| use std::collections::BinaryHeap; |
| use std::default::Default; |
| use std::iter::{FromIterator, IntoIterator}; |
| |
| use num_traits::ToPrimitive; |
| |
| use {Commute, Partial}; |
| |
| pub fn median_on_sorted<T>(data: &[T]) -> Option<f64> |
| where T: PartialOrd + ToPrimitive { |
| Some(match data.len() { |
| 0 => return None, |
| 1 => data[0].to_f64().unwrap(), |
| len if len % 2 == 0 => { |
| let v1 = data[(len / 2) - 1].to_f64().unwrap(); |
| let v2 = data[len / 2].to_f64().unwrap(); |
| (v1 + v2) / 2.0 |
| } |
| len => { |
| data[len / 2].to_f64().unwrap() |
| } |
| }) |
| } |
| |
| pub fn mode_on_sorted<T, I>(it: I) -> Option<T> |
| where T: PartialOrd, I: Iterator<Item=T> { |
| // This approach to computing the mode works very nicely when the |
| // number of samples is large and is close to its cardinality. |
| // In other cases, a hashmap would be much better. |
| // But really, how can we know this when given an arbitrary stream? |
| // Might just switch to a hashmap to track frequencies. That would also |
| // be generally useful for discovering the cardinality of a sample. |
| let (mut mode, mut next) = (None, None); |
| let (mut mode_count, mut next_count) = (0usize, 0usize); |
| for x in it { |
| if mode.as_ref().map(|y| y == &x).unwrap_or(false) { |
| mode_count += 1; |
| } else if next.as_ref().map(|y| y == &x).unwrap_or(false) { |
| next_count += 1; |
| } else { |
| next = Some(x); |
| next_count = 0; |
| } |
| |
| if next_count > mode_count { |
| mode = next; |
| mode_count = next_count; |
| next = None; |
| next_count = 0; |
| } else if next_count == mode_count { |
| mode = None; |
| mode_count = 0usize; |
| } |
| } |
| mode |
| } |
| |
| /// A commutative data structure for sorted sequences of data. |
| /// |
| /// Note that this works on types that do not define a total ordering like |
| /// `f32` and `f64`. Then an ordering is not defined, an arbitrary order |
| /// is returned. |
| #[derive(Clone)] |
| pub struct Sorted<T> { |
| data: BinaryHeap<Partial<T>>, |
| } |
| |
| impl<T: PartialOrd> Sorted<T> { |
| /// Create initial empty state. |
| pub fn new() -> Sorted<T> { |
| Default::default() |
| } |
| |
| /// Add a new element to the set. |
| pub fn add(&mut self, v: T) { |
| self.data.push(Partial(v)) |
| } |
| |
| /// Returns the number of data points. |
| pub fn len(&self) -> usize { |
| self.data.len() |
| } |
| } |
| |
| impl<T: PartialOrd + Clone> Sorted<T> { |
| /// Returns the mode of the data. |
| pub fn mode(&self) -> Option<T> { |
| let p = mode_on_sorted(self.data.clone().into_sorted_vec().into_iter()); |
| p.map(|p| p.0) |
| } |
| } |
| |
| impl<T: PartialOrd + ToPrimitive + Clone> Sorted<T> { |
| /// Returns the median of the data. |
| pub fn median(&self) -> Option<f64> { |
| // Grr. The only way to avoid the alloc here is to take `self` by |
| // value. Could return `(f64, Sorted<T>)`, but that seems a bit weird. |
| // |
| // NOTE: Can `std::mem::swap` help us here? |
| let data = self.data.clone().into_sorted_vec(); |
| median_on_sorted(&*data) |
| } |
| } |
| |
| impl<T: PartialOrd> Commute for Sorted<T> { |
| fn merge(&mut self, v: Sorted<T>) { |
| // should this be `into_sorted_vec`? |
| self.data.extend(v.data.into_vec().into_iter()); |
| } |
| } |
| |
| impl<T: PartialOrd> Default for Sorted<T> { |
| fn default() -> Sorted<T> { Sorted { data: BinaryHeap::new() } } |
| } |
| |
| impl<T: PartialOrd> FromIterator<T> for Sorted<T> { |
| fn from_iter<I: IntoIterator<Item=T>>(it: I) -> Sorted<T> { |
| let mut v = Sorted::new(); |
| v.extend(it); |
| v |
| } |
| } |
| |
| impl<T: PartialOrd> Extend<T> for Sorted<T> { |
| fn extend<I: IntoIterator<Item=T>>(&mut self, it: I) { |
| self.data.extend(it.into_iter().map(Partial)) |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use num::ToPrimitive; |
| use super::Sorted; |
| |
| fn median<T, I>(it: I) -> Option<f64> |
| where T: PartialOrd + ToPrimitive + Clone, I: Iterator<Item=T> { |
| it.collect::<Sorted<T>>().median() |
| } |
| |
| fn mode<T, I>(it: I) -> Option<T> |
| where T: PartialOrd + Clone, I: Iterator<Item=T> { |
| it.collect::<Sorted<T>>().mode() |
| } |
| |
| #[test] |
| fn median_stream() { |
| assert_eq!(median(vec![3usize, 5, 7, 9].into_iter()), Some(6.0)); |
| assert_eq!(median(vec![3usize, 5, 7].into_iter()), Some(5.0)); |
| } |
| |
| #[test] |
| fn mode_stream() { |
| assert_eq!(mode(vec![3usize, 5, 7, 9].into_iter()), None); |
| assert_eq!(mode(vec![3usize, 3, 3, 3].into_iter()), Some(3)); |
| assert_eq!(mode(vec![3usize, 3, 3, 4].into_iter()), Some(3)); |
| assert_eq!(mode(vec![4usize, 3, 3, 3].into_iter()), Some(3)); |
| assert_eq!(mode(vec![1usize, 1, 2, 3, 3].into_iter()), None); |
| } |
| |
| #[test] |
| fn median_floats() { |
| assert_eq!(median(vec![3.0f64, 5.0, 7.0, 9.0].into_iter()), Some(6.0)); |
| assert_eq!(median(vec![3.0f64, 5.0, 7.0].into_iter()), Some(5.0)); |
| } |
| |
| #[test] |
| fn mode_floats() { |
| assert_eq!(mode(vec![3.0f64, 5.0, 7.0, 9.0].into_iter()), None); |
| assert_eq!(mode(vec![3.0f64, 3.0, 3.0, 3.0].into_iter()), Some(3.0)); |
| assert_eq!(mode(vec![3.0f64, 3.0, 3.0, 4.0].into_iter()), Some(3.0)); |
| assert_eq!(mode(vec![4.0f64, 3.0, 3.0, 3.0].into_iter()), Some(3.0)); |
| assert_eq!(mode(vec![1.0f64, 1.0, 2.0, 3.0, 3.0].into_iter()), None); |
| } |
| } |