blob: c9bac1941bc3fdee592d77395ded277143041742 [file] [log] [blame]
use core::fmt::Debug;
use core::hash::Hash;
use core::mem::size_of;
use byteorder::{ByteOrder, NativeEndian};
#[cfg(feature = "std")]
pub use self::std::*;
#[cfg(feature = "std")]
mod std {
use byteorder::ByteOrder;
use core::mem::size_of;
use error::{Error, Result};
use super::StateID;
/// Check that the premultiplication of the given state identifier can
/// fit into the representation indicated by `S`. If it cannot, or if it
/// overflows `usize` itself, then an error is returned.
pub fn premultiply_overflow_error<S: StateID>(
last_state: S,
alphabet_len: usize,
) -> Result<()> {
let requested = match last_state.to_usize().checked_mul(alphabet_len) {
Some(requested) => requested,
None => return Err(Error::premultiply_overflow(0, 0)),
};
if requested > S::max_id() {
return Err(Error::premultiply_overflow(S::max_id(), requested));
}
Ok(())
}
/// Allocate the next sequential identifier for a fresh state given
/// the previously constructed state identified by `current`. If the
/// next sequential identifier would overflow `usize` or the chosen
/// representation indicated by `S`, then an error is returned.
pub fn next_state_id<S: StateID>(current: S) -> Result<S> {
let next = match current.to_usize().checked_add(1) {
Some(next) => next,
None => return Err(Error::state_id_overflow(::std::usize::MAX)),
};
if next > S::max_id() {
return Err(Error::state_id_overflow(S::max_id()));
}
Ok(S::from_usize(next))
}
/// Convert the given `usize` to the chosen state identifier
/// representation. If the given value cannot fit in the chosen
/// representation, then an error is returned.
pub fn usize_to_state_id<S: StateID>(value: usize) -> Result<S> {
if value > S::max_id() {
Err(Error::state_id_overflow(S::max_id()))
} else {
Ok(S::from_usize(value))
}
}
/// Write the given identifier to the given slice of bytes using the
/// specified endianness. The given slice must have length at least
/// `size_of::<S>()`.
///
/// The given state identifier representation must have size 1, 2, 4 or 8.
pub fn write_state_id_bytes<E: ByteOrder, S: StateID>(
slice: &mut [u8],
id: S,
) {
assert!(
1 == size_of::<S>()
|| 2 == size_of::<S>()
|| 4 == size_of::<S>()
|| 8 == size_of::<S>()
);
match size_of::<S>() {
1 => slice[0] = id.to_usize() as u8,
2 => E::write_u16(slice, id.to_usize() as u16),
4 => E::write_u32(slice, id.to_usize() as u32),
8 => E::write_u64(slice, id.to_usize() as u64),
_ => unreachable!(),
}
}
}
/// Return the unique identifier for a DFA's dead state in the chosen
/// representation indicated by `S`.
pub fn dead_id<S: StateID>() -> S {
S::from_usize(0)
}
/// A trait describing the representation of a DFA's state identifier.
///
/// The purpose of this trait is to safely express both the possible state
/// identifier representations that can be used in a DFA and to convert between
/// state identifier representations and types that can be used to efficiently
/// index memory (such as `usize`).
///
/// In general, one should not need to implement this trait explicitly. In
/// particular, this crate provides implementations for `u8`, `u16`, `u32`,
/// `u64` and `usize`. (`u32` and `u64` are only provided for targets that can
/// represent all corresponding values in a `usize`.)
///
/// # Safety
///
/// This trait is unsafe because the correctness of its implementations may be
/// relied upon by other unsafe code. For example, one possible way to
/// implement this trait incorrectly would be to return a maximum identifier
/// in `max_id` that is greater than the real maximum identifier. This will
/// likely result in wrap-on-overflow semantics in release mode, which can in
/// turn produce incorrect state identifiers. Those state identifiers may then
/// in turn access out-of-bounds memory in a DFA's search routine, where bounds
/// checks are explicitly elided for performance reasons.
pub unsafe trait StateID:
Clone + Copy + Debug + Eq + Hash + PartialEq + PartialOrd + Ord
{
/// Convert from a `usize` to this implementation's representation.
