blob: cfefae0e63dc85715f5a5d161df49fecfe0313e6 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <fcntl.h>
#include <new>
#include <fbl/auto_call.h>
#include <fbl/auto_lock.h>
#include <fbl/function.h>
#include <fbl/intrusive_double_list.h>
#include <fbl/mutex.h>
#include <fbl/ref_counted.h>
#include <fbl/ref_ptr.h>
#include <fbl/string.h>
#include <fbl/string_buffer.h>
#include <fbl/string_piece.h>
#include <lib/fdio/namespace.h>
#include <lib/fdio/fd.h>
#include <lib/fdio/fdio.h>
#include <lib/fdio/directory.h>
#include <lib/zx/channel.h>
#include <zircon/device/vfs.h>
#include <zircon/processargs.h>
#include "../private.h"
#include "local-connection.h"
#include "local-filesystem.h"
#include "local-vnode.h"
namespace {
class DirentFiller {
public:
explicit DirentFiller(void* buffer, size_t length) :
start_(buffer), buffer_(buffer), length_(length) {}
zx_status_t Add(const char* name, size_t len, uint32_t type) {
size_t sz = sizeof(vdirent_t) + len;
if (sz > length_ || len > NAME_MAX) {
return ZX_ERR_INVALID_ARGS;
}
vdirent_t* de = static_cast<vdirent_t*>(buffer_);
de->ino = fuchsia_io_INO_UNKNOWN;
de->size = static_cast<uint8_t>(len);
de->type = static_cast<uint8_t>(type);
memcpy(de->name, name, len);
buffer_ = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(buffer_) + sz);
length_ -= sz;
return ZX_OK;
}
size_t Used() const {
return reinterpret_cast<uintptr_t>(buffer_) - reinterpret_cast<uintptr_t>(start_);
}
private:
void* start_;
void* buffer_;
size_t length_;
};
struct ExportState {
// The minimum size of flat namespace which will contain all the
// information about this |fdio_namespace|.
size_t bytes;
// The total number of entries (path + handle pairs) in this namespace.
size_t count;
// A (moving) pointer to start of the next path.
char* buffer;
zx_handle_t* handle;
uint32_t* type;
char** path;
};
zx_status_t ValidateName(const fbl::StringPiece& name) {
if ((name.length() == 0) || (name.length() > NAME_MAX)) {
return ZX_ERR_INVALID_ARGS;
}
if (name == fbl::StringPiece(".") || name == fbl::StringPiece("..")) {
return ZX_ERR_INVALID_ARGS;
}
return ZX_OK;
}
} // namespace
fdio_namespace::fdio_namespace() : root_(LocalVnode::Create(nullptr, zx::channel(), "")) {
}
fdio_namespace::~fdio_namespace() {
fbl::AutoLock lock(&lock_);
root_->Unlink();
}
zx_status_t fdio_namespace::WalkLocked(fbl::RefPtr<const LocalVnode>* in_out_vn,
const char** in_out_path) const {
fbl::RefPtr<const LocalVnode> vn = *in_out_vn;
const char* path = *in_out_path;
// Empty path or "." matches initial node.
if ((path[0] == 0) || ((path[0] == '.') && (path[1] == 0))) {
return ZX_OK;
}
for (;;) {
// Find the next path segment.
const char* name = path;
const char* next = strchr(path, '/');
size_t len = next ? static_cast<size_t>(next - path) : strlen(path);
// Path segments may not be empty.
if (len == 0) {
return ZX_ERR_BAD_PATH;
}
fbl::RefPtr<LocalVnode> child = vn->Lookup(fbl::StringPiece(name, len));
if (child == nullptr) {
// If no child exists with this name, we either failed to lookup a node,
// or we must transmit this request to the remote node.
if (!vn->Remote().is_valid()) {
return ZX_ERR_NOT_FOUND;
}
*in_out_vn = vn;
*in_out_path = path;
return ZX_OK;
}
vn = child;
if (!next) {
// Lookup has completed successfully for all nodes, and no path remains.
// Return the requested local node.
*in_out_vn = vn;
*in_out_path = ".";
return ZX_OK;
}
// Lookup completed successfully, but more segments exist.
path = next + 1;
}
}
zx_status_t fdio_namespace::Open(fbl::RefPtr<const LocalVnode> vn, const char* path,
uint32_t flags, uint32_t mode, fdio_t** out) const {
{
fbl::AutoLock lock(&lock_);
zx_status_t status = WalkLocked(&vn, &path);
if (status != ZX_OK) {
return status;
}
if (!vn->Remote().is_valid()) {
// The Vnode exists, but it has no remote object. Open a local reference.
