blob: 8f55eecc06f84709533fb6b2b0d70de9995a5f81 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include "vm/vm_address_region.h"
#include <align.h>
#include <assert.h>
#include <inttypes.h>
#include <lib/crypto/prng.h>
#include <lib/userabi/vdso.h>
#include <pow2.h>
#include <trace.h>
#include <zircon/errors.h>
#include <zircon/types.h>
#include <fbl/alloc_checker.h>
#include <ktl/algorithm.h>
#include <ktl/limits.h>
#include <vm/fault.h>
#include <vm/vm.h>
#include <vm/vm_address_region_enumerator.h>
#include <vm/vm_aspace.h>
#include <vm/vm_object.h>
#include "vm_priv.h"
#include <ktl/enforce.h>
#define LOCAL_TRACE VM_GLOBAL_TRACE(0)
VmAddressRegion::VmAddressRegion(VmAspace& aspace, vaddr_t base, size_t size, uint32_t vmar_flags)
: VmAddressRegionOrMapping(base, size, vmar_flags | VMAR_CAN_RWX_FLAGS, &aspace, nullptr,
false) {
// We add in CAN_RWX_FLAGS above, since an address space can't usefully
// contain a process without all of these.
strlcpy(const_cast<char*>(name_), "root", sizeof(name_));
LTRACEF("%p '%s'\n", this, name_);
}
VmAddressRegion::VmAddressRegion(VmAddressRegion& parent, vaddr_t base, size_t size,
uint32_t vmar_flags, const char* name)
: VmAddressRegionOrMapping(base, size, vmar_flags, parent.aspace_.get(), &parent, false) {
strlcpy(const_cast<char*>(name_), name, sizeof(name_));
LTRACEF("%p '%s'\n", this, name_);
}
VmAddressRegion::VmAddressRegion(VmAspace& kernel_aspace)
: VmAddressRegion(kernel_aspace, kernel_aspace.base(), kernel_aspace.size(),
VMAR_FLAG_CAN_MAP_SPECIFIC) {
// Activate the kernel root aspace immediately
state_ = LifeCycleState::ALIVE;
}
zx_status_t VmAddressRegion::CreateRootLocked(VmAspace& aspace, uint32_t vmar_flags,
fbl::RefPtr<VmAddressRegion>* out) {
DEBUG_ASSERT(out);
fbl::AllocChecker ac;
auto vmar = new (&ac) VmAddressRegion(aspace, aspace.base(), aspace.size(), vmar_flags);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
AssertHeld(vmar->lock_ref());
vmar->state_ = LifeCycleState::ALIVE;
*out = fbl::AdoptRef(vmar);
return ZX_OK;
}
zx_status_t VmAddressRegion::CreateSubVmarInternal(size_t offset, size_t size, uint8_t align_pow2,
uint32_t vmar_flags, fbl::RefPtr<VmObject> vmo,
uint64_t vmo_offset, uint arch_mmu_flags,
const char* name,
fbl::RefPtr<VmAddressRegionOrMapping>* out) {
DEBUG_ASSERT(out);
Guard<Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
if (size == 0) {
return ZX_ERR_INVALID_ARGS;
}
// Check if there are any RWX privileges that the child would have that the
// parent does not.
if (vmar_flags & ~flags_ & VMAR_CAN_RWX_FLAGS) {
return ZX_ERR_ACCESS_DENIED;
}
const bool is_specific_overwrite = vmar_flags & VMAR_FLAG_SPECIFIC_OVERWRITE;
const bool is_specific = (vmar_flags & VMAR_FLAG_SPECIFIC) || is_specific_overwrite;
const bool is_upper_bound = vmar_flags & VMAR_FLAG_OFFSET_IS_UPPER_LIMIT;
if (is_specific && is_upper_bound) {
return ZX_ERR_INVALID_ARGS;
}
if (!is_specific && !is_upper_bound && offset != 0) {
return ZX_ERR_INVALID_ARGS;
}
if (!IS_PAGE_ALIGNED(offset)) {
return ZX_ERR_INVALID_ARGS;
}
// Check to see if a cache policy exists if a VMO is passed in. VMOs that do not support
// cache policy return ERR_UNSUPPORTED, anything aside from that and ZX_OK is an error.
if (vmo) {
uint32_t cache_policy = vmo->GetMappingCachePolicy();
// Warn in the event that we somehow receive a VMO that has a cache
// policy set while also holding cache policy flags within the arch
// flags. The only path that should be able to achieve this is if
// something in the kernel maps into their aspace incorrectly.
if ((arch_mmu_flags & ARCH_MMU_FLAG_CACHE_MASK) != 0 &&
(arch_mmu_flags & ARCH_MMU_FLAG_CACHE_MASK) != cache_policy) {
TRACEF(
"warning: mapping %s has conflicting cache policies: vmo %02x "
"arch_mmu_flags %02x.\n",
name, cache_policy, arch_mmu_flags & ARCH_MMU_FLAG_CACHE_MASK);
}
arch_mmu_flags |= cache_policy;
}
// Check that we have the required privileges if we want a SPECIFIC or
// UPPER_LIMIT mapping.
