blob: 2d0e9ba3c0f50d3210cff2e29dc7034aded24b67 [file] [log] [blame]
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// See https://fuchsia.dev/fuchsia-src/development/languages/fidl/reference/compiler#compilation
// for documentation
#ifndef TOOLS_FIDL_FIDLC_INCLUDE_FIDL_FLAT_AST_H_
#define TOOLS_FIDL_FIDLC_INCLUDE_FIDL_FLAT_AST_H_
#include <lib/fit/function.h>
#include <any>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <string_view>
#include <type_traits>
#include <variant>
#include <vector>
#include <safemath/checked_math.h>
#include "attributes.h"
#include "experimental_flags.h"
#include "flat/name.h"
#include "flat/object.h"
#include "flat/types.h"
#include "flat/values.h"
#include "raw_ast.h"
#include "reporter.h"
#include "type_shape.h"
#include "types.h"
#include "virtual_source_file.h"
namespace fidl {
namespace flat {
using diagnostics::Diagnostic;
using diagnostics::ErrorDef;
using reporter::Reporter;
template <typename T>
struct PtrCompare {
bool operator()(const T* left, const T* right) const { return *left < *right; }
};
class Typespace;
struct Decl;
class Library;
bool HasSimpleLayout(const Decl* decl);
// This is needed (for now) to work around declaration order issues.
std::string LibraryName(const Library* library, std::string_view separator);
struct Decl {
virtual ~Decl() {}
enum struct Kind {
kBits,
kConst,
kEnum,
kProtocol,
kResource,
kService,
kStruct,
kTable,
kUnion,
kTypeAlias,
};
Decl(Kind kind, std::unique_ptr<raw::AttributeList> attributes, Name name)
: kind(kind), attributes(std::move(attributes)), name(std::move(name)) {}
const Kind kind;
std::unique_ptr<raw::AttributeList> attributes;
const Name name;
bool HasAttribute(std::string_view name) const;
std::string_view GetAttribute(std::string_view name) const;
std::string GetName() const;
bool compiling = false;
bool compiled = false;
};
struct TypeDecl : public Decl, public Object {
TypeDecl(Kind kind, std::unique_ptr<raw::AttributeList> attributes, Name name)
: Decl(kind, std::move(attributes), std::move(name)) {}
bool recursive = false;
};
struct TypeAlias;
struct TypeConstructor final {
struct FromTypeAlias {
FromTypeAlias(const TypeAlias* decl, const Type* maybe_arg_type, const Size* maybe_size,
std::optional<types::HandleSubtype> maybe_handle_subtype,
types::Nullability nullability) noexcept
: decl(decl),
maybe_arg_type(maybe_arg_type),
maybe_size(maybe_size),
maybe_handle_subtype(maybe_handle_subtype),
nullability(nullability) {}
const TypeAlias* decl;
const Type* maybe_arg_type;
const Size* maybe_size;
std::optional<types::HandleSubtype> maybe_handle_subtype;
// TODO(pascallouis): Make this const.
types::Nullability nullability;
};
TypeConstructor(Name name, std::unique_ptr<TypeConstructor> maybe_arg_type_ctor,
std::optional<Name> handle_subtype_identifier,
std::unique_ptr<Constant> handle_rights, std::unique_ptr<Constant> maybe_size,
types::Nullability nullability, fidl::utils::Syntax syntax)
: name(std::move(name)),
maybe_arg_type_ctor(std::move(maybe_arg_type_ctor)),
handle_subtype_identifier(std::move(handle_subtype_identifier)),
handle_rights(std::move(handle_rights)),
maybe_size(std::move(maybe_size)),
nullability(nullability),
syntax(syntax) {}
// Returns a type constructor for the size type (used for bounds).
static std::unique_ptr<TypeConstructor> CreateSizeType();
// Set during construction.
const Name name;
std::unique_ptr<TypeConstructor> maybe_arg_type_ctor;
std::optional<Name> handle_subtype_identifier;
std::unique_ptr<Constant> handle_rights;
std::unique_ptr<Constant> maybe_size;
types::Nullability nullability;
const fidl::utils::Syntax syntax;
// Set during compilation.
const Type* type = nullptr;
uint32_t handle_obj_type_resolved = std::numeric_limits<uint32_t>::max();
types::HandleSubtype handle_subtype_identifier_resolved;
std::optional<FromTypeAlias> from_type_alias;
};
struct Using final {
Using(Name name, const PrimitiveType* type) : name(std::move(name)), type(type) {}
const Name name;
const PrimitiveType* type;
};
// Const represents the _declaration_ of a constant. (For the _use_, see
// Constant. For the _value_, see ConstantValue.) A Const consists of a
// left-hand-side Name (found in Decl) and a right-hand-side Constant.
struct Const final : public Decl {
Const(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::unique_ptr<TypeConstructor> type_ctor, std::unique_ptr<Constant> value)
: Decl(Kind::kConst, std::move(attributes), std::move(name)),
type_ctor(std::move(type_ctor)),
value(std::move(value)) {}
std::unique_ptr<TypeConstructor> type_ctor;
std::unique_ptr<Constant> value;
};
struct Enum final : public TypeDecl {
struct Member {
Member(SourceSpan name, std::unique_ptr<Constant> value,
std::unique_ptr<raw::AttributeList> attributes)
: name(name), value(std::move(value)), attributes(std::move(attributes)) {}
SourceSpan name;
std::unique_ptr<Constant> value;
std::unique_ptr<raw::AttributeList> attributes;
};
Enum(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::unique_ptr<TypeConstructor> subtype_ctor, std::vector<Member> members,
types::Strictness strictness)
: TypeDecl(Kind::kEnum, std::move(attributes), std::move(name)),
subtype_ctor(std::move(subtype_ctor)),
members(std::move(members)),
strictness(strictness) {}
// Set during construction.