if ((*out = CreateConnection(vn)) == nullptr) {
return ZX_ERR_NO_MEMORY;
}
return ZX_OK;
}
}
// If we're trying to mkdir over top of a mount point,
// the correct error is EEXIST
if ((flags & ZX_FS_FLAG_CREATE) && !strcmp(path, ".")) {
return ZX_ERR_ALREADY_EXISTS;
}
// Active remote connections are immutable, so referencing remote here
// is safe. We don't want to do a blocking open under the ns lock.
return fdio_remote_open_at(vn->Remote().get(), path, flags, mode, out);
}
zx_status_t fdio_namespace::Readdir(const LocalVnode& vn, void* buffer,
size_t length, size_t* out_actual) const {
fbl::AutoLock lock(&lock_);
DirentFiller dirents(buffer, length);
if (dirents.Add(".", 1, VTYPE_TO_DTYPE(V_TYPE_DIR)) != ZX_OK) {
*out_actual = 0;
return ZX_OK;
}
vn.ForAllChildren([&dirents](const LocalVnode& vn) {
return dirents.Add(vn.Name().data(), vn.Name().length(),
VTYPE_TO_DTYPE(V_TYPE_DIR));
});
*out_actual = dirents.Used();
return ZX_OK;
}
fdio_t* fdio_namespace::CreateConnection(fbl::RefPtr<const LocalVnode> vn) const {
return fdio_internal::CreateLocalConnection(fbl::WrapRefPtr(this), std::move(vn));
}
zx_status_t fdio_namespace::Connect(const char* path, uint32_t flags,
zx::channel channel) const {
// Require that we start at /
if (path[0] != '/') {
return ZX_ERR_NOT_FOUND;
}
path++;
fbl::RefPtr<const LocalVnode> vn;
{
fbl::AutoLock lock(&lock_);
vn = root_;
zx_status_t status = WalkLocked(&vn, &path);
if (status != ZX_OK) {
return status;
}
// cannot connect via non-mountpoint nodes
if (!vn->Remote().is_valid()) {
return ZX_ERR_NOT_SUPPORTED;
}
}
return fdio_open_at(vn->Remote().get(), path, flags, channel.release());
}
zx_status_t fdio_namespace::Unbind(const char* path) {
if ((path == nullptr) || (path[0] != '/')) {
return ZX_ERR_INVALID_ARGS;
}
// Skip leading slash.
path++;
if (path[0] == 0) {
// The path was "/" so we're trying to unbind to the root vnode.
return ZX_ERR_NOT_SUPPORTED;
}
fbl::AutoLock lock(&lock_);
fbl::RefPtr<LocalVnode> vn = root_;
// If we remove a vnode, we may create one or more childless intermediate parent nodes.
// This node denotes the "highest" such node in the filesystem hierarchy.
fbl::RefPtr<LocalVnode> removable_origin_vn;
for (;;) {
const char* next = strchr(path, '/');
fbl::StringPiece name(path, next ? (next - path) : strlen(path));
zx_status_t status = ValidateName(name);
if (status != ZX_OK) {
return status;
}
if (vn->Remote().is_valid()) {
// Since shadowing is disallowed, this must refer to an invalid path.
return ZX_ERR_NOT_FOUND;
}
vn = vn->Lookup(name);
if (vn == nullptr) {
return ZX_ERR_NOT_FOUND;
}
size_t children_count = 0;
vn->ForAllChildren([&children_count](const LocalVnode& vn) {
if (++children_count > 1) {
return ZX_ERR_STOP;
}
return ZX_OK;
});
if (children_count > 1) {
// If this node has multiple children (including something OTHER than the node
// we're potentially unbinding), we shouldn't try to remove it while deleting
// childless intermediate nodes.
removable_origin_vn = nullptr;
} else if (removable_origin_vn == nullptr) {
// If this node has one or fewer children, it's a viable candidate for removal.
// Only set this if it's the "highest" node we've seen satisfying this property.
removable_origin_vn = vn;
}
if (!next) {
// This is the last segment; we must match.
if (!vn->Remote().is_valid()) {
return ZX_ERR_NOT_FOUND;
}
// This assertion must hold without shadowing: |vn| should
// have no children, so at minimum, |removable_origin_vn| = |vn|.