if ((is_specific || is_upper_bound) && !(flags_ & VMAR_FLAG_CAN_MAP_SPECIFIC)) {
return ZX_ERR_ACCESS_DENIED;
}
if (!is_upper_bound && (offset >= size_ || size > size_ - offset)) {
return ZX_ERR_INVALID_ARGS;
}
if (is_upper_bound && (offset > size_ || size > size_ || size > offset)) {
return ZX_ERR_INVALID_ARGS;
}
vaddr_t new_base = ktl::numeric_limits<vaddr_t>::max();
if (is_specific) {
// This would not overflow because offset <= size_ - 1, base_ + offset <= base_ + size_ - 1.
new_base = base_ + offset;
if (align_pow2 > 0 && (new_base & ((1ULL << align_pow2) - 1))) {
return ZX_ERR_INVALID_ARGS;
}
if (!subregions_.IsRangeAvailable(new_base, size)) {
if (is_specific_overwrite) {
return OverwriteVmMappingLocked(new_base, size, vmar_flags, vmo, vmo_offset, arch_mmu_flags,
out);
}
return ZX_ERR_ALREADY_EXISTS;
}
} else {
// If we're not mapping to a specific place, search for an opening.
const vaddr_t upper_bound =
is_upper_bound ? base_ + offset : ktl::numeric_limits<vaddr_t>::max();
zx_status_t status = AllocSpotLocked(size, align_pow2, arch_mmu_flags, &new_base, upper_bound);
if (status != ZX_OK) {
return status;
}
}
// Notice if this is an executable mapping from the vDSO VMO
// before we lose the VMO reference via ktl::move(vmo).
const bool is_vdso_code =
(vmo && (arch_mmu_flags & ARCH_MMU_FLAG_PERM_EXECUTE) && VDso::vmo_is_vdso(vmo));
fbl::AllocChecker ac;
fbl::RefPtr<VmAddressRegionOrMapping> vmar;
if (vmo) {
vmar = fbl::AdoptRef(new (&ac) VmMapping(*this, new_base, size, vmar_flags, ktl::move(vmo),
is_upper_bound ? 0 : vmo_offset, arch_mmu_flags,
VmMapping::Mergeable::NO));
} else {
vmar = fbl::AdoptRef(new (&ac) VmAddressRegion(*this, new_base, size, vmar_flags, name));
}
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
if (is_vdso_code) {
// For an executable mapping of the vDSO, allow only one per process
// and only for the valid range of the image.
if (aspace_->vdso_code_mapping_ || !VDso::valid_code_mapping(vmo_offset, size)) {
return ZX_ERR_ACCESS_DENIED;
}
aspace_->vdso_code_mapping_ = fbl::RefPtr<VmMapping>::Downcast(vmar);
}
AssertHeld(vmar->lock_ref());
vmar->Activate();
*out = ktl::move(vmar);
return ZX_OK;
}
zx_status_t VmAddressRegion::CreateSubVmar(size_t offset, size_t size, uint8_t align_pow2,
uint32_t vmar_flags, const char* name,
fbl::RefPtr<VmAddressRegion>* out) {
DEBUG_ASSERT(out);
if (!IS_PAGE_ALIGNED(size)) {
return ZX_ERR_INVALID_ARGS;
}
// Check that only allowed flags have been set
if (vmar_flags & ~(VMAR_FLAG_SPECIFIC | VMAR_FLAG_CAN_MAP_SPECIFIC | VMAR_FLAG_COMPACT |
VMAR_CAN_RWX_FLAGS | VMAR_FLAG_OFFSET_IS_UPPER_LIMIT)) {
return ZX_ERR_INVALID_ARGS;
}
fbl::RefPtr<VmAddressRegionOrMapping> res;
zx_status_t status = CreateSubVmarInternal(offset, size, align_pow2, vmar_flags, nullptr, 0,
ARCH_MMU_FLAG_INVALID, name, &res);
if (status != ZX_OK) {
return status;
}
// TODO(teisenbe): optimize this
*out = res->as_vm_address_region();
return ZX_OK;
}
zx_status_t VmAddressRegion::CreateVmMapping(size_t mapping_offset, size_t size, uint8_t align_pow2,
uint32_t vmar_flags, fbl::RefPtr<VmObject> vmo,
uint64_t vmo_offset, uint arch_mmu_flags,
const char* name, fbl::RefPtr<VmMapping>* out) {
DEBUG_ASSERT(out);
LTRACEF("%p %#zx %#zx %x\n", this, mapping_offset, size, vmar_flags);
// Check that only allowed flags have been set
if (vmar_flags & ~(VMAR_FLAG_SPECIFIC | VMAR_FLAG_SPECIFIC_OVERWRITE | VMAR_CAN_RWX_FLAGS |
VMAR_FLAG_OFFSET_IS_UPPER_LIMIT)) {
return ZX_ERR_INVALID_ARGS;
}
// Validate that arch_mmu_flags does not contain any prohibited flags
if (!is_valid_mapping_flags(arch_mmu_flags)) {
return ZX_ERR_ACCESS_DENIED;
}
if (!IS_PAGE_ALIGNED(vmo_offset)) {
return ZX_ERR_INVALID_ARGS;
}
size_t mapping_size = ROUNDUP_PAGE_SIZE(size);
// Make sure that rounding up the page size did not overflow.