std::unique_ptr<TypeConstructor> subtype_ctor;
std::vector<Member> members;
const types::Strictness strictness;
std::any AcceptAny(VisitorAny* visitor) const override;
// Set during compilation.
const PrimitiveType* type = nullptr;
// Set only for flexible enums, and either is set depending on signedness of
// underlying enum type.
std::optional<int64_t> unknown_value_signed;
std::optional<uint64_t> unknown_value_unsigned;
};
struct Bits final : public TypeDecl {
struct Member {
Member(SourceSpan name, std::unique_ptr<Constant> value,
std::unique_ptr<raw::AttributeList> attributes)
: name(name), value(std::move(value)), attributes(std::move(attributes)) {}
SourceSpan name;
std::unique_ptr<Constant> value;
std::unique_ptr<raw::AttributeList> attributes;
};
Bits(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::unique_ptr<TypeConstructor> subtype_ctor, std::vector<Member> members,
types::Strictness strictness)
: TypeDecl(Kind::kBits, std::move(attributes), std::move(name)),
subtype_ctor(std::move(subtype_ctor)),
members(std::move(members)),
strictness(strictness) {}
// Set during construction.
std::unique_ptr<TypeConstructor> subtype_ctor;
std::vector<Member> members;
const types::Strictness strictness;
std::any AcceptAny(VisitorAny* visitor) const override;
// Set during compilation.
uint64_t mask = 0;
};
struct Service final : public TypeDecl {
struct Member {
Member(std::unique_ptr<TypeConstructor> type_ctor, SourceSpan name,
std::unique_ptr<raw::AttributeList> attributes)
: type_ctor(std::move(type_ctor)),
name(std::move(name)),
attributes(std::move(attributes)) {}
std::unique_ptr<TypeConstructor> type_ctor;
SourceSpan name;
std::unique_ptr<raw::AttributeList> attributes;
};
Service(std::unique_ptr<raw::AttributeList> attributes, Name name, std::vector<Member> members)
: TypeDecl(Kind::kService, std::move(attributes), std::move(name)),
members(std::move(members)) {}
std::any AcceptAny(VisitorAny* visitor) const override;
std::vector<Member> members;
};
struct Struct;
// Historically, StructMember was a nested class inside Struct named Struct::Member. However, this
// was made a top-level class since it's not possible to forward-declare nested classes in C++. For
// backward-compatibility, Struct::Member is now an alias for this top-level StructMember.
// TODO(fxbug.dev/37535): Move this to a nested class inside Struct.
struct StructMember : public Object {
StructMember(std::unique_ptr<TypeConstructor> type_ctor, SourceSpan name,
std::unique_ptr<Constant> maybe_default_value,
std::unique_ptr<raw::AttributeList> attributes)
: type_ctor(std::move(type_ctor)),
name(std::move(name)),
maybe_default_value(std::move(maybe_default_value)),
attributes(std::move(attributes)) {}
std::unique_ptr<TypeConstructor> type_ctor;
SourceSpan name;
std::unique_ptr<Constant> maybe_default_value;
std::unique_ptr<raw::AttributeList> attributes;
std::any AcceptAny(VisitorAny* visitor) const override;
FieldShape fieldshape(WireFormat wire_format) const;
const Struct* parent = nullptr;
};
struct Struct final : public TypeDecl {
using Member = StructMember;
Struct(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::vector<Member> unparented_members, std::optional<types::Resourceness> resourceness,
bool is_request_or_response = false)
: TypeDecl(Kind::kStruct, std::move(attributes), std::move(name)),
members(std::move(unparented_members)),
resourceness(resourceness),
is_request_or_response(is_request_or_response) {
for (auto& member : members) {
member.parent = this;
}
}
std::vector<Member> members;
// For user-defined structs, this is set during construction. For synthesized
// structs (requests/responses, error result success payload) it is set during
// compilation based on the struct's members.
std::optional<types::Resourceness> resourceness;
// This is true iff this struct is a method request/response in a transaction header.
const bool is_request_or_response;
std::any AcceptAny(VisitorAny* visitor) const override;
};
struct Table;
// See the comment on the StructMember class for why this is a top-level class.
// TODO(fxbug.dev/37535): Move this to a nested class inside Table::Member.
struct TableMemberUsed : public Object {
TableMemberUsed(std::unique_ptr<TypeConstructor> type_ctor, SourceSpan name,
std::unique_ptr<Constant> maybe_default_value,
std::unique_ptr<raw::AttributeList> attributes)
: type_ctor(std::move(type_ctor)),
name(std::move(name)),
maybe_default_value(std::move(maybe_default_value)),
attributes(std::move(attributes)) {}
std::unique_ptr<TypeConstructor> type_ctor;
SourceSpan name;
std::unique_ptr<Constant> maybe_default_value;
std::unique_ptr<raw::AttributeList> attributes;
std::any AcceptAny(VisitorAny* visitor) const override;
FieldShape fieldshape(WireFormat wire_format) const;
};
// See the comment on the StructMember class for why this is a top-level class.
