| /* |
| * Copyright (c) 2015-2016 The Khronos Group Inc. |
| * Copyright (c) 2015-2016 Valve Corporation |
| * Copyright (c) 2015-2016 LunarG, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * Relicensed from the WTFPL (http://www.wtfpl.net/faq/). |
| */ |
| |
| #ifndef LINMATH_H |
| #define LINMATH_H |
| |
| #include <math.h> |
| |
| // Converts degrees to radians. |
| #define degreesToRadians(angleDegrees) (angleDegrees * M_PI / 180.0) |
| |
| // Converts radians to degrees. |
| #define radiansToDegrees(angleRadians) (angleRadians * 180.0 / M_PI) |
| |
| typedef float vec3[3]; |
| static inline void vec3_add(vec3 r, vec3 const a, vec3 const b) { |
| int i; |
| for (i = 0; i < 3; ++i) |
| r[i] = a[i] + b[i]; |
| } |
| static inline void vec3_sub(vec3 r, vec3 const a, vec3 const b) { |
| int i; |
| for (i = 0; i < 3; ++i) |
| r[i] = a[i] - b[i]; |
| } |
| static inline void vec3_scale(vec3 r, vec3 const v, float const s) { |
| int i; |
| for (i = 0; i < 3; ++i) |
| r[i] = v[i] * s; |
| } |
| static inline float vec3_mul_inner(vec3 const a, vec3 const b) { |
| float p = 0.f; |
| int i; |
| for (i = 0; i < 3; ++i) |
| p += b[i] * a[i]; |
| return p; |
| } |
| static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) { |
| r[0] = a[1] * b[2] - a[2] * b[1]; |
| r[1] = a[2] * b[0] - a[0] * b[2]; |
| r[2] = a[0] * b[1] - a[1] * b[0]; |
| } |
| static inline float vec3_len(vec3 const v) { |
| return sqrtf(vec3_mul_inner(v, v)); |
| } |
| static inline void vec3_norm(vec3 r, vec3 const v) { |
| float k = 1.f / vec3_len(v); |
| vec3_scale(r, v, k); |
| } |
| static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) { |
| float p = 2.f * vec3_mul_inner(v, n); |
| int i; |
| for (i = 0; i < 3; ++i) |
| r[i] = v[i] - p * n[i]; |
| } |
| |
| typedef float vec4[4]; |
| static inline void vec4_add(vec4 r, vec4 const a, vec4 const b) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = a[i] + b[i]; |
| } |
| static inline void vec4_sub(vec4 r, vec4 const a, vec4 const b) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = a[i] - b[i]; |
| } |
| static inline void vec4_scale(vec4 r, vec4 v, float s) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = v[i] * s; |
| } |
| static inline float vec4_mul_inner(vec4 a, vec4 b) { |
| float p = 0.f; |
| int i; |
| for (i = 0; i < 4; ++i) |
| p += b[i] * a[i]; |
| return p; |
| } |
| static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) { |
| r[0] = a[1] * b[2] - a[2] * b[1]; |
| r[1] = a[2] * b[0] - a[0] * b[2]; |
| r[2] = a[0] * b[1] - a[1] * b[0]; |
| r[3] = 1.f; |
| } |
| static inline float vec4_len(vec4 v) { return sqrtf(vec4_mul_inner(v, v)); } |
| static inline void vec4_norm(vec4 r, vec4 v) { |
| float k = 1.f / vec4_len(v); |
| vec4_scale(r, v, k); |
| } |
| static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) { |
| float p = 2.f * vec4_mul_inner(v, n); |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = v[i] - p * n[i]; |
| } |
| |
| typedef vec4 mat4x4[4]; |
| static inline void mat4x4_identity(mat4x4 M) { |
| int i, j; |
| for (i = 0; i < 4; ++i) |
| for (j = 0; j < 4; ++j) |
| M[i][j] = i == j ? 1.f : 0.f; |
| } |
| static inline void mat4x4_dup(mat4x4 M, mat4x4 N) { |
| int i, j; |
| for (i = 0; i < 4; ++i) |
| for (j = 0; j < 4; ++j) |
| M[i][j] = N[i][j]; |
| } |
| static inline void mat4x4_row(vec4 r, mat4x4 M, int i) { |
| int k; |
| for (k = 0; k < 4; ++k) |
| r[k] = M[k][i]; |
| } |
| static inline void mat4x4_col(vec4 r, mat4x4 M, int i) { |
| int k; |
| for (k = 0; k < 4; ++k) |
| r[k] = M[i][k]; |
| } |
| static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) { |
| int i, j; |
| for (j = 0; j < 4; ++j) |
| for (i = 0; i < 4; ++i) |