if (mapping_size < size) {
return ZX_ERR_OUT_OF_RANGE;
}
// Make sure that a mapping of this size wouldn't overflow the vmo offset.
if (vmo_offset + mapping_size < vmo_offset) {
return ZX_ERR_OUT_OF_RANGE;
}
// If we're mapping it with a specific permission, we should allow
// future Protect() calls on the mapping to keep that permission.
if (arch_mmu_flags & ARCH_MMU_FLAG_PERM_READ) {
vmar_flags |= VMAR_FLAG_CAN_MAP_READ;
}
if (arch_mmu_flags & ARCH_MMU_FLAG_PERM_WRITE) {
vmar_flags |= VMAR_FLAG_CAN_MAP_WRITE;
}
if (arch_mmu_flags & ARCH_MMU_FLAG_PERM_EXECUTE) {
vmar_flags |= VMAR_FLAG_CAN_MAP_EXECUTE;
}
fbl::RefPtr<VmAddressRegionOrMapping> res;
zx_status_t status = CreateSubVmarInternal(mapping_offset, mapping_size, align_pow2, vmar_flags,
vmo, vmo_offset, arch_mmu_flags, name, &res);
if (status != ZX_OK) {
return status;
}
// TODO(fxb/85056): For the moment we forward the latency sensitivity permanently onto any VMO
// that gets mapped.
if (aspace_->IsLatencySensitive()) {
vmo->MarkAsLatencySensitive();
}
// TODO(teisenbe): optimize this
*out = res->as_vm_mapping();
return ZX_OK;
}
zx_status_t VmAddressRegion::OverwriteVmMappingLocked(vaddr_t base, size_t size,
uint32_t vmar_flags,
fbl::RefPtr<VmObject> vmo,
uint64_t vmo_offset, uint arch_mmu_flags,
fbl::RefPtr<VmAddressRegionOrMapping>* out) {
canary_.Assert();
DEBUG_ASSERT(vmo);
DEBUG_ASSERT(vmar_flags & VMAR_FLAG_SPECIFIC_OVERWRITE);
fbl::AllocChecker ac;
fbl::RefPtr<VmAddressRegionOrMapping> vmar;
vmar = fbl::AdoptRef(new (&ac) VmMapping(*this, base, size, vmar_flags, ktl::move(vmo),
vmo_offset, arch_mmu_flags, VmMapping::Mergeable::NO));
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
zx_status_t status = UnmapInternalLocked(base, size, false /* can_destroy_regions */,
false /* allow_partial_vmar */);
if (status != ZX_OK) {
return status;
}
AssertHeld(vmar->lock_ref());
vmar->Activate();
*out = ktl::move(vmar);
return ZX_OK;
}
zx_status_t VmAddressRegion::DestroyLocked() {
canary_.Assert();
LTRACEF("%p '%s'\n", this, name_);
// The cur reference prevents regions from being destructed after dropping
// the last reference to them when removing from their parent.
fbl::RefPtr<VmAddressRegion> cur(this);
AssertHeld(cur->lock_ref());
while (cur) {
// Iterate through children destroying mappings. If we find a
// subregion, stop so we can traverse down.
fbl::RefPtr<VmAddressRegion> child_region = nullptr;
while (!cur->subregions_.IsEmpty() && !child_region) {
VmAddressRegionOrMapping* child = &cur->subregions_.front();
if (child->is_mapping()) {
AssertHeld(child->lock_ref());
// DestroyLocked should remove this child from our list on success.
zx_status_t status = child->DestroyLocked();
if (status != ZX_OK) {
// TODO(teisenbe): Do we want to handle this case differently?
return status;
}
} else {
child_region = child->as_vm_address_region();
}
}
if (child_region) {
// If we found a child region, traverse down the tree.
cur = child_region;
} else {
// All children are destroyed, so now destroy the current node.
if (cur->parent_) {
DEBUG_ASSERT(cur->in_subregion_tree());
AssertHeld(cur->parent_->lock_ref());
cur->parent_->subregions_.RemoveRegion(cur.get());
}
cur->state_ = LifeCycleState::DEAD;
VmAddressRegion* cur_parent = cur->parent_;
cur->parent_ = nullptr;
// If we destroyed the original node, stop. Otherwise traverse
// up the tree and keep destroying.