// TODO(fxbug.dev/37535): Move this to a nested class inside Table.
struct TableMember : public Object {
using Used = TableMemberUsed;
TableMember(std::unique_ptr<raw::Ordinal64> ordinal, std::unique_ptr<TypeConstructor> type,
SourceSpan name, std::unique_ptr<Constant> maybe_default_value,
std::unique_ptr<raw::AttributeList> attributes)
: ordinal(std::move(ordinal)),
maybe_used(std::make_unique<Used>(std::move(type), name, std::move(maybe_default_value),
std::move(attributes))) {}
TableMember(std::unique_ptr<raw::Ordinal64> ordinal, std::unique_ptr<TypeConstructor> type,
SourceSpan name, std::unique_ptr<raw::AttributeList> attributes)
: ordinal(std::move(ordinal)),
maybe_used(std::make_unique<Used>(std::move(type), name, nullptr, std::move(attributes))) {}
TableMember(std::unique_ptr<raw::Ordinal64> ordinal, SourceSpan span)
: ordinal(std::move(ordinal)), span(span) {}
std::unique_ptr<raw::Ordinal64> ordinal;
// The span for reserved table members.
std::optional<SourceSpan> span;
std::unique_ptr<Used> maybe_used;
std::any AcceptAny(VisitorAny* visitor) const override;
};
struct Table final : public TypeDecl {
using Member = TableMember;
Table(std::unique_ptr<raw::AttributeList> attributes, Name name, std::vector<Member> members,
types::Strictness strictness, types::Resourceness resourceness)
: TypeDecl(Kind::kTable, std::move(attributes), std::move(name)),
members(std::move(members)),
strictness(strictness),
resourceness(resourceness) {}
std::vector<Member> members;
const types::Strictness strictness;
const types::Resourceness resourceness;
std::any AcceptAny(VisitorAny* visitor) const override;
};
struct Union;
// See the comment on the StructMember class for why this is a top-level class.
// TODO(fxbug.dev/37535): Move this to a nested class inside Union.
struct UnionMemberUsed : public Object {
UnionMemberUsed(std::unique_ptr<TypeConstructor> type_ctor, SourceSpan name,
std::unique_ptr<raw::AttributeList> attributes)
: type_ctor(std::move(type_ctor)), name(name), attributes(std::move(attributes)) {}
std::unique_ptr<TypeConstructor> type_ctor;
SourceSpan name;
std::unique_ptr<raw::AttributeList> attributes;
std::any AcceptAny(VisitorAny* visitor) const override;
FieldShape fieldshape(WireFormat wire_format) const;
const Union* parent = nullptr;
};
// See the comment on the StructMember class for why this is a top-level class.
// TODO(fxbug.dev/37535): Move this to a nested class inside Union.
struct UnionMember : public Object {
using Used = UnionMemberUsed;
UnionMember(std::unique_ptr<raw::Ordinal64> ordinal, std::unique_ptr<TypeConstructor> type_ctor,
SourceSpan name, std::unique_ptr<raw::AttributeList> attributes)
: ordinal(std::move(ordinal)),
maybe_used(std::make_unique<Used>(std::move(type_ctor), name, std::move(attributes))) {}
UnionMember(std::unique_ptr<raw::Ordinal64> ordinal, SourceSpan span)
: ordinal(std::move(ordinal)), span(span) {}
std::unique_ptr<raw::Ordinal64> ordinal;
// The span for reserved members.
std::optional<SourceSpan> span;
std::unique_ptr<Used> maybe_used;
std::any AcceptAny(VisitorAny* visitor) const override;
};
struct Union final : public TypeDecl {
using Member = UnionMember;
Union(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::vector<Member> unparented_members, types::Strictness strictness,
std::optional<types::Resourceness> resourceness)
: TypeDecl(Kind::kUnion, std::move(attributes), std::move(name)),
members(std::move(unparented_members)),
strictness(strictness),
resourceness(resourceness) {
for (auto& member : members) {
if (member.maybe_used) {
member.maybe_used->parent = this;
}
}
}
std::vector<Member> members;
const types::Strictness strictness;
// For user-defined unions, this is set on construction. For synthesized
// unions (in error result responses) it is set during compilation based on
// the unions's members.
std::optional<types::Resourceness> resourceness;
std::vector<std::reference_wrapper<const Member>> MembersSortedByXUnionOrdinal() const;
std::any AcceptAny(VisitorAny* visitor) const override;
};
struct Protocol final : public TypeDecl {
struct Method {
Method(Method&&) = default;
Method& operator=(Method&&) = default;
Method(std::unique_ptr<raw::AttributeList> attributes,
std::unique_ptr<raw::Ordinal64> generated_ordinal64, SourceSpan name,
Struct* maybe_request, Struct* maybe_response)
: attributes(std::move(attributes)),
generated_ordinal64(std::move(generated_ordinal64)),
name(std::move(name)),
maybe_request(maybe_request),
maybe_response(maybe_response) {
assert(this->maybe_request != nullptr || this->maybe_response != nullptr);
}
std::unique_ptr<raw::AttributeList> attributes;
std::unique_ptr<raw::Ordinal64> generated_ordinal64;
SourceSpan name;
Struct* maybe_request;
Struct* maybe_response;
// This is set to the |Protocol| instance that owns this |Method|,
// when the |Protocol| is constructed.
Protocol* owning_protocol = nullptr;
};
// Used to keep track of a all methods (i.e. including composed methods).