| M[i][j] = N[j][i]; |
| } |
| static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| vec4_add(M[i], a[i], b[i]); |
| } |
| static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| vec4_sub(M[i], a[i], b[i]); |
| } |
| static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| vec4_scale(M[i], a[i], k); |
| } |
| static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, |
| float z) { |
| int i; |
| vec4_scale(M[0], a[0], x); |
| vec4_scale(M[1], a[1], y); |
| vec4_scale(M[2], a[2], z); |
| for (i = 0; i < 4; ++i) { |
| M[3][i] = a[3][i]; |
| } |
| } |
| static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) { |
| int k, r, c; |
| for (c = 0; c < 4; ++c) |
| for (r = 0; r < 4; ++r) { |
| M[c][r] = 0.f; |
| for (k = 0; k < 4; ++k) |
| M[c][r] += a[k][r] * b[c][k]; |
| } |
| } |
| static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) { |
| int i, j; |
| for (j = 0; j < 4; ++j) { |
| r[j] = 0.f; |
| for (i = 0; i < 4; ++i) |
| r[j] += M[i][j] * v[i]; |
| } |
| } |
| static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) { |
| mat4x4_identity(T); |
| T[3][0] = x; |
| T[3][1] = y; |
| T[3][2] = z; |
| } |
| static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, |
| float z) { |
| vec4 t = {x, y, z, 0}; |
| vec4 r; |
| int i; |
| for (i = 0; i < 4; ++i) { |
| mat4x4_row(r, M, i); |
| M[3][i] += vec4_mul_inner(r, t); |
| } |
| } |
| static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) { |
| int i, j; |
| for (i = 0; i < 4; ++i) |
| for (j = 0; j < 4; ++j) |
| M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f; |
| } |
| static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, |
| float angle) { |
| float s = sinf(angle); |
| float c = cosf(angle); |
| vec3 u = {x, y, z}; |
| |
| if (vec3_len(u) > 1e-4) { |
| vec3_norm(u, u); |
| mat4x4 T; |
| mat4x4_from_vec3_mul_outer(T, u, u); |
| |
| mat4x4 S = {{0, u[2], -u[1], 0}, |
| {-u[2], 0, u[0], 0}, |
| {u[1], -u[0], 0, 0}, |
| {0, 0, 0, 0}}; |
| mat4x4_scale(S, S, s); |
| |
| mat4x4 C; |
| mat4x4_identity(C); |
| mat4x4_sub(C, C, T); |
| |
| mat4x4_scale(C, C, c); |
| |
| mat4x4_add(T, T, C); |
| mat4x4_add(T, T, S); |
| |
| T[3][3] = 1.; |
| mat4x4_mul(R, M, T); |
| } else { |
| mat4x4_dup(R, M); |
| } |
| } |
| static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) { |
| float s = sinf(angle); |
| float c = cosf(angle); |
| mat4x4 R = {{1.f, 0.f, 0.f, 0.f}, |
| {0.f, c, s, 0.f}, |
| {0.f, -s, c, 0.f}, |
| {0.f, 0.f, 0.f, 1.f}}; |
| mat4x4_mul(Q, M, R); |
| } |
| static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) { |
| float s = sinf(angle); |
| float c = cosf(angle); |
| mat4x4 R = {{c, 0.f, s, 0.f}, |
| {0.f, 1.f, 0.f, 0.f}, |
| {-s, 0.f, c, 0.f}, |
| {0.f, 0.f, 0.f, 1.f}}; |
| mat4x4_mul(Q, M, R); |
| } |
| static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) { |
| float s = sinf(angle); |
| float c = cosf(angle); |
| mat4x4 R = {{c, s, 0.f, 0.f}, |
| {-s, c, 0.f, 0.f}, |
| {0.f, 0.f, 1.f, 0.f}, |
| {0.f, 0.f, 0.f, 1.f}}; |
| mat4x4_mul(Q, M, R); |
| } |
| static inline void mat4x4_invert(mat4x4 T, mat4x4 M) { |
| float s[6]; |
| float c[6]; |
| s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1]; |
| s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2]; |
| s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3]; |
| s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2]; |
| s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3]; |
| s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3]; |
| |
| c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1]; |
| c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2]; |
| c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3]; |