cur.reset((cur.get() == this) ? nullptr : cur_parent);
}
}
return ZX_OK;
}
fbl::RefPtr<VmAddressRegionOrMapping> VmAddressRegion::FindRegion(vaddr_t addr) {
Guard<Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return nullptr;
}
return fbl::RefPtr(subregions_.FindRegion(addr));
}
size_t VmAddressRegion::AllocatedPagesLocked() const {
canary_.Assert();
if (state_ != LifeCycleState::ALIVE) {
return 0;
}
size_t sum = 0;
for (const auto& child : subregions_) {
AssertHeld(child.lock_ref());
sum += child.AllocatedPagesLocked();
}
return sum;
}
zx_status_t VmAddressRegion::PageFault(vaddr_t va, uint pf_flags, LazyPageRequest* page_request) {
canary_.Assert();
VmAddressRegion* vmar = this;
AssertHeld(vmar->lock_ref());
while (VmAddressRegionOrMapping* next = vmar->subregions_.FindRegion(va)) {
if (auto mapping = next->as_vm_mapping_ptr()) {
AssertHeld(mapping->lock_ref());
// Stash the mapping we found as the most recent fault. As we just found this mapping in the
// VMAR tree we know it's in the ALIVE state, satisfying that requirement that allows us to
// record this as a raw pointer.
aspace_->last_fault_ = mapping;
return mapping->PageFault(va, pf_flags, page_request);
}
vmar = next->as_vm_address_region_ptr();
}
return ZX_ERR_NOT_FOUND;
}
ktl::optional<vaddr_t> VmAddressRegion::CheckGapLocked(VmAddressRegionOrMapping* prev,
VmAddressRegionOrMapping* next,
vaddr_t search_base, vaddr_t align,
size_t region_size, size_t min_gap,
uint arch_mmu_flags) {
vaddr_t gap_beg; // first byte of a gap
vaddr_t gap_end; // last byte of a gap
// compute the starting address of the gap
if (prev != nullptr) {
if (add_overflow(prev->base(), prev->size(), &gap_beg) ||
add_overflow(gap_beg, min_gap, &gap_beg)) {
return ktl::nullopt;
}
} else {
gap_beg = base_;
}
// compute the ending address of the gap
if (next != nullptr) {
if (gap_beg == next->base()) {
return ktl::nullopt; // no gap between regions
}
if (sub_overflow(next->base(), 1, &gap_end) || sub_overflow(gap_end, min_gap, &gap_end)) {
return ktl::nullopt;
}
} else {
if (gap_beg - base_ == size_) {
return ktl::nullopt; // no gap at the end of address space.
}
if (add_overflow(base_, size_ - 1, &gap_end)) {
return ktl::nullopt;
}
}
DEBUG_ASSERT(gap_end > gap_beg);
// trim it to the search range
if (gap_end <= search_base) {
return ktl::nullopt;
}
if (gap_beg < search_base) {
gap_beg = search_base;
}
DEBUG_ASSERT(gap_end > gap_beg);
LTRACEF_LEVEL(2, "search base %#" PRIxPTR " gap_beg %#" PRIxPTR " end %#" PRIxPTR "\n",
search_base, gap_beg, gap_end);
vaddr_t va =
aspace_->arch_aspace().PickSpot(gap_beg, gap_end, align, region_size, arch_mmu_flags);
if (va < gap_beg) {
return ktl::nullopt; // address wrapped around
}
if (va >= gap_end || ((gap_end - va + 1) < region_size)) {
return ktl::nullopt; // not enough room
}
return va;
}
template <typename ON_VMAR, typename ON_MAPPING>
zx_status_t VmAddressRegion::EnumerateChildrenInternalLocked(vaddr_t min_addr, vaddr_t max_addr,
ON_VMAR on_vmar,
ON_MAPPING on_mapping) {
canary_.Assert();
VmAddressRegionEnumerator<VmAddressRegionEnumeratorType::UnpausableVmarOrMapping> enumerator(
*this, min_addr, max_addr);
AssertHeld(enumerator.lock_ref());
while (auto result = enumerator.next()) {
// Lock is held over the entire duration so we can treat this as a raw pointer, knowing it will
// not go away.
VmAddressRegionOrMapping* curr = result->region_or_mapping;
if (curr->is_mapping()) {
VmMapping* mapping = curr->as_vm_mapping().get();
DEBUG_ASSERT(mapping != nullptr);
AssertHeld(mapping->lock_ref());
if (!on_mapping(mapping, this, result->depth)) {
return ZX_ERR_CANCELED;
}
} else {
VmAddressRegion* vmar = curr->as_vm_address_region().get();
DEBUG_ASSERT(vmar != nullptr);
AssertHeld(vmar->lock_ref());
if (!on_vmar(vmar, result->depth)) {
return ZX_ERR_CANCELED;
}
}
}
return ZX_OK;
}
zx_status_t VmAddressRegion::EnumerateChildrenLocked(VmEnumerator* ve) {
canary_.Assert();
DEBUG_ASSERT(ve != nullptr);
return EnumerateChildrenInternalLocked(
0, UINT64_MAX,
[ve](const VmAddressRegion* vmar, uint depth) {
AssertHeld(vmar->lock_ref());
return ve->OnVmAddressRegion(vmar, depth);
},
[ve](const VmMapping* map, const VmAddressRegion* vmar, uint depth) {
AssertHeld(vmar->lock_ref());
AssertHeld(map->lock_ref());
return ve->OnVmMapping(map, vmar, depth);
});
}
bool VmAddressRegion::has_parent() const {
Guard<Mutex> guard{aspace_->lock()};
return parent_ != nullptr;
}
void VmAddressRegion::DumpLocked(uint depth, bool verbose) const {
canary_.Assert();
for (uint i = 0; i < depth; ++i) {
printf(" ");
}
printf("vmar %p [%#" PRIxPTR " %#" PRIxPTR "] sz %#zx ref %d state %d '%s'\n", this, base_,
base_ + (size_ - 1), size_, ref_count_debug(), (int)state_, name_);
for (const auto& child : subregions_) {
AssertHeld(child.lock_ref());
child.DumpLocked(depth + 1, verbose);
}
}
void VmAddressRegion::Activate() {
DEBUG_ASSERT(state_ == LifeCycleState::NOT_READY);
state_ = LifeCycleState::ALIVE;
AssertHeld(parent_->lock_ref());
// Validate we are a correct child of our parent.