ZX_DEBUG_ASSERT(removable_origin_vn != nullptr);
removable_origin_vn->Unlink();
return ZX_OK;
}
path = next + 1;
}
}
zx_status_t fdio_namespace::Bind(const char* path, zx::channel remote) {
if (!remote.is_valid()) {
return ZX_ERR_BAD_HANDLE;
}
if ((path == nullptr) || (path[0] != '/')) {
return ZX_ERR_INVALID_ARGS;
}
// Skip leading slash.
path++;
fbl::AutoLock lock(&lock_);
fbl::RefPtr<LocalVnode> vn = root_;
if (path[0] == 0) {
// The path was "/" so we're trying to bind to the root vnode.
return vn->SetRemote(std::move(remote));
}
zx_status_t status = ZX_OK;
fbl::RefPtr<LocalVnode> first_new_node = nullptr;
// If we fail, but leave any intermediate nodes, we need to clean them up
// before unlocking and returning.
auto cleanup = fbl::MakeAutoCall([&first_new_node]() {
if (first_new_node != nullptr) {
first_new_node->Unlink();
}
});
for (;;) {
const char* next = strchr(path, '/');
fbl::StringPiece name(path, next ? (next - path) : strlen(path));
status = ValidateName(name);
if (status != ZX_OK) {
return status;
}
if (vn->Remote().is_valid()) {
// Shadowing is disallowed.
return ZX_ERR_NOT_SUPPORTED;
}
if (next) {
// Not the final segment.
fbl::RefPtr<LocalVnode> child = vn->Lookup(name);
if (child == nullptr) {
// Create a new intermediate node.
vn = LocalVnode::Create(vn, zx::channel(), fbl::String(name));
// Keep track of the first node we create. If any subsequent
// operation fails during bind, we will need to delete all nodes
// in this subtree.
if (first_new_node == nullptr) {
first_new_node = vn;
}
} else {
// Re-use an existing intermediate node.
vn = child;
}
path = next + 1;
} else {
// Final segment. Create the leaf vnode and stop.
if (vn->Lookup(name) != nullptr) {
return ZX_ERR_ALREADY_EXISTS;
}
vn = LocalVnode::Create(vn, std::move(remote), fbl::String(name));
break;
}
}
cleanup.cancel();
return ZX_OK;
}
fdio_t* fdio_namespace::OpenRoot() const {
fbl::AutoLock lock(&lock_);
if (!root_->Remote().is_valid()) {
return CreateConnection(root_);
}
// Borrow a reference to root's |remote| connection.
//
// We may safely access this member after unlocking because:
// - Remotes are immutable on LocalVnodes once they have been set (immutability is
// guaranteed).
// - fdio_namespace holds a strong reference to |root_| for the duration of this
// method (lifetime is guaranteed).
const zx::channel& remote = root_->Remote();
lock.release();
fdio_t* io;
zx_status_t status = fdio_remote_open_at(remote.get(), "", O_RDWR, 0, &io);
if (status != ZX_OK) {
return nullptr;
}
return io;
}
zx_status_t fdio_namespace::Export(fdio_flat_namespace_t** out) const {
ExportState es;
es.bytes = sizeof(fdio_flat_namespace_t);
es.count = 0;
fbl::AutoLock lock(&lock_);
auto count_callback = [&es](const fbl::StringPiece& path, const zx::channel& channel) {
// Each entry needs one slot in the handle table,
// one slot in the type table, and one slot in the
// path table, plus storage for the path and NUL
es.bytes += sizeof(zx_handle_t) + sizeof(uint32_t) + sizeof(char**) +
path.length() + 1;
es.count += 1;
return ZX_OK;
};
fdio_internal::EnumerateRemotes(*root_, count_callback);
fdio_flat_namespace_t* flat = static_cast<fdio_flat_namespace_t*>(malloc(es.bytes));
if (flat == nullptr) {
return ZX_ERR_NO_MEMORY;
}
// We've allocated enough memory for the flat struct
// followed by count handles, followed by count types,
// followed by count path ptrs followed by enough bytes
// for all the path strings. Point es.* at the right
// slices of that memory:
es.handle = reinterpret_cast<zx_handle_t*>(flat + 1);
es.type = reinterpret_cast<uint32_t*>(es.handle + es.count);
es.path = reinterpret_cast<char**>(es.type + es.count);
es.buffer = reinterpret_cast<char*>(es.path + es.count);
es.count = 0;
auto export_callback = [&es](const fbl::StringPiece& path, const zx::channel& channel) {
zx::channel remote(fdio_service_clone(channel.get()));
if (!remote.is_valid()) {
return ZX_ERR_BAD_STATE;
}
strlcpy(es.buffer, path.data(), path.length() + 1);
es.path[es.count] = es.buffer;
es.handle[es.count] = remote.release();
es.type[es.count] = PA_HND(PA_NS_DIR, static_cast<uint32_t>(es.count));
es.buffer += (path.length() + 1);
es.count++;
return ZX_OK;
};
zx_status_t status = fdio_internal::EnumerateRemotes(*root_, export_callback);
lock.release();
if (status != ZX_OK) {
zx_handle_close_many(es.handle, es.count);
free(flat);
} else {
flat->count = es.count;
flat->handle = es.handle;
flat->type = es.type;
flat->path = (const char* const*) es.path;
*out = flat;
}
return status;
}