| c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2]; |
| c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3]; |
| c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3]; |
| |
| /* Assumes it is invertible */ |
| float idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] - |
| s[4] * c[1] + s[5] * c[0]); |
| |
| T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; |
| T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; |
| T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; |
| T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; |
| |
| T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; |
| T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; |
| T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; |
| T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; |
| |
| T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; |
| T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; |
| T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; |
| T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; |
| |
| T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; |
| T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; |
| T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; |
| T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; |
| } |
| static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) { |
| mat4x4_dup(R, M); |
| float s = 1.; |
| vec3 h; |
| |
| vec3_norm(R[2], R[2]); |
| |
| s = vec3_mul_inner(R[1], R[2]); |
| vec3_scale(h, R[2], s); |
| vec3_sub(R[1], R[1], h); |
| vec3_norm(R[2], R[2]); |
| |
| s = vec3_mul_inner(R[1], R[2]); |
| vec3_scale(h, R[2], s); |
| vec3_sub(R[1], R[1], h); |
| vec3_norm(R[1], R[1]); |
| |
| s = vec3_mul_inner(R[0], R[1]); |
| vec3_scale(h, R[1], s); |
| vec3_sub(R[0], R[0], h); |
| vec3_norm(R[0], R[0]); |
| } |
| |
| static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, |
| float n, float f) { |
| M[0][0] = 2.f * n / (r - l); |
| M[0][1] = M[0][2] = M[0][3] = 0.f; |
| |
| M[1][1] = 2.f * n / (t - b); |
| M[1][0] = M[1][2] = M[1][3] = 0.f; |
| |
| M[2][0] = (r + l) / (r - l); |
| M[2][1] = (t + b) / (t - b); |
| M[2][2] = -(f + n) / (f - n); |
| M[2][3] = -1.f; |
| |
| M[3][2] = -2.f * (f * n) / (f - n); |
| M[3][0] = M[3][1] = M[3][3] = 0.f; |
| } |
| static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, |
| float n, float f) { |
| M[0][0] = 2.f / (r - l); |
| M[0][1] = M[0][2] = M[0][3] = 0.f; |
| |
| M[1][1] = 2.f / (t - b); |
| M[1][0] = M[1][2] = M[1][3] = 0.f; |
| |
| M[2][2] = -2.f / (f - n); |
| M[2][0] = M[2][1] = M[2][3] = 0.f; |
| |
| M[3][0] = -(r + l) / (r - l); |
| M[3][1] = -(t + b) / (t - b); |
| M[3][2] = -(f + n) / (f - n); |
| M[3][3] = 1.f; |
| } |
| static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, |
| float n, float f) { |
| /* NOTE: Degrees are an unhandy unit to work with. |
| * linmath.h uses radians for everything! */ |
| float const a = (float)(1.f / tan(y_fov / 2.f)); |
| |
| m[0][0] = a / aspect; |
| m[0][1] = 0.f; |
| m[0][2] = 0.f; |
| m[0][3] = 0.f; |
| |
| m[1][0] = 0.f; |
| m[1][1] = a; |
| m[1][2] = 0.f; |
| m[1][3] = 0.f; |
| |
| m[2][0] = 0.f; |
| m[2][1] = 0.f; |
| m[2][2] = -((f + n) / (f - n)); |
| m[2][3] = -1.f; |
| |
| m[3][0] = 0.f; |
| m[3][1] = 0.f; |
| m[3][2] = -((2.f * f * n) / (f - n)); |
| m[3][3] = 0.f; |
| } |
| static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) { |
| /* Adapted from Android's OpenGL Matrix.java. */ |
| /* See the OpenGL GLUT documentation for gluLookAt for a description */ |
| /* of the algorithm. We implement it in a straightforward way: */ |
| |
| /* TODO: The negation of of can be spared by swapping the order of |