///
/// Implementors may assume that `n <= Self::max_id`. That is, implementors
/// do not need to check whether `n` can fit inside this implementation's
/// representation.
fn from_usize(n: usize) -> Self;
/// Convert this implementation's representation to a `usize`.
///
/// Implementors must not return a `usize` value greater than
/// `Self::max_id` and must not permit overflow when converting between the
/// implementor's representation and `usize`. In general, the preferred
/// way for implementors to achieve this is to simply not provide
/// implementations of `StateID` that cannot fit into the target platform's
/// `usize`.
fn to_usize(self) -> usize;
/// Return the maximum state identifier supported by this representation.
///
/// Implementors must return a correct bound. Doing otherwise may result
/// in memory unsafety.
fn max_id() -> usize;
/// Read a single state identifier from the given slice of bytes in native
/// endian format.
///
/// Implementors may assume that the given slice has length at least
/// `size_of::<Self>()`.
fn read_bytes(slice: &[u8]) -> Self;
/// Write this state identifier to the given slice of bytes in native
/// endian format.
///
/// Implementors may assume that the given slice has length at least
/// `size_of::<Self>()`.
fn write_bytes(self, slice: &mut [u8]);
}
unsafe impl StateID for usize {
#[inline]
fn from_usize(n: usize) -> usize {
n
}
#[inline]
fn to_usize(self) -> usize {
self
}
#[inline]
fn max_id() -> usize {
::core::usize::MAX
}
#[inline]
fn read_bytes(slice: &[u8]) -> Self {
NativeEndian::read_uint(slice, size_of::<usize>()) as usize
}
#[inline]
fn write_bytes(self, slice: &mut [u8]) {
NativeEndian::write_uint(slice, self as u64, size_of::<usize>())
}
}
unsafe impl StateID for u8 {
#[inline]
fn from_usize(n: usize) -> u8 {
n as u8
}
#[inline]
fn to_usize(self) -> usize {
self as usize
}
#[inline]
fn max_id() -> usize {
::core::u8::MAX as usize
}
#[inline]
fn read_bytes(slice: &[u8]) -> Self {
slice[0]
}
#[inline]
fn write_bytes(self, slice: &mut [u8]) {
slice[0] = self;
}
}
unsafe impl StateID for u16 {
#[inline]
fn from_usize(n: usize) -> u16 {
n as u16
}
#[inline]
fn to_usize(self) -> usize {
self as usize
}
#[inline]
fn max_id() -> usize {
::core::u16::MAX as usize
}
#[inline]
fn read_bytes(slice: &[u8]) -> Self {
NativeEndian::read_u16(slice)
}
#[inline]
fn write_bytes(self, slice: &mut [u8]) {
NativeEndian::write_u16(slice, self)
}
}
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
unsafe impl StateID for u32 {
#[inline]
fn from_usize(n: usize) -> u32 {
n as u32
}
#[inline]
fn to_usize(self) -> usize {
self as usize
}
#[inline]
fn max_id() -> usize {
::core::u32::MAX as usize
}
#[inline]
fn read_bytes(slice: &[u8]) -> Self {
NativeEndian::read_u32(slice)
}
#[inline]
fn write_bytes(self, slice: &mut [u8]) {
NativeEndian::write_u32(slice, self)
}
}
#[cfg(target_pointer_width = "64")]
unsafe impl StateID for u64 {
#[inline]
fn from_usize(n: usize) -> u64 {
n as u64
}
#[inline]
fn to_usize(self) -> usize {
self as usize
}
#[inline]
fn max_id() -> usize {
::core::u64::MAX as usize
}
#[inline]
fn read_bytes(slice: &[u8]) -> Self {
NativeEndian::read_u64(slice)
}
#[inline]
fn write_bytes(self, slice: &mut [u8]) {
NativeEndian::write_u64(slice, self)
}
}