// Method pointers here are set after composed_protocols are compiled, and
// are owned by the corresponding composed_protocols.
struct MethodWithInfo {
MethodWithInfo(const Method* method, bool is_composed)
: method(method), is_composed(is_composed) {}
const Method* method;
const bool is_composed;
};
Protocol(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::set<Name> composed_protocols, std::vector<Method> methods)
: TypeDecl(Kind::kProtocol, std::move(attributes), std::move(name)),
composed_protocols(std::move(composed_protocols)),
methods(std::move(methods)) {
for (auto& method : this->methods) {
method.owning_protocol = this;
}
}
std::set<Name> composed_protocols;
std::vector<Method> methods;
std::vector<MethodWithInfo> all_methods;
std::any AcceptAny(VisitorAny* visitor) const override;
};
struct Resource final : public Decl {
struct Property {
Property(std::unique_ptr<TypeConstructor> type_ctor, SourceSpan name,
std::unique_ptr<raw::AttributeList> attributes)
: type_ctor(std::move(type_ctor)),
name(std::move(name)),
attributes(std::move(attributes)) {}
std::unique_ptr<TypeConstructor> type_ctor;
SourceSpan name;
std::unique_ptr<raw::AttributeList> attributes;
};
Resource(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::unique_ptr<TypeConstructor> subtype_ctor, std::vector<Property> properties)
: Decl(Kind::kResource, std::move(attributes), std::move(name)),
subtype_ctor(std::move(subtype_ctor)),
properties(std::move(properties)) {}
// Set during construction.
std::unique_ptr<TypeConstructor> subtype_ctor;
std::vector<Property> properties;
const Property* LookupProperty(std::string_view name);
};
struct TypeAlias final : public Decl {
TypeAlias(std::unique_ptr<raw::AttributeList> attributes, Name name,
std::unique_ptr<TypeConstructor> partial_type_ctor, bool allow_partial_type_ctor)
: Decl(Kind::kTypeAlias, std::move(attributes), std::move(name)),
partial_type_ctor(std::move(partial_type_ctor)),
allow_partial_type_ctor(allow_partial_type_ctor) {}
const std::unique_ptr<TypeConstructor> partial_type_ctor;
// TODO(fxbug.dev/7807): Remove when "using" ceased to be used for alias decl,
// as the new syntax with "alias" keyword disallows partial type.
bool allow_partial_type_ctor;
};
class TypeTemplate {
public:
TypeTemplate(Name name, Typespace* typespace, Reporter* reporter)
: typespace_(typespace), name_(std::move(name)), reporter_(reporter) {}
TypeTemplate(TypeTemplate&& type_template) = default;
virtual ~TypeTemplate() = default;
const Name& name() const { return name_; }
struct CreateInvocation {
const std::optional<SourceSpan>& span;
const Type* arg_type;
const std::optional<uint32_t>& obj_type;
const std::optional<types::HandleSubtype>& handle_subtype;
const Constant* handle_rights;
const Size* size;
const types::Nullability nullability;
};
virtual bool Create(const CreateInvocation& args, std::unique_ptr<Type>* out_type,
std::optional<TypeConstructor::FromTypeAlias>* out_from_type_alias) const = 0;
protected:
bool Fail(const ErrorDef<const TypeTemplate*>& err, const std::optional<SourceSpan>& span) const;
Typespace* typespace_;
Name name_;
private:
Reporter* reporter_;
};
// Typespace provides builders for all types (e.g. array, vector, string), and
// ensures canonicalization, i.e. the same type is represented by one object,
// shared amongst all uses of said type. For instance, while the text
// `vector<uint8>:7` may appear multiple times in source, these all indicate
// the same type.
class Typespace {
public:
explicit Typespace(Reporter* reporter) : reporter_(reporter) {}
bool Create(const flat::Name& name, const Type* arg_type, const std::optional<uint32_t>& obj_type,
const std::optional<types::HandleSubtype>& handle_subtype,
const Constant* handle_rights, const Size* size, types::Nullability nullability,
const Type** out_type,
std::optional<TypeConstructor::FromTypeAlias>* out_from_type_alias);
void AddTemplate(std::unique_ptr<TypeTemplate> type_template);
// TODO(fxbug.dev/70247): this method has been made public solely for the
// benefit of fidlconv. Once the conversion using that tool has been
// completed and tool has been removed, this method should be re-privatized.
const TypeTemplate* LookupTemplate(const flat::Name& name) const;
// RootTypes creates a instance with all primitive types. It is meant to be
// used as the top-level types lookup mechanism, providing definitional
// meaning to names such as `int64`, or `bool`.
static Typespace RootTypes(Reporter* reporter);
private:
friend class TypeAliasTypeTemplate;
bool CreateNotOwned(const flat::Name& name, const Type* arg_type,
const std::optional<uint32_t>& obj_type,
const std::optional<types::HandleSubtype>& handle_subtype,
const Constant* handle_rights, const Size* size,
types::Nullability nullability, std::unique_ptr<Type>* out_type,
std::optional<TypeConstructor::FromTypeAlias>* out_from_type_alias);
std::map<Name::Key, std::unique_ptr<TypeTemplate>> templates_;
std::vector<std::unique_ptr<Type>> types_;
Reporter* reporter_;
};
// AttributeSchema defines a schema for attributes. This includes:
// - The allowed placement of an attribute (e.g. on a method, on a struct
// declaration);
// - The allowed values which an attribute can take.
// For attributes which may be placed on declarations (e.g. protocol, struct,
// union, table), a schema may additionally include:
// - A constraint which must be met by the declaration.
class AttributeSchema {
public:
using Constraint =
fit::function<bool(Reporter* reporter, const raw::Attribute& attribute, const Decl* decl)>;
// Placement indicates the placement of an attribute, e.g. whether an
// attribute is placed on an enum declaration, method, or union
// member.