DEBUG_ASSERT(parent_->is_in_range(base_, size_));
// Look for a region in the parent starting from our desired base. If any region is found, make
// sure we do not intersect with it.
auto candidate = parent_->subregions_.IncludeOrHigher(base_);
ASSERT(candidate == parent_->subregions_.end() || candidate->base_ >= base_ + size_);
parent_->subregions_.InsertRegion(fbl::RefPtr<VmAddressRegionOrMapping>(this));
}
zx_status_t VmAddressRegion::RangeOp(RangeOpType op, vaddr_t base, size_t len,
user_inout_ptr<void> buffer, size_t buffer_size) {
canary_.Assert();
if (buffer || buffer_size) {
return ZX_ERR_INVALID_ARGS;
}
len = ROUNDUP(len, PAGE_SIZE);
if (len == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
if (!is_in_range(base, len)) {
return ZX_ERR_OUT_OF_RANGE;
}
const vaddr_t last_addr = base + len;
if (op == RangeOpType::AlwaysNeed) {
// TODO(fxb/85056): For the moment marking any part of the address space as always need causes
// the entire aspace to be considered latency sensitive.
aspace_->MarkAsLatencySensitive();
}
Guard<Mutex> guard{aspace_->lock()};
// Capture the validation that we need to do whenever the lock is acquired.
auto validate = [this, base, len]() TA_REQ(aspace_->lock()) -> zx_status_t {
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
// Don't allow any operations on the vDSO code mapping.
if (aspace_->IntersectsVdsoCodeLocked(base, len)) {
return ZX_ERR_ACCESS_DENIED;
}
return ZX_OK;
};
if (zx_status_t s = validate(); s != ZX_OK) {
return s;
}
VmAddressRegionEnumerator<VmAddressRegionEnumeratorType::PausableMapping> enumerator(*this, base,
last_addr);
AssertHeld(enumerator.lock_ref());
vaddr_t expected = base;
while (auto map = enumerator.next()) {
// Presently we hold the lock, so we know that region_or_mapping is valid, but we want to use
// this outside of the lock later on, and so we must upgrade it to a RefPtr.
fbl::RefPtr<VmMapping> mapping = fbl::RefPtr<VmMapping>(map->region_or_mapping);
AssertHeld(mapping->lock_ref());
// It's possible base is less than expected if the first mapping is not precisely aligned
// to the start of our range. After that base should always be expected, and if it's
// greater then there is a gap and this is considered an error.
if (mapping->base() > expected) {
return ZX_ERR_BAD_STATE;
}
// We should only have been called if we were at least partially in range.
DEBUG_ASSERT(mapping->is_in_range(expected, 1));
const size_t mapping_offset = expected - mapping->base();
const size_t vmo_offset = mapping->object_offset_locked() + mapping_offset;
// Should only have been called for a non-zero range.
DEBUG_ASSERT(last_addr > expected);
const size_t total_remain = last_addr - expected;
DEBUG_ASSERT(mapping->size() > mapping_offset);
const size_t max_in_mapping = mapping->size() - mapping_offset;
const size_t size = ktl::min(total_remain, max_in_mapping);
fbl::RefPtr<VmObject> vmo = mapping->vmo_locked();
zx_status_t result = ZX_OK;
enumerator.pause();
guard.CallUnlocked([&result, &vmo, &mapping, op, mapping_offset, vmo_offset, size] {
switch (op) {
case RangeOpType::Commit:
if (!mapping->is_valid_mapping_flags(ARCH_MMU_FLAG_PERM_WRITE)) {
result = ZX_ERR_ACCESS_DENIED;
} else {
result = vmo->CommitRange(vmo_offset, size);
if (result == ZX_OK) {
result = mapping->MapRange(mapping_offset, size, /*commit=*/false,
/*ignore_existing=*/true);
}
}
break;
case RangeOpType::Decommit:
// Decommit zeroes pages of the VMO, equivalent to writing to it.