| * operands in the following cross products in the right way. */ |
| vec3 f; |
| vec3_sub(f, center, eye); |
| vec3_norm(f, f); |
| |
| vec3 s; |
| vec3_mul_cross(s, f, up); |
| vec3_norm(s, s); |
| |
| vec3 t; |
| vec3_mul_cross(t, s, f); |
| |
| m[0][0] = s[0]; |
| m[0][1] = t[0]; |
| m[0][2] = -f[0]; |
| m[0][3] = 0.f; |
| |
| m[1][0] = s[1]; |
| m[1][1] = t[1]; |
| m[1][2] = -f[1]; |
| m[1][3] = 0.f; |
| |
| m[2][0] = s[2]; |
| m[2][1] = t[2]; |
| m[2][2] = -f[2]; |
| m[2][3] = 0.f; |
| |
| m[3][0] = 0.f; |
| m[3][1] = 0.f; |
| m[3][2] = 0.f; |
| m[3][3] = 1.f; |
| |
| mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); |
| } |
| |
| typedef float quat[4]; |
| static inline void quat_identity(quat q) { |
| q[0] = q[1] = q[2] = 0.f; |
| q[3] = 1.f; |
| } |
| static inline void quat_add(quat r, quat a, quat b) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = a[i] + b[i]; |
| } |
| static inline void quat_sub(quat r, quat a, quat b) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = a[i] - b[i]; |
| } |
| static inline void quat_mul(quat r, quat p, quat q) { |
| vec3 w; |
| vec3_mul_cross(r, p, q); |
| vec3_scale(w, p, q[3]); |
| vec3_add(r, r, w); |
| vec3_scale(w, q, p[3]); |
| vec3_add(r, r, w); |
| r[3] = p[3] * q[3] - vec3_mul_inner(p, q); |
| } |
| static inline void quat_scale(quat r, quat v, float s) { |
| int i; |
| for (i = 0; i < 4; ++i) |
| r[i] = v[i] * s; |
| } |
| static inline float quat_inner_product(quat a, quat b) { |
| float p = 0.f; |
| int i; |
| for (i = 0; i < 4; ++i) |
| p += b[i] * a[i]; |
| return p; |
| } |
| static inline void quat_conj(quat r, quat q) { |
| int i; |
| for (i = 0; i < 3; ++i) |
| r[i] = -q[i]; |
| r[3] = q[3]; |
| } |
| #define quat_norm vec4_norm |
| static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) { |
| quat v_ = {v[0], v[1], v[2], 0.f}; |
| |
| quat_conj(r, q); |
| quat_norm(r, r); |
| quat_mul(r, v_, r); |
| quat_mul(r, q, r); |
| } |
| static inline void mat4x4_from_quat(mat4x4 M, quat q) { |
| float a = q[3]; |
| float b = q[0]; |
| float c = q[1]; |
| float d = q[2]; |
| float a2 = a * a; |
| float b2 = b * b; |
| float c2 = c * c; |
| float d2 = d * d; |
| |
| M[0][0] = a2 + b2 - c2 - d2; |
| M[0][1] = 2.f * (b * c + a * d); |
| M[0][2] = 2.f * (b * d - a * c); |
| M[0][3] = 0.f; |
| |
| M[1][0] = 2 * (b * c - a * d); |
| M[1][1] = a2 - b2 + c2 - d2; |
| M[1][2] = 2.f * (c * d + a * b); |
| M[1][3] = 0.f; |
| |
| M[2][0] = 2.f * (b * d + a * c); |
| M[2][1] = 2.f * (c * d - a * b); |
| M[2][2] = a2 - b2 - c2 + d2; |
| M[2][3] = 0.f; |
| |
| M[3][0] = M[3][1] = M[3][2] = 0.f; |
| M[3][3] = 1.f; |
| } |
| |
| static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) { |
| /* XXX: The way this is written only works for othogonal matrices. */ |
| /* TODO: Take care of non-orthogonal case. */ |
| quat_mul_vec3(R[0], q, M[0]); |
| quat_mul_vec3(R[1], q, M[1]); |
| quat_mul_vec3(R[2], q, M[2]); |
| |
| R[3][0] = R[3][1] = R[3][2] = 0.f; |
| R[3][3] = 1.f; |
| } |
| static inline void quat_from_mat4x4(quat q, mat4x4 M) { |
| float r = 0.f; |
| int i; |
| |
| int perm[] = {0, 1, 2, 0, 1}; |
| int *p = perm; |
| |
| for (i = 0; i < 3; i++) { |
| float m = M[i][i]; |
| if (m < r) |
| continue; |
| m = r; |
| p = &perm[i]; |
| } |
| |
| r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]); |
| |
| if (r < 1e-6) { |
| q[0] = 1.f; |
| q[1] = q[2] = q[3] = 0.f; |
| return; |
| } |
| |
| q[0] = r / 2.f; |
| q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r); |
| q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r); |
| q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r); |
| } |
| |
| #endif |