blob: 7097163fb13fe7100ab7e03be2ac7035bb0fe65c [file] [log] [blame]
use std::collections::BinaryHeap;
use std::default::Default;
use std::iter::{FromIterator, IntoIterator};
use num_traits::ToPrimitive;
use {Commute, Partial};
pub fn median_on_sorted<T>(data: &[T]) -> Option<f64>
where T: PartialOrd + ToPrimitive {
Some(match data.len() {
0 => return None,
1 => data[0].to_f64().unwrap(),
len if len % 2 == 0 => {
let v1 = data[(len / 2) - 1].to_f64().unwrap();
let v2 = data[len / 2].to_f64().unwrap();
(v1 + v2) / 2.0
}
len => {
data[len / 2].to_f64().unwrap()
}
})
}
pub fn mode_on_sorted<T, I>(it: I) -> Option<T>
where T: PartialOrd, I: Iterator<Item=T> {
// This approach to computing the mode works very nicely when the
// number of samples is large and is close to its cardinality.
// In other cases, a hashmap would be much better.
// But really, how can we know this when given an arbitrary stream?
// Might just switch to a hashmap to track frequencies. That would also
// be generally useful for discovering the cardinality of a sample.
let (mut mode, mut next) = (None, None);
let (mut mode_count, mut next_count) = (0usize, 0usize);
for x in it {
if mode.as_ref().map(|y| y == &x).unwrap_or(false) {
mode_count += 1;
} else if next.as_ref().map(|y| y == &x).unwrap_or(false) {
next_count += 1;
} else {
next = Some(x);
next_count = 0;
}
if next_count > mode_count {
mode = next;
mode_count = next_count;
next = None;
next_count = 0;
} else if next_count == mode_count {
mode = None;
mode_count = 0usize;
}
}
mode
}
/// A commutative data structure for sorted sequences of data.
///
/// Note that this works on types that do not define a total ordering like
/// `f32` and `f64`. Then an ordering is not defined, an arbitrary order
/// is returned.
#[derive(Clone)]
pub struct Sorted<T> {
data: BinaryHeap<Partial<T>>,
}
impl<T: PartialOrd> Sorted<T> {
/// Create initial empty state.
pub fn new() -> Sorted<T> {
Default::default()
}
/// Add a new element to the set.
pub fn add(&mut self, v: T) {
self.data.push(Partial(v))
}
/// Returns the number of data points.
pub fn len(&self) -> usize {
self.data.len()
}
}
impl<T: PartialOrd + Clone> Sorted<T> {
/// Returns the mode of the data.
pub fn mode(&self) -> Option<T> {
let p = mode_on_sorted(self.data.clone().into_sorted_vec().into_iter());
p.map(|p| p.0)
}
}
impl<T: PartialOrd + ToPrimitive + Clone> Sorted<T> {
/// Returns the median of the data.
pub fn median(&self) -> Option<f64> {
// Grr. The only way to avoid the alloc here is to take `self` by
// value. Could return `(f64, Sorted<T>)`, but that seems a bit weird.
//
// NOTE: Can `std::mem::swap` help us here?
let data = self.data.clone().into_sorted_vec();
median_on_sorted(&*data)
}
}
impl<T: PartialOrd> Commute for Sorted<T> {
fn merge(&mut self, v: Sorted<T>) {
// should this be `into_sorted_vec`?
self.data.extend(v.data.into_vec().into_iter());
}
}
impl<T: PartialOrd> Default for Sorted<T> {
fn default() -> Sorted<T> { Sorted { data: BinaryHeap::new() } }
}
impl<T: PartialOrd> FromIterator<T> for Sorted<T> {
fn from_iter<I: IntoIterator<Item=T>>(it: I) -> Sorted<T> {
let mut v = Sorted::new();
v.extend(it);
v
}
}
impl<T: PartialOrd> Extend<T> for Sorted<T> {
fn extend<I: IntoIterator<Item=T>>(&mut self, it: I) {
self.data.extend(it.into_iter().map(Partial))
}
}
#[cfg(test)]
mod test {
use num::ToPrimitive;
use super::Sorted;
fn median<T, I>(it: I) -> Option<f64>
where T: PartialOrd + ToPrimitive + Clone, I: Iterator<Item=T> {
it.collect::<Sorted<T>>().median()
}
fn mode<T, I>(it: I) -> Option<T>
where T: PartialOrd + Clone, I: Iterator<Item=T> {
it.collect::<Sorted<T>>().mode()
}
#[test]
fn median_stream() {
assert_eq!(median(vec![3usize, 5, 7, 9].into_iter()), Some(6.0));
assert_eq!(median(vec![3usize, 5, 7].into_iter()), Some(5.0));
}
#[test]
fn mode_stream() {
assert_eq!(mode(vec![3usize, 5, 7, 9].into_iter()), None);
assert_eq!(mode(vec![3usize, 3, 3, 3].into_iter()), Some(3));
assert_eq!(mode(vec![3usize, 3, 3, 4].into_iter()), Some(3));
assert_eq!(mode(vec![4usize, 3, 3, 3].into_iter()), Some(3));
assert_eq!(mode(vec![1usize, 1, 2, 3, 3].into_iter()), None);
}
#[test]
fn median_floats() {
assert_eq!(median(vec![3.0f64, 5.0, 7.0, 9.0].into_iter()), Some(6.0));
assert_eq!(median(vec![3.0f64, 5.0, 7.0].into_iter()), Some(5.0));
}
#[test]
fn mode_floats() {
assert_eq!(mode(vec![3.0f64, 5.0, 7.0, 9.0].into_iter()), None);
assert_eq!(mode(vec![3.0f64, 3.0, 3.0, 3.0].into_iter()), Some(3.0));
assert_eq!(mode(vec![3.0f64, 3.0, 3.0, 4.0].into_iter()), Some(3.0));
assert_eq!(mode(vec![4.0f64, 3.0, 3.0, 3.0].into_iter()), Some(3.0));
assert_eq!(mode(vec![1.0f64, 1.0, 2.0, 3.0, 3.0].into_iter()), None);
}
}