enum class Placement {
kBitsDecl,
kBitsMember,
kConstDecl,
kEnumDecl,
kEnumMember,
kProtocolDecl,
kLibrary,
kMethod,
kResourceDecl,
kResourceProperty,
kServiceDecl,
kServiceMember,
kStructDecl,
kStructMember,
kTableDecl,
kTableMember,
kTypeAliasDecl,
kUnionDecl,
kUnionMember,
kDeprecated,
};
AttributeSchema(const std::set<Placement>& allowed_placements,
const std::set<std::string> allowed_values,
Constraint constraint = NoOpConstraint);
AttributeSchema(AttributeSchema&& schema) = default;
static AttributeSchema Deprecated();
void ValidatePlacement(Reporter* reporter, const raw::Attribute& attribute,
Placement placement) const;
void ValidateValue(Reporter* reporter, const raw::Attribute& attribute) const;
void ValidateConstraint(Reporter* reporter, const raw::Attribute& attribute,
const Decl* decl) const;
private:
static bool NoOpConstraint(Reporter* reporter, const raw::Attribute& attribute,
const Decl* decl) {
return true;
}
std::set<Placement> allowed_placements_;
std::set<std::string> allowed_values_;
Constraint constraint_;
};
class Libraries {
public:
Libraries();
// Insert |library|.
bool Insert(std::unique_ptr<Library> library);
// Lookup a library by its |library_name|.
bool Lookup(const std::vector<std::string_view>& library_name, Library** out_library) const;
void AddAttributeSchema(const std::string& name, AttributeSchema schema) {
[[maybe_unused]] auto iter = attribute_schemas_.emplace(name, std::move(schema));
assert(iter.second && "do not add schemas twice");
}
const AttributeSchema* RetrieveAttributeSchema(Reporter* reporter,
const raw::Attribute& attribute) const;
std::set<std::vector<std::string_view>> Unused(const Library* target_library) const;
private:
std::map<std::vector<std::string_view>, std::unique_ptr<Library>> all_libraries_;
std::map<std::string, AttributeSchema> attribute_schemas_;
};
class Dependencies {
public:
// Register a dependency to a library. The newly recorded dependent library
// will be referenced by its name, and may also be optionally be referenced
// by an alias.
bool Register(const SourceSpan& span, std::string_view filename, Library* dep_library,
const std::unique_ptr<raw::Identifier>& maybe_alias);
// Returns true if this dependency set contains a library with the given name and filename.
bool Contains(std::string_view filename, const std::vector<std::string_view>& name);
// Looks up a dependent library by |filename| and |name|, and marks it as
// used.
bool LookupAndUse(std::string_view filename, const std::vector<std::string_view>& name,
Library** out_library);
// VerifyAllDependenciesWereUsed verifies that all regisered dependencies
// were used, i.e. at least one lookup was made to retrieve them.
// Reports errors directly, and returns true if one error or more was
// reported.
bool VerifyAllDependenciesWereUsed(const Library& for_library, Reporter* reporter);
const std::set<Library*>& dependencies() const { return dependencies_aggregate_; }
private:
struct LibraryRef {
LibraryRef(const SourceSpan span, Library* library) : span_(span), library_(library) {}
const SourceSpan span_;
Library* library_;
bool used_ = false;
};
bool InsertByName(std::string_view filename, const std::vector<std::string_view>& name,
LibraryRef* ref);
using ByName = std::map<std::vector<std::string_view>, LibraryRef*>;
using ByFilename = std::map<std::string, std::unique_ptr<ByName>>;
std::vector<std::unique_ptr<LibraryRef>> refs_;
ByFilename dependencies_;
std::set<Library*> dependencies_aggregate_;
};
class StepBase;
class ConsumeStep;
class CompileStep;
class VerifyResourcenessStep;
class VerifyAttributesStep;
using MethodHasher = fit::function<raw::Ordinal64(
const std::vector<std::string_view>& library_name, const std::string_view& protocol_name,
const std::string_view& selector_name, const raw::SourceElement& source_element)>;
class Library {
friend StepBase;
friend ConsumeStep;
friend CompileStep;
friend VerifyResourcenessStep;
friend VerifyAttributesStep;
public:
Library(const Libraries* all_libraries, Reporter* reporter, Typespace* typespace,
MethodHasher method_hasher, ExperimentalFlags experimental_flags)
: all_libraries_(all_libraries),
reporter_(reporter),
typespace_(typespace),
method_hasher_(std::move(method_hasher)),
experimental_flags_(experimental_flags) {}
bool ConsumeFile(std::unique_ptr<raw::File> file);
bool Compile();
const std::vector<std::string_view>& name() const { return library_name_; }
const raw::AttributeList* attributes() const { return attributes_.get(); }
private:
bool Fail(std::unique_ptr<Diagnostic> err);
template <typename... Args>
bool Fail(const ErrorDef<Args...>& err, const Args&... args);
template <typename... Args>
bool Fail(const ErrorDef<Args...>& err, const std::optional<SourceSpan>& span,
const Args&... args);
template <typename... Args>
bool Fail(const ErrorDef<Args...>& err, const Name& name, const Args&... args) {
return Fail(err, name.span(), args...);
}
template <typename... Args>
bool Fail(const ErrorDef<Args...>& err, const Decl& decl, const Args&... args) {
return Fail(err, decl.name, args...);
}
void ValidateAttributesPlacement(AttributeSchema::Placement placement,
const raw::AttributeList* attributes);
void ValidateAttributesConstraints(const Decl* decl, const raw::AttributeList* attributes);
// TODO(fxbug.dev/7920): Rationalize the use of names. Here, a simple name is
// one that is not scoped, it is just text. An anonymous name is one that
// is guaranteed to be unique within the library, and a derived name is one
// that is library scoped but derived from the concatenated components using
// underscores as delimiters.
SourceSpan GeneratedSimpleName(const std::string& name);
std::string NextAnonymousName();
// Attempts to compile a compound identifier, and resolve it to a name
// within the context of a library. On success, the name is returned.
