blob: 2ad27655576b062da2cce5ade06c569ea4c9e5b8 [file] [log] [blame]
use std::cell::Cell;
use std::collections::HashMap;
use std::collections::HashSet;
use std::hash::Hash;
type Order = usize;
/// Directed Graph with dynamic topological sorting
///
/// Design and implementation based "A Dynamic Topological Sort Algorithm for Directed Acyclic
/// Graphs" by David J. Pearce and Paul H.J. Kelly which can be found on [the author's
/// website][paper].
///
/// Variable- and method names have been chosen to reflect most closely resemble the names in the
/// original paper.
///
/// This digraph tracks its own topological order and updates it when new edges are added to the
/// graph. If a cycle is added that would create a cycle, that edge is rejected and the graph is not
/// visibly changed.
///
/// [paper]: https://whileydave.com/publications/pk07_jea/
#[derive(Default, Debug)]
pub struct DiGraph<V>
where
V: Eq + Hash + Copy,
{
nodes: HashMap<V, Node<V>>,
/// Next topological sort order
next_ord: Order,
}
#[derive(Debug)]
struct Node<V>
where
V: Eq + Hash + Clone,
{
in_edges: HashSet<V>,
out_edges: HashSet<V>,
// The "Ord" field is a Cell to ensure we can update it in an immutable context.
// `std::collections::HashMap` doesn't let you have multiple mutable references to elements, but
// this way we can use immutable references and still update `ord`. This saves quite a few
// hashmap lookups in the final reorder function.
ord: Cell<Order>,
}
impl<V> DiGraph<V>
where
V: Eq + Hash + Copy,
{
/// Add a new node to the graph.
///
/// If the node already existed, this function does not add it and uses the existing node data.
/// The function returns mutable references to the in-edges, out-edges, and finally the index of
/// the node in the topological order.
///
/// New nodes are appended to the end of the topological order when added.
fn add_node(&mut self, n: V) -> (&mut HashSet<V>, &mut HashSet<V>, Order) {
let next_ord = &mut self.next_ord;
let node = self.nodes.entry(n).or_insert_with(|| {
let order = *next_ord;
*next_ord = next_ord.checked_add(1).expect("Topological order overflow");
Node {
ord: Cell::new(order),
in_edges: Default::default(),
out_edges: Default::default(),
}
});
(&mut node.in_edges, &mut node.out_edges, node.ord.get())
}
pub(crate) fn remove_node(&mut self, n: V) -> bool {
match self.nodes.remove(&n) {
None => false,
Some(Node {
out_edges,
in_edges,
..
}) => {
out_edges.into_iter().for_each(|m| {
self.nodes.get_mut(&m).unwrap().in_edges.remove(&n);
});
in_edges.into_iter().for_each(|m| {
self.nodes.get_mut(&m).unwrap().out_edges.remove(&n);
});
true
}
}
}
/// Attempt to add an edge to the graph
///
/// Nodes, both from and to, are created as needed when creating new edges. If the new edge
/// would introduce a cycle, the edge is rejected and `false` is returned.
pub(crate) fn add_edge(&mut self, x: V, y: V) -> bool {
if x == y {
// self-edges are always considered cycles
return false;
}
let (_, out_edges, ub) = self.add_node(x);
if !out_edges.insert(y) {
// Edge already exists, nothing to be done
return true;
}
let (in_edges, _, lb) = self.add_node(y);
in_edges.insert(x);
if lb < ub {
// This edge might introduce a cycle, need to recompute the topological sort
let mut visited = [x, y].into_iter().collect();
let mut delta_f = Vec::new();
let mut delta_b = Vec::new();
if !self.dfs_f(&self.nodes[&y], ub, &mut visited, &mut delta_f) {
// This edge introduces a cycle, so we want to reject it and remove it from the
// graph again to keep the "does not contain cycles" invariant.
// We use map instead of unwrap to avoid an `unwrap()` but we know that these
// entries are present as we just added them above.
self.nodes.get_mut(&y).map(|node| node.in_edges.remove(&x));
self.nodes.get_mut(&x).map(|node| node.out_edges.remove(&y));
// No edge was added
return false;
}
// No need to check as we should've found the cycle on the forward pass
self.dfs_b(&self.nodes[&x], lb, &mut visited, &mut delta_b);
// Original paper keeps it around but this saves us from clearing it
drop(visited);
self.reorder(delta_f, delta_b);
}
true
}
/// Forwards depth-first-search
fn dfs_f<'a>(
&'a self,
n: &'a Node<V>,
ub: Order,
visited: &mut HashSet<V>,
delta_f: &mut Vec<&'a Node<V>>,
) -> bool {
delta_f.push(n);
n.out_edges.iter().all(|w| {
let node = &self.nodes[w];
let ord = node.ord.get();
if ord == ub {
// Found a cycle
false
} else if !visited.contains(w) && ord < ub {
// Need to check recursively
visited.insert(*w);
self.dfs_f(node, ub, visited, delta_f)
} else {
// Already seen this one or not interesting
true
}
})
}
/// Backwards depth-first-search
fn dfs_b<'a>(
&'a self,
n: &'a Node<V>,
lb: Order,
visited: &mut HashSet<V>,
delta_b: &mut Vec<&'a Node<V>>,
) {
delta_b.push(n);
for w in &n.in_edges {
let node = &self.nodes[w];
if !visited.contains(w) && lb < node.ord.get() {
visited.insert(*w);
self.dfs_b(node, lb, visited, delta_b);
}
}
}
fn reorder(&self, mut delta_f: Vec<&Node<V>>, mut delta_b: Vec<&Node<V>>) {
self.sort(&mut delta_f);
self.sort(&mut delta_b);
let mut l = Vec::with_capacity(delta_f.len() + delta_b.len());
let mut orders = Vec::with_capacity(delta_f.len() + delta_b.len());
for v in delta_b.into_iter().chain(delta_f) {
orders.push(v.ord.get());
l.push(v);
}
// Original paper cleverly merges the two lists by using that both are sorted. We just sort
// again. This is slower but also much simpler.
orders.sort_unstable();
for (node, order) in l.into_iter().zip(orders) {
node.ord.set(order);
}
}
fn sort(&self, ids: &mut [&Node<V>]) {
// Can use unstable sort because mutex ids should not be equal
ids.sort_unstable_by_key(|v| &v.ord);
}
}
#[cfg(test)]
mod tests {
use rand::seq::SliceRandom;
use rand::thread_rng;
use super::*;
#[test]
fn test_no_self_cycle() {
// Regression test for https://github.com/bertptrs/tracing-mutex/issues/7
let mut graph = DiGraph::default();
assert!(!graph.add_edge(1, 1));
}
#[test]
fn test_digraph() {
let mut graph = DiGraph::default();
// Add some safe edges
assert!(graph.add_edge(0, 1));
assert!(graph.add_edge(1, 2));
assert!(graph.add_edge(2, 3));
assert!(graph.add_edge(4, 2));
// Try to add an edge that introduces a cycle
assert!(!graph.add_edge(3, 1));
// Add an edge that should reorder 0 to be after 4
assert!(graph.add_edge(4, 0));
}
/// Fuzz the DiGraph implementation by adding a bunch of valid edges.
///
/// This test generates all possible forward edges in a 100-node graph consisting of natural
/// numbers, shuffles them, then adds them to the graph. This will always be a valid directed,
/// acyclic graph because there is a trivial order (the natural numbers) but because the edges
/// are added in a random order the DiGraph will still occassionally need to reorder nodes.
#[test]
fn fuzz_digraph() {
// Note: this fuzzer is quadratic in the number of nodes, so this cannot be too large or it
// will slow down the tests too much.
const NUM_NODES: usize = 100;
let mut edges = Vec::with_capacity(NUM_NODES * NUM_NODES);
for i in 0..NUM_NODES {
for j in i..NUM_NODES {
if i != j {
edges.push((i, j));
}
}
}
edges.shuffle(&mut thread_rng());
let mut graph = DiGraph::default();
for (x, y) in edges {
assert!(graph.add_edge(x, y));
}
}
}