// the mapping is currently writable, or could be made writable.
if (!mapping->is_valid_mapping_flags(ARCH_MMU_FLAG_PERM_WRITE)) {
result = ZX_ERR_ACCESS_DENIED;
} else {
result = vmo->DecommitRange(vmo_offset, size);
}
break;
case RangeOpType::MapRange:
result = mapping->MapRange(mapping_offset, size, /*commit=*/false,
/*ignore_existing=*/true);
break;
case RangeOpType::AlwaysNeed:
result = vmo->HintRange(vmo_offset, size, VmObject::EvictionHint::AlwaysNeed);
if (result == ZX_OK) {
result = mapping->MapRange(mapping_offset, size, /*commit=*/false,
/*ignore_existing=*/true);
}
break;
case RangeOpType::DontNeed:
result = vmo->HintRange(vmo_offset, size, VmObject::EvictionHint::DontNeed);
break;
default:
result = ZX_ERR_NOT_SUPPORTED;
break;
}
});
// Since the lock was dropped we must re-validate before doing anything else.
if (zx_status_t s = validate(); s != ZX_OK) {
return s;
}
enumerator.resume();
if (result != ZX_OK) {
// TODO(fxbug.dev/46881): ZX_ERR_INTERNAL is not meaningful to userspace.
// For now, translate to ZX_ERR_NOT_FOUND.
return result == ZX_ERR_INTERNAL ? ZX_ERR_NOT_FOUND : result;
}
expected += size;
}
// Check if there was a gap right at the end of the range.
if (expected < last_addr) {
return ZX_ERR_BAD_STATE;
}
return ZX_OK;
}
zx_status_t VmAddressRegion::Unmap(vaddr_t base, size_t size) {
canary_.Assert();
size = ROUNDUP(size, PAGE_SIZE);
if (size == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
Guard<Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
return UnmapInternalLocked(base, size, true /* can_destroy_regions */,
false /* allow_partial_vmar */);
}
zx_status_t VmAddressRegion::UnmapAllowPartial(vaddr_t base, size_t size) {
canary_.Assert();
size = ROUNDUP(size, PAGE_SIZE);
if (size == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
Guard<Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
return UnmapInternalLocked(base, size, true /* can_destroy_regions */,
true /* allow_partial_vmar */);
}
zx_status_t VmAddressRegion::UnmapInternalLocked(vaddr_t base, size_t size,
bool can_destroy_regions,
bool allow_partial_vmar) {
if (!is_in_range(base, size)) {
return ZX_ERR_INVALID_ARGS;
}
if (subregions_.IsEmpty()) {
return ZX_OK;
}
// Any unmap spanning the vDSO code mapping is verboten.
if (aspace_->IntersectsVdsoCodeLocked(base, size)) {
return ZX_ERR_ACCESS_DENIED;
}
// The last byte of the current unmap range.
vaddr_t end_addr_byte = 0;
DEBUG_ASSERT(size > 0);
bool overflowed = add_overflow(base, size - 1, &end_addr_byte);
ASSERT(!overflowed);
auto end = subregions_.UpperBound(end_addr_byte);
auto begin = subregions_.IncludeOrHigher(base);
if (!allow_partial_vmar) {
// Check if we're partially spanning a subregion, or aren't allowed to
// destroy regions and are spanning a region, and bail if we are.
for (auto itr = begin; itr != end; ++itr) {
vaddr_t itr_end_byte = 0;
DEBUG_ASSERT(itr->size() > 0);
overflowed = add_overflow(itr->base(), itr->size() - 1, &itr_end_byte);
ASSERT(!overflowed);
if (!itr->is_mapping() &&
(!can_destroy_regions || itr->base() < base || itr_end_byte > end_addr_byte)) {
return ZX_ERR_INVALID_ARGS;
}
}
}
bool at_top = true;
for (auto itr = begin; itr != end;) {
uint64_t curr_base;
VmAddressRegion* up;
{
// Create a copy of the iterator. It lives in this sub-scope as at the end we may have
// destroyed. As such we stash a copy of its base in a variable in our outer scope.
auto curr = itr++;
AssertHeld(curr->lock_ref());
curr_base = curr->base();
// The parent will keep living even if we destroy curr so can place that in the outer scope.
up = curr->parent_;
if (curr->is_mapping()) {
AssertHeld(curr->as_vm_mapping()->lock_ref());
vaddr_t curr_end_byte = 0;
DEBUG_ASSERT(curr->size() > 1);
overflowed = add_overflow(curr->base(), curr->size() - 1, &curr_end_byte);
ASSERT(!overflowed);
const vaddr_t unmap_base = ktl::max(curr->base(), base);
const vaddr_t unmap_end_byte = ktl::min(curr_end_byte, end_addr_byte);
size_t unmap_size;
overflowed = add_overflow(unmap_end_byte - unmap_base, 1, &unmap_size);
ASSERT(!overflowed);
if (unmap_base == curr->base() && unmap_size == curr->size()) {
// If we're unmapping the entire region, just call Destroy
__UNUSED zx_status_t status = curr->DestroyLocked();
DEBUG_ASSERT(status == ZX_OK);
} else {
// VmMapping::Unmap should only fail if it needs to allocate,
// which only happens if it is unmapping from the middle of a
// region. That can only happen if there is only one region
// being operated on here, so we can just forward along the
// error without having to rollback.
//
// TODO(teisenbe): Technically arch_mmu_unmap() itself can also
// fail. We need to rework the system so that is no longer
// possible.
zx_status_t status = curr->as_vm_mapping()->UnmapLocked(unmap_base, unmap_size);
DEBUG_ASSERT(status == ZX_OK || curr == begin);
if (status != ZX_OK) {
return status;
}
}
} else {
vaddr_t unmap_base = 0;
size_t unmap_size = 0;
__UNUSED bool intersects =
GetIntersect(base, size, curr->base(), curr->size(), &unmap_base, &unmap_size);
DEBUG_ASSERT(intersects);
if (allow_partial_vmar) {
// If partial VMARs are allowed, we descend into sub-VMARs.
fbl::RefPtr<VmAddressRegion> vmar = curr->as_vm_address_region();
AssertHeld(vmar->lock_ref());
if (!vmar->subregions_.IsEmpty()) {
begin = vmar->subregions_.IncludeOrHigher(base);
end = vmar->subregions_.UpperBound(end_addr_byte);
itr = begin;
at_top = false;
}
} else if (unmap_base == curr->base() && unmap_size == curr->size()) {
__UNUSED zx_status_t status = curr->DestroyLocked();
DEBUG_ASSERT(status == ZX_OK);
}
}
}
if (allow_partial_vmar && !at_top && itr == end) {
AssertHeld(up->lock_ref());
// If partial VMARs are allowed, and we have reached the end of a
// sub-VMAR range, we ascend and continue iteration.
do {
// Use the stashed curr_base as if curr was a mapping we may have destroyed it.
begin = up->subregions_.UpperBound(curr_base);
if (begin.IsValid()) {
break;
}
at_top = up == this;
up = up->parent_;
} while (!at_top);
if (!begin.IsValid()) {
// If we have reached the end after ascending all the way up,
// break out of the loop.
break;
}
end = up->subregions_.UpperBound(end_addr_byte);
itr = begin;
}
}
return ZX_OK;
}
zx_status_t VmAddressRegion::Protect(vaddr_t base, size_t size, uint new_arch_mmu_flags) {
canary_.Assert();
size = ROUNDUP(size, PAGE_SIZE);
if (size == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
Guard<Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
if (!is_in_range(base, size)) {
return ZX_ERR_INVALID_ARGS;
}
if (subregions_.IsEmpty()) {
return ZX_ERR_NOT_FOUND;
}
// The last byte of the range.
vaddr_t end_addr_byte = 0;
bool overflowed = add_overflow(base, size - 1, &end_addr_byte);
ASSERT(!overflowed);
// Find the first region with a base greater than *base*. If a region
// exists for *base*, it will be immediately before it. If *base* isn't in
// that entry, bail since it's unmapped.
auto begin = --subregions_.UpperBound(base);
if (!begin.IsValid() || begin->size() <= base - begin->base()) {
return ZX_ERR_NOT_FOUND;
}
// Check if we're overlapping a subregion, or a part of the range is not
// mapped, or the new permissions are invalid for some mapping in the range.
for (auto itr = begin;;) {
VmMapping* mapping = itr->as_vm_mapping_ptr();
if (!mapping) {
return ZX_ERR_INVALID_ARGS;
}
if (!itr->is_valid_mapping_flags(new_arch_mmu_flags)) {
return ZX_ERR_ACCESS_DENIED;
}
if (mapping == aspace_->vdso_code_mapping_.get()) {
return ZX_ERR_ACCESS_DENIED;
}
// The last byte of the last mapped region.
vaddr_t last_mapped_byte = 0;
overflowed = add_overflow(itr->base(), itr->size() - 1, &last_mapped_byte);
ASSERT(!overflowed);
if (last_mapped_byte >= end_addr_byte) {
// This mapping either reaches exactly to, or beyond, the end of the range we are protecting,
// so we are finished validating.
break;
}
// As we still have some range to process we can require there to be another adjacent mapping,
// so increment itr and check for it.
++itr;
if (!itr.IsValid()) {
return ZX_ERR_NOT_FOUND;
}
// As we are at least the second mapping in the address space, and mappings cannot be
// zero sized, we should not have a base of 0.
DEBUG_ASSERT(itr->base() > 0);
if (itr->base() - 1 != last_mapped_byte) {
return ZX_ERR_NOT_FOUND;
}
}
for (auto itr = begin; itr.IsValid() && itr->base() < end_addr_byte;) {
VmMapping* mapping = itr->as_vm_mapping_ptr();
DEBUG_ASSERT(mapping);
// The last byte of the current region.
vaddr_t curr_end_byte = 0;
overflowed = add_overflow(itr->base(), itr->size() - 1, &curr_end_byte);
ASSERT(!overflowed);
const vaddr_t protect_base = ktl::max(itr->base(), base);
const vaddr_t protect_end_byte = ktl::min(curr_end_byte, end_addr_byte);
size_t protect_size;
overflowed = add_overflow(protect_end_byte - protect_base, 1, &protect_size);
ASSERT(!overflowed);
AssertHeld(mapping->lock_ref());
// |itr| needs to be incremented here since the mapping might be deleted by ProtectLocked. After
// |itr| is incremented we can use |mapping| instead, although after ProtectLocked is called it
// also becomes invalid.
itr++;
zx_status_t status = mapping->ProtectLocked(protect_base, protect_size, new_arch_mmu_flags);
if (status != ZX_OK) {
// TODO(teisenbe): Try to work out a way to guarantee success, or
// provide a full unwind?
return status;
}
}
return ZX_OK;
}
// Perform allocations for VMARs. This allocator works by choosing uniformly at random from a set of
// positions that could satisfy the allocation. The set of positions are the 'left' most positions
// of the address space and are capped by the address entropy limit. The entropy limit is retrieved
// from the address space, and can vary based on whether the user has requested compact allocations
// or not.
zx_status_t VmAddressRegion::AllocSpotLocked(size_t size, uint8_t align_pow2, uint arch_mmu_flags,
vaddr_t* spot, vaddr_t upper_limit) {
canary_.Assert();
DEBUG_ASSERT(size > 0 && IS_PAGE_ALIGNED(size));
DEBUG_ASSERT(spot);
LTRACEF_LEVEL(2, "aspace %p size 0x%zx align %hhu upper_limit 0x%lx\n", this, size, align_pow2,
upper_limit);
align_pow2 = ktl::max(align_pow2, static_cast<uint8_t>(PAGE_SIZE_SHIFT));
const vaddr_t align = 1UL << align_pow2;
// Ensure our candidate calculation shift will not overflow.
const uint8_t entropy = aspace_->AslrEntropyBits(flags_ & VMAR_FLAG_COMPACT);
vaddr_t alloc_spot = 0;
crypto::Prng* prng = nullptr;
if (aspace_->is_aslr_enabled()) {
prng = &aspace_->AslrPrngLocked();
}
zx_status_t status = subregions_.GetAllocSpot(&alloc_spot, align_pow2, entropy, size, base_,
size_, prng, upper_limit);
if (status != ZX_OK) {
return status;
}
// Sanity check that the allocation fits.
vaddr_t alloc_last_byte;
bool overflowed = add_overflow(alloc_spot, size - 1, &alloc_last_byte);
ASSERT(!overflowed);
auto after_iter = subregions_.UpperBound(alloc_last_byte);
auto before_iter = after_iter;
if (after_iter == subregions_.begin() || subregions_.IsEmpty()) {
before_iter = subregions_.end();
} else {
--before_iter;
}
ASSERT(before_iter == subregions_.end() || before_iter.IsValid());
VmAddressRegionOrMapping* before = nullptr;
if (before_iter.IsValid()) {
before = &(*before_iter);
}
VmAddressRegionOrMapping* after = nullptr;
if (after_iter.IsValid()) {
after = &(*after_iter);
}
if (auto va = CheckGapLocked(before, after, alloc_spot, align, size, 0, arch_mmu_flags)) {
*spot = *va;
return ZX_OK;
}
panic("Unexpected allocation failure\n");
}
zx_status_t VmAddressRegion::ReserveSpace(const char* name, vaddr_t base, size_t size,
uint arch_mmu_flags) {
canary_.Assert();
if (!is_in_range(base, size)) {
return ZX_ERR_INVALID_ARGS;
}
size_t offset = base - base_;
// We need a zero-length VMO to pass into CreateVmMapping so that a VmMapping would be created.
// The VmMapping is already mapped to physical pages in start.S.
// We would never call MapRange on the VmMapping, thus the VMO would never actually allocate any
// physical pages and we would never modify the PTE except for the permission change bellow
// caused by Protect.
fbl::RefPtr<VmObjectPaged> vmo;
zx_status_t status = VmObjectPaged::Create(PMM_ALLOC_FLAG_ANY, 0u, 0, &vmo);
if (status != ZX_OK) {
return status;
}
vmo->set_name(name, strlen(name));
// allocate a region and put it in the aspace list
fbl::RefPtr<VmMapping> r(nullptr);
status = CreateVmMapping(offset, size, 0, VMAR_FLAG_SPECIFIC, vmo, 0, arch_mmu_flags, name, &r);
if (status != ZX_OK) {
return status;
}
// Directly invoke a protect on the hardware aspace to modify the protection of the existing
// mappings. If the desired protection flags is "no permissions" then we need to use unmap instead
// of protect since a mapping with no permissions is not valid on most architectures.
if ((arch_mmu_flags & ARCH_MMU_FLAG_PERM_RWX_MASK) == 0) {
return aspace_->arch_aspace().Unmap(base, size / PAGE_SIZE, ArchVmAspace::EnlargeOperation::No,
nullptr);
} else {
return aspace_->arch_aspace().Protect(base, size / PAGE_SIZE, arch_mmu_flags);
}
}