// On failure, no name is returned, and a failure is emitted, i.e. the
// caller is not responsible for reporting the resolution error.
std::optional<Name> CompileCompoundIdentifier(const raw::CompoundIdentifier* compound_identifier);
bool RegisterDecl(std::unique_ptr<Decl> decl);
ConsumeStep StartConsumeStep(fidl::utils::Syntax syntax);
CompileStep StartCompileStep();
VerifyResourcenessStep StartVerifyResourcenessStep();
VerifyAttributesStep StartVerifyAttributesStep();
bool ConsumeConstant(std::unique_ptr<raw::Constant> raw_constant,
std::unique_ptr<Constant>* out_constant);
bool ConsumeTypeConstructorOld(std::unique_ptr<raw::TypeConstructorOld> raw_type_ctor,
std::unique_ptr<TypeConstructor>* out_type);
void ConsumeUsing(std::unique_ptr<raw::Using> using_directive, fidl::utils::Syntax syntax);
bool ConsumeTypeAlias(std::unique_ptr<raw::AliasDeclaration> alias_declaration,
fidl::utils::Syntax syntax);
bool ConsumeTypeAlias(std::unique_ptr<raw::Using> using_directive, fidl::utils::Syntax syntax);
void ConsumeBitsDeclaration(std::unique_ptr<raw::BitsDeclaration> bits_declaration);
void ConsumeConstDeclaration(std::unique_ptr<raw::ConstDeclaration> const_declaration);
void ConsumeEnumDeclaration(std::unique_ptr<raw::EnumDeclaration> enum_declaration);
void ConsumeProtocolDeclaration(std::unique_ptr<raw::ProtocolDeclaration> protocol_declaration,
fidl::utils::Syntax syntax);
bool ConsumeResourceDeclaration(std::unique_ptr<raw::ResourceDeclaration> resource_declaration,
fidl::utils::Syntax syntax);
bool ConsumeParameterList(Name name, std::unique_ptr<raw::ParameterList> parameter_list,
bool anonymous, fidl::utils::Syntax syntax, Struct** out_struct_decl);
bool CreateMethodResult(const Name& protocol_name, SourceSpan response_span,
raw::ProtocolMethod* method, Struct* in_response,
fidl::utils::Syntax syntax, Struct** out_response);
void ConsumeServiceDeclaration(std::unique_ptr<raw::ServiceDeclaration> service_decl,
fidl::utils::Syntax syntax);
void ConsumeStructDeclaration(std::unique_ptr<raw::StructDeclaration> struct_declaration);
void ConsumeTableDeclaration(std::unique_ptr<raw::TableDeclaration> table_declaration);
void ConsumeUnionDeclaration(std::unique_ptr<raw::UnionDeclaration> union_declaration);
// start new syntax
void ConsumeTypeDecl(std::unique_ptr<raw::TypeDecl> type_decl);
bool ConsumeTypeConstructorNew(std::unique_ptr<raw::TypeConstructorNew> raw_type_ctor,
const Name& context, std::unique_ptr<TypeConstructor>* out_type);
bool ConsumeTypeConstructor(raw::TypeConstructor raw_type_ctor, const Name& context,
std::unique_ptr<TypeConstructor>* out_type);
// Here, T is expected to be an ordinal-carrying flat AST class (ie, Table or
// Union), while M is its "Member" sub-class.
template <typename T, typename M>
bool ConsumeOrdinaledLayout(std::unique_ptr<raw::Layout>, const Name&);
bool ConsumeStructLayout(std::unique_ptr<raw::Layout>, const Name&);
// Here, T is expected to be an value-carrying flat AST class (ie, Bits or
// Enum), while M is its "Member" sub-class.
template <typename T, typename M>
bool ConsumeValueLayout(std::unique_ptr<raw::Layout>, const Name&);
bool ConsumeLayout(std::unique_ptr<raw::Layout>, const Name&);
bool IsOptionalConstraint(std::unique_ptr<TypeConstructor>&,
const std::unique_ptr<raw::Constant>&);
// end new syntax
bool TypeCanBeConst(const Type* type);
const Type* TypeResolve(const Type* type);
bool TypeIsConvertibleTo(const Type* from_type, const Type* to_type);
std::unique_ptr<TypeConstructor> IdentifierTypeForDecl(const Decl* decl,
types::Nullability nullability,
fidl::utils::Syntax syntax);
bool AddConstantDependencies(const Constant* constant, std::set<Decl*>* out_edges);
bool DeclDependencies(Decl* decl, std::set<Decl*>* out_edges);
bool SortDeclarations();
bool CompileBits(Bits* bits_declaration);
bool CompileConst(Const* const_declaration);
bool CompileEnum(Enum* enum_declaration);
bool CompileProtocol(Protocol* protocol_declaration);
bool CompileResource(Resource* resource_declaration);
bool CompileService(Service* service_decl);
bool CompileStruct(Struct* struct_declaration);
bool CompileTable(Table* table_declaration);
bool CompileUnion(Union* union_declaration);
bool CompileTypeAlias(TypeAlias* type_alias);
// Compiling a type validates the type: in particular, we validate that optional identifier types
// refer to things that can in fact be nullable (ie not enums).
//
// These three sets of functions functions exist to support differing behavior
// between the "old" and "new" syntax: protocols can be treated as types in the
// former but not the latter.
// This top level function switches behavior depending on what syntax is
// being read, calling into CompileTypeConstructorAllowing to do the actual
// compilation.
bool CompileTypeConstructor(TypeConstructor* type);
// This version compiles the constructor, then validates that it is of the
// expected "category". The possible "categories" are the different classes of things
// that are stored in the Typespace: types, protocols, and services - things
// of one category cannot generally be used in place of another.
enum class AllowedCategories {
kTypeOrProtocol,
kTypeOnly,
kProtocolOnly,
// Note: there's currently no scenario where we expect a service.
