************
*
* Verify that the hardware indicated that the checksum is valid.
* Inform the stack about the status of checksum so that stack
* doesn't spend time verifying the checksum.
*
*********************************************************************/
static void
lem_receive_checksum(int status, int errors, if_rxd_info_t ri)
{
/* Did it pass? */
if (status & E1000_RXD_STAT_IPCS && !(errors & E1000_RXD_ERR_IPE))
ri->iri_csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID);
if (status & E1000_RXD_STAT_TCPCS) {
/* Did it pass? */
if (!(errors & E1000_RXD_ERR_TCPE)) {
ri->iri_csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
ri->iri_csum_data = htons(0xffff);
}
}
}
/********************************************************************
*
* Parse the packet type to determine the appropriate hash
*
******************************************************************/
static int
em_determine_rsstype(u32 pkt_info)
{
switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
case E1000_RXDADV_RSSTYPE_IPV4_TCP:
return M_HASHTYPE_RSS_TCP_IPV4;
case E1000_RXDADV_RSSTYPE_IPV4:
return M_HASHTYPE_RSS_IPV4;
case E1000_RXDADV_RSSTYPE_IPV6_TCP:
return M_HASHTYPE_RSS_TCP_IPV6;
case E1000_RXDADV_RSSTYPE_IPV6_EX:
return M_HASHTYPE_RSS_IPV6_EX;
case E1000_RXDADV_RSSTYPE_IPV6:
return M_HASHTYPE_RSS_IPV6;
case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
return M_HASHTYPE_RSS_TCP_IPV6_EX;
default:
return M_HASHTYPE_OPAQUE;
}
}
static void
em_receive_checksum(uint32_t status, if_rxd_info_t ri)
{
ri->iri_csum_flags = 0;
/* Ignore Checksum bit is set */
if (status & E1000_RXD_STAT_IXSM)
return;
/* If the IP checksum exists and there is no IP Checksum error */
if ((status & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
E1000_RXD_STAT_IPCS) {
ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
}
/* TCP or UDP checksum */
if ((status & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
E1000_RXD_STAT_TCPCS) {
ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
ri->iri_csum_data = htons(0xffff);
}
if (status & E1000_RXD_STAT_UDPCS) {
ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
ri->iri_csum_data = htons(0xffff);
}
}