blob: 3f8e8c9c140896838f7dde41f13bb599b1d30a0c [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "src/media/audio/audio_core/mixer/linear_sampler.h"
#include <algorithm>
#include <limits>
#include "src/lib/fxl/logging.h"
#include "src/media/audio/audio_core/mixer/constants.h"
#include "src/media/audio/audio_core/mixer/mixer_utils.h"
namespace media::audio::mixer {
template <size_t DestChanCount, typename SrcSampleType, size_t SrcChanCount>
class LinearSamplerImpl : public LinearSampler {
public:
LinearSamplerImpl() : LinearSampler(FRAC_ONE - 1, FRAC_ONE - 1) {}
bool Mix(float* dest, uint32_t dest_frames, uint32_t* dest_offset, const void* src,
uint32_t frac_src_frames, int32_t* frac_src_offset, bool accumulate,
Bookkeeping* info) override;
// If/when Bookkeeping is included in this class, clear src_pos_modulo here.
void Reset() override { memset(filter_data_, 0, sizeof(filter_data_)); }
private:
template <ScalerType ScaleType, bool DoAccumulate, bool HasModulo>
inline bool Mix(float* dest, uint32_t dest_frames, uint32_t* dest_offset, const void* src,
uint32_t frac_src_frames, int32_t* frac_src_offset, Bookkeeping* info);
float filter_data_[DestChanCount] = {0.0f};
};
// TODO(MTWN-75): refactor to minimize code duplication, or even better eliminate NxN
// implementations altogether, replaced by flexible rechannelization (MTWN-399).
template <typename SrcSampleType>
class NxNLinearSamplerImpl : public LinearSampler {
public:
NxNLinearSamplerImpl(size_t channelCount)
: LinearSampler(FRAC_ONE - 1, FRAC_ONE - 1), chan_count_(channelCount) {
filter_data_u_ = std::make_unique<float[]>(chan_count_);
memset(filter_data_u_.get(), 0, chan_count_ * sizeof(filter_data_u_[0]));
}
bool Mix(float* dest, uint32_t dest_frames, uint32_t* dest_offset, const void* src,
uint32_t frac_src_frames, int32_t* frac_src_offset, bool accumulate,
Bookkeeping* info) override;
// If/when Bookkeeping is included in this class, clear src_pos_modulo here.
void Reset() override {
memset(filter_data_u_.get(), 0, chan_count_ * sizeof(filter_data_u_[0]));
}
private:
template <ScalerType ScaleType, bool DoAccumulate, bool HasModulo>
inline bool Mix(float* dest, uint32_t dest_frames, uint32_t* dest_offset, const void* src,
uint32_t frac_src_frames, int32_t* frac_src_offset, Bookkeeping* info,
size_t chan_count);
size_t chan_count_;
std::unique_ptr<float[]> filter_data_u_;
};
// If upper layers call with ScaleType MUTED, they must set DoAccumulate=TRUE. They guarantee new
// buffers are cleared before usage; we optimize accordingly.
template <size_t DestChanCount, typename SrcSampleType, size_t SrcChanCount>
template <ScalerType ScaleType, bool DoAccumulate, bool HasModulo>
inline bool LinearSamplerImpl<DestChanCount, SrcSampleType, SrcChanCount>::Mix(
float* dest, uint32_t dest_frames, uint32_t* dest_offset, const void* src_void,
uint32_t frac_src_frames, int32_t* frac_src_offset, Bookkeeping* info) {
static_assert(ScaleType != ScalerType::MUTED || DoAccumulate == true,
"Mixing muted streams without accumulation is explicitly unsupported");
// We express number-of-source-frames as fixed-point 19.13 (to align with src_offset) but the
// actual number of frames provided is always an integer.
FXL_DCHECK((frac_src_frames & kPtsFractionalMask) == 0);
// Interpolation offset is int32, so even though frac_src_frames is a uint32,
// callers should not exceed int32_t::max().
FXL_DCHECK(frac_src_frames <= static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
// This method must always be provided at least one source frame.