};
// Compiles the TypeConstructor and then validates that it's in one of the
// allowed categories.
bool CompileTypeConstructorAllowing(TypeConstructor* type, AllowedCategories category);
bool VerifyTypeCategory(TypeConstructor* type, AllowedCategories category);
ConstantValue::Kind ConstantValuePrimitiveKind(const types::PrimitiveSubtype primitive_subtype);
bool ResolveHandleRightsConstant(TypeConstructor* type_ctor);
bool ResolveHandleSubtypeIdentifier(TypeConstructor* type_ctor, uint32_t* out_obj_type,
types::HandleSubtype* out_subtype);
bool ResolveSizeBound(TypeConstructor* type_ctor, const Size** out_size);
bool ResolveOrOperatorConstant(Constant* constant, const Type* type,
const ConstantValue& left_operand,
const ConstantValue& right_operand);
bool ResolveConstant(Constant* constant, const Type* type);
bool ResolveIdentifierConstant(IdentifierConstant* identifier_constant, const Type* type);
bool ResolveLiteralConstant(LiteralConstant* literal_constant, const Type* type);
// Validates a single member of a bits or enum. On success, returns nullptr,
// and on failure returns an error.
template <typename MemberType>
using MemberValidator = fit::function<std::unique_ptr<Diagnostic>(
const MemberType& member, const raw::AttributeList* attributes)>;
template <typename DeclType, typename MemberType>
bool ValidateMembers(DeclType* decl, MemberValidator<MemberType> validator);
template <typename MemberType>
bool ValidateBitsMembersAndCalcMask(Bits* bits_decl, MemberType* out_mask);
template <typename MemberType>
bool ValidateEnumMembersAndCalcUnknownValue(Enum* enum_decl, MemberType* out_unknown_value);
void VerifyDeclAttributes(Decl* decl);
bool VerifyInlineSize(const Struct* decl);
public:
bool CompileDecl(Decl* decl);
// Returns nullptr when the |name| cannot be resolved to a
// Name. Otherwise it returns the declaration.
Decl* LookupDeclByName(Name::Key name) const;
// TODO(fxbug.dev/70247): this method has been created solely for the benefit
// of fidlconv. Once the conversion using that tool has been completed and
// and the tool has been removed, this method should be removed as well.
const Libraries* GetLibraries() const;
template <typename NumericType>
bool ParseNumericLiteral(const raw::NumericLiteral* literal, NumericType* out_value) const;
bool HasAttribute(std::string_view name) const;
const std::set<Library*>& dependencies() const;
std::vector<std::string_view> library_name_;
std::vector<std::unique_ptr<Bits>> bits_declarations_;
std::vector<std::unique_ptr<Const>> const_declarations_;
std::vector<std::unique_ptr<Enum>> enum_declarations_;
std::vector<std::unique_ptr<Protocol>> protocol_declarations_;
std::vector<std::unique_ptr<Resource>> resource_declarations_;
std::vector<std::unique_ptr<Service>> service_declarations_;
std::vector<std::unique_ptr<Struct>> struct_declarations_;
std::vector<std::unique_ptr<Table>> table_declarations_;
std::vector<std::unique_ptr<Union>> union_declarations_;
std::vector<std::unique_ptr<TypeAlias>> type_alias_declarations_;
// All Decl pointers here are non-null and are owned by the
// various foo_declarations_.
std::vector<Decl*> declaration_order_;
private:
// TODO(fxbug.dev/7724): Remove when canonicalizing types.
const Name kSizeTypeName = Name::CreateIntrinsic("uint32");
const PrimitiveType kSizeType = PrimitiveType(kSizeTypeName, types::PrimitiveSubtype::kUint32);
std::unique_ptr<raw::AttributeList> attributes_;
Dependencies dependencies_;
const Libraries* all_libraries_;
// All Decl pointers here are non-null. They are owned by the various
// foo_declarations_ members of this Library object, or of one of the Library
// objects in dependencies_.
std::map<Name::Key, Decl*> declarations_;
// This map contains a subset of declarations_ (no imported declarations)
// keyed by `utils::canonicalize(name.decl_name())` rather than `name.key()`.
std::map<std::string, Decl*> declarations_by_canonical_name_;
Reporter* reporter_;
Typespace* typespace_;
const MethodHasher method_hasher_;
const ExperimentalFlags experimental_flags_;
uint32_t anon_counter_ = 0;
VirtualSourceFile generated_source_file_{"generated"};
};
class StepBase {
public:
StepBase(Library* library)
: library_(library), checkpoint_(library->reporter_->Checkpoint()), done_(false) {}
~StepBase() { assert(done_ && "Step must be completed before destructor is called"); }
bool Done() {
done_ = true;
return checkpoint_.NoNewErrors();
}
protected:
Library* library_; // link to library for which this step was created
private:
Reporter::Counts checkpoint_;
bool done_;
};
// The input to the consume step (raw::File) stores the syntax that it is written
// in. This syntax needs to get propagated through the two paths that the consume
// step consists of:
// * decls that go through RegisterDecl
// * flat::TypeConstructors that get created in ConsumeTypeConstructor
// To do so, ConsumeFile passes the raw::File's syntax to the ConsumeStep class,
// which then passes it through to the various ConsumeFooDecl as necessary. Note
// that only the Consume functions that correspond to nodes present in both the
// old and new syntax (e.g. Service, Resource) need the extra Syntax parameter -
// nodes that only appear in the old or new syntax (e.g. UnionDeclaration for
// old, Layout for new), don't need the parameter because they can hardcode the
// syntax inside the implementation.
