blob: 456357c32f66d0d47d0cca5c9c51e4416b79ff8f [file] [log] [blame]
 // Copyright 2019 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef LIB_AFFINE_RATIO_H_ #define LIB_AFFINE_RATIO_H_ #include #include #include #include namespace affine { class Transform; // fwd decl for friendship class Ratio { public: enum class Exact { No, Yes }; // Used to indicate overflow/underflow of scaling operations. static constexpr int64_t kOverflow = std::numeric_limits::max(); static constexpr int64_t kUnderflow = std::numeric_limits::min(); // Reduces the ratio of N/D // // Defined only for uint32_t and uint64_t template static void Reduce(T* numerator, T* denominator); // Produces the product two 32 bit ratios. If exact is true, ASSERTs on loss // of precision. static void Product(uint32_t a_numerator, uint32_t a_denominator, uint32_t b_numerator, uint32_t b_denominator, uint32_t* product_numerator, uint32_t* product_denominator, Exact exact = Exact::Yes); // Produces the product of a 32 bit ratio and the int64_t as an int64_t. Returns // a saturated value (either kOverflow or kUnderflow) on overflow/underflow. static int64_t Scale(int64_t value, uint32_t numerator, uint32_t denominator); // Returns the product of the ratios. If exact is true, ASSERTs on loss of // precision. static Ratio Product(Ratio a, Ratio b, Exact exact = Exact::Yes) { uint32_t result_numerator; uint32_t result_denominator; Product(a.numerator(), a.denominator(), b.numerator(), b.denominator(), &result_numerator, &result_denominator, exact); return Ratio(result_numerator, result_denominator, NoReduce::Tag); } Ratio() = default; Ratio(uint32_t numerator, uint32_t denominator) : numerator_(numerator), denominator_(denominator) { Reduce(&numerator_, &denominator_); } uint32_t numerator() const { return numerator_; } uint32_t denominator() const { return denominator_; } bool invertible() const { return numerator_ != 0; } Ratio Inverse() const { ZX_ASSERT(invertible()); return Ratio{denominator_, numerator_, NoReduce::Tag}; } int64_t Scale(int64_t value) const { return Scale(value, numerator_, denominator_); } private: friend class Transform; enum class NoReduce { Tag }; Ratio(uint32_t numerator, uint32_t denominator, NoReduce) : numerator_(numerator), denominator_(denominator) {} uint32_t numerator_ = 1; uint32_t denominator_ = 1; }; // Tests two ratios for equality. inline bool operator==(Ratio a, Ratio b) { return a.numerator() == b.numerator() && a.denominator() == b.denominator(); } // Tests two ratios for inequality. inline bool operator!=(Ratio a, Ratio b) { return !(a == b); } // Returns the ratio of the two ratios. inline Ratio operator/(Ratio a, Ratio b) { return Ratio::Product(a, b.Inverse()); } // Returns the product of the two ratios. inline Ratio operator*(Ratio a, Ratio b) { return Ratio::Product(a, b); } // Returns the product of the rate and the int64_t. inline int64_t operator*(Ratio a, int64_t b) { return a.Scale(b); } // Returns the product of the rate and the int64_t. inline int64_t operator*(int64_t a, Ratio b) { return b.Scale(a); } // Returns the the int64_t divided by the rate. inline int64_t operator/(int64_t a, Ratio b) { return b.Inverse().Scale(a); } } // namespace affine #endif // LIB_AFFINE_RATIO_H_