FXL_DCHECK(frac_src_frames >= FRAC_ONE);
using DM = DestMixer<ScaleType, DoAccumulate>;
uint32_t dest_off = *dest_offset;
uint32_t dest_off_start = dest_off; // Only used when ramping.
// Location of first dest frame to produce must be within the provided buffer.
FXL_DCHECK(dest_off < dest_frames);
using SR = SrcReader<SrcSampleType, SrcChanCount, DestChanCount>;
int32_t src_off = *frac_src_offset;
const auto* src = static_cast<const SrcSampleType*>(src_void);
// "Source offset" can be negative, but within the bounds of pos_filter_width. Otherwise, all
// these src samples are in the future and irrelevant here. Callers explicitly avoid calling Mix
// in this case, so we have detected an error. For linear_sampler, we require src_off > -FRAC_ONE.
FXL_DCHECK(src_off + static_cast<int32_t>(pos_filter_width()) >= 0)
<< std::hex << "min allowed: 0x" << -pos_filter_width() << ", src_off: 0x" << src_off;
// src_off cannot exceed our last sampleable subframe. We define this as "Source end": the last
// subframe for which this Mix call can produce output. Otherwise, all these src samples are in
// the past and irrelevant here.
auto src_end = static_cast<int32_t>(frac_src_frames - pos_filter_width() - 1);
FXL_DCHECK(src_end >= 0);
FXL_DCHECK(src_off < static_cast<int32_t>(frac_src_frames))
<< std::hex << "src_off: 0x" << src_off << ", src_end: 0x" << src_end
<< ", frac_src_frames: 0x" << frac_src_frames;
// Cache these locally, in the template specialization that uses them. Only src_pos_modulo needs
// to be written back before returning.
uint32_t step_size = info->step_size;
uint32_t rate_modulo, denominator, src_pos_modulo;
if constexpr (HasModulo) {
rate_modulo = info->rate_modulo;
denominator = info->denominator;
src_pos_modulo = info->src_pos_modulo;
FXL_DCHECK(denominator > 0);
FXL_DCHECK(denominator > rate_modulo);
FXL_DCHECK(denominator > src_pos_modulo);
}
if constexpr (kVerboseRampDebug) {
FXL_LOG(INFO) << "Linear(" << this << ") Ramping: " << (ScaleType == ScalerType::RAMPING)
<< ", dest_frames: " << dest_frames << ", dest_off: " << dest_off;
}
if constexpr (ScaleType == ScalerType::RAMPING) {
if (dest_frames > Bookkeeping::kScaleArrLen + dest_off) {
dest_frames = Bookkeeping::kScaleArrLen + dest_off;
}
}
// If we are not attenuated to the Muted point, proceed with the mix. Otherwise, just update the
// source and dest offsets and hold onto any relevant filter data from the end of the source.
if constexpr (ScaleType != ScalerType::MUTED) {
Gain::AScale amplitude_scale;
if constexpr (ScaleType != ScalerType::RAMPING) {
amplitude_scale = info->gain.GetGainScale();
}
// TODO(mpuryear): optimize the logic below for common-case performance.
// If src_off is negative, we must incorporate previously-cached samples. Add a new sample, to
// complete the filter set, and compute the output.
while ((dest_off < dest_frames) && (src_off < 0)) {
if constexpr (ScaleType == ScalerType::RAMPING) {
amplitude_scale = info->scale_arr[dest_off - dest_off_start];
}
float* out = dest + (dest_off * DestChanCount);
for (size_t dest_chan = 0; dest_chan < DestChanCount; ++dest_chan) {
float cache = filter_data_[dest_chan];
auto src_chan_offset = dest_chan % SrcChanCount;
float s0 = SR::Read(src + src_chan_offset);
float sample = LinearInterpolate(cache, s0, src_off + FRAC_ONE);
out[dest_chan] = DM::Mix(out[dest_chan], sample, amplitude_scale);
}
++dest_off;
src_off += step_size;
if constexpr (HasModulo) {
src_pos_modulo += rate_modulo;
if (src_pos_modulo >= denominator) {
++src_off;
src_pos_modulo -= denominator;
}
}
}
// Now we are fully in the current buffer and need not rely on our cache.