class ConsumeStep : public StepBase {
public:
ConsumeStep(Library* library, fidl::utils::Syntax syntax) : StepBase(library), syntax(syntax) {}
void ForAliasDeclaration(std::unique_ptr<raw::AliasDeclaration> alias_declaration) {
library_->ConsumeTypeAlias(std::move(alias_declaration), syntax);
}
void ForUsing(std::unique_ptr<raw::Using> using_directive) {
library_->ConsumeUsing(std::move(using_directive), syntax);
}
void ForBitsDeclaration(std::unique_ptr<raw::BitsDeclaration> bits_declaration) {
library_->ConsumeBitsDeclaration(std::move(bits_declaration));
}
void ForConstDeclaration(std::unique_ptr<raw::ConstDeclaration> const_declaration) {
// TODO(fxbug.dev/71178): pipe syntax through
library_->ConsumeConstDeclaration(std::move(const_declaration));
}
void ForEnumDeclaration(std::unique_ptr<raw::EnumDeclaration> enum_declaration) {
library_->ConsumeEnumDeclaration(std::move(enum_declaration));
}
void ForProtocolDeclaration(std::unique_ptr<raw::ProtocolDeclaration> protocol_declaration) {
library_->ConsumeProtocolDeclaration(std::move(protocol_declaration), syntax);
}
void ForResourceDeclaration(std::unique_ptr<raw::ResourceDeclaration> resource_declaration) {
library_->ConsumeResourceDeclaration(std::move(resource_declaration), syntax);
}
void ForServiceDeclaration(std::unique_ptr<raw::ServiceDeclaration> service_decl) {
library_->ConsumeServiceDeclaration(std::move(service_decl), syntax);
}
void ForStructDeclaration(std::unique_ptr<raw::StructDeclaration> struct_declaration) {
library_->ConsumeStructDeclaration(std::move(struct_declaration));
}
void ForTableDeclaration(std::unique_ptr<raw::TableDeclaration> table_declaration) {
library_->ConsumeTableDeclaration(std::move(table_declaration));
}
void ForUnionDeclaration(std::unique_ptr<raw::UnionDeclaration> union_declaration) {
library_->ConsumeUnionDeclaration(std::move(union_declaration));
}
void ForTypeDecl(std::unique_ptr<raw::TypeDecl> type_decl) {
library_->ConsumeTypeDecl(std::move(type_decl));
}
fidl::utils::Syntax syntax;
};
class CompileStep : public StepBase {
public:
CompileStep(Library* library) : StepBase(library) {}
void ForDecl(Decl* decl) { library_->CompileDecl(decl); }
};
class VerifyResourcenessStep : public StepBase {
public:
VerifyResourcenessStep(Library* library) : StepBase(library) {}
void ForDecl(const Decl* decl);
private:
// Returns the effective resourcenss of |type|. The set of effective resource
// types includes (1) nominal resource types per the FTP-057 definition, and
// (2) declarations that have an effective resource member (or equivalently,
// transitively contain a nominal resource).
types::Resourceness EffectiveResourceness(const Type* type);
// Map from struct/table/union declarations to their effective resourceness. A
// value of std::nullopt indicates that the declaration has been visited, used
// to prevent infinite recursion.
std::map<const Decl*, std::optional<types::Resourceness>> effective_resourceness_;
};
class VerifyAttributesStep : public StepBase {
public:
VerifyAttributesStep(Library* library) : StepBase(library) {}
void ForDecl(Decl* decl) { library_->VerifyDeclAttributes(decl); }
};
// See the comment on Object::Visitor<T> for more details.
struct Object::VisitorAny {
virtual std::any Visit(const ArrayType&) = 0;
virtual std::any Visit(const VectorType&) = 0;
virtual std::any Visit(const StringType&) = 0;
virtual std::any Visit(const HandleType&) = 0;
virtual std::any Visit(const PrimitiveType&) = 0;
virtual std::any Visit(const IdentifierType&) = 0;
virtual std::any Visit(const RequestHandleType&) = 0;
virtual std::any Visit(const Enum&) = 0;
virtual std::any Visit(const Bits&) = 0;
virtual std::any Visit(const Service&) = 0;
virtual std::any Visit(const Struct&) = 0;
virtual std::any Visit(const Struct::Member&) = 0;
virtual std::any Visit(const Table&) = 0;
virtual std::any Visit(const Table::Member&) = 0;
virtual std::any Visit(const Table::Member::Used&) = 0;
virtual std::any Visit(const Union&) = 0;
virtual std::any Visit(const Union::Member&) = 0;
virtual std::any Visit(const Union::Member::Used&) = 0;
virtual std::any Visit(const Protocol&) = 0;
};
// This Visitor<T> class is useful so that Object.Accept() can enforce that its return type
// matches the template type of Visitor. See the comment on Object::Visitor<T> for more
// details.
template <typename T>
struct Object::Visitor : public VisitorAny {};
template <typename T>
T Object::Accept(Visitor<T>* visitor) const {
return std::any_cast<T>(AcceptAny(visitor));
}
inline std::any ArrayType::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any VectorType::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any StringType::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any HandleType::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any PrimitiveType::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any IdentifierType::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any RequestHandleType::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any Enum::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any Bits::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any Service::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any Struct::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any Struct::Member::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any Table::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any Table::Member::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any Table::Member::Used::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any Union::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
inline std::any Union::Member::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any Union::Member::Used::AcceptAny(VisitorAny* visitor) const {
return visitor->Visit(*this);
}
inline std::any Protocol::AcceptAny(VisitorAny* visitor) const { return visitor->Visit(*this); }
} // namespace flat
} // namespace fidl
#endif // TOOLS_FIDL_FIDLC_INCLUDE_FIDL_FLAT_AST_H_