while ((dest_off < dest_frames) && (src_off <= src_end)) {
if constexpr (ScaleType == ScalerType::RAMPING) {
amplitude_scale = info->scale_arr[dest_off - dest_off_start];
}
uint32_t src_offset_frame_start = (src_off >> kPtsFractionalBits) * SrcChanCount;
float* out = dest + (dest_off * DestChanCount);
for (size_t dest_chan = 0; dest_chan < DestChanCount; ++dest_chan) {
float sample;
auto src_chan_offset = dest_chan % SrcChanCount;
float s0 = SR::Read(src + src_offset_frame_start + src_chan_offset);
if ((src_off & FRAC_MASK) == 0) {
sample = s0;
} else {
float s1 = SR::Read(src + src_offset_frame_start + src_chan_offset + SrcChanCount);
sample = LinearInterpolate(s0, s1, src_off & FRAC_MASK);
}
out[dest_chan] = DM::Mix(out[dest_chan], sample, amplitude_scale);
}
++dest_off;
src_off += step_size;
if constexpr (HasModulo) {
src_pos_modulo += rate_modulo;
if (src_pos_modulo >= denominator) {
++src_off;
src_pos_modulo -= denominator;
}
}
}
} else {
// We are muted. Don't mix, but figure out how many samples we WOULD have produced and update
// the src_off and dest_off values appropriately.
if ((dest_off < dest_frames) && (src_off <= src_end)) {
uint32_t src_avail = ((src_end - src_off) / step_size) + 1;
uint32_t dest_avail = dest_frames - dest_off;
uint32_t avail = std::min(src_avail, dest_avail);
src_off += (avail * step_size);
dest_off += avail;
if constexpr (HasModulo) {
uint64_t total_mod = src_pos_modulo + (avail * rate_modulo);
src_off += (total_mod / denominator);
src_pos_modulo = total_mod % denominator;
int32_t prev_src_off =
(src_pos_modulo < rate_modulo) ? (src_off - step_size - 1) : (src_off - step_size);
while (prev_src_off > src_end) {
if (src_pos_modulo < rate_modulo) {
src_pos_modulo += denominator;
}
--dest_off;
src_off = prev_src_off;
src_pos_modulo -= rate_modulo;
prev_src_off =
(src_pos_modulo < rate_modulo) ? (src_off - step_size - 1) : (src_off - step_size);
}
}
}
}
// Update all our returned in-out parameters
*dest_offset = dest_off;
*frac_src_offset = src_off;
if constexpr (HasModulo) {
info->src_pos_modulo = src_pos_modulo;
}
// If next source position to consume is beyond start of last frame ...
if (src_off > src_end) {
uint32_t src_offset_last_frame = (src_end >> kPtsFractionalBits) * SrcChanCount;
// ... cache our final frame for use in future interpolation ...
for (size_t dest_chan = 0; dest_chan < DestChanCount; ++dest_chan) {
if constexpr (ScaleType == ScalerType::MUTED) {
// ... which, if MUTE, is silence (what we actually produced).
filter_data_[dest_chan] = 0;
} else {
auto src_chan_offset = dest_chan % SrcChanCount;
filter_data_[dest_chan] = SR::Read(src + src_offset_last_frame + src_chan_offset);
}
}
// At this point the source offset (src_off) is either somewhere within the last source sample,
// or entirely beyond the end of the source buffer (if frac_step_size is greater than unity).
// Either way, we've extracted all of the information from this source buffer, and can return
// TRUE.
return true;
}
// Source offset (src_off) is at or before the start of the last source sample. We have not
// exhausted this source buffer -- return FALSE.
return false;
}
template <size_t DestChanCount, typename SrcSampleType, size_t SrcChanCount>
bool LinearSamplerImpl<DestChanCount, SrcSampleType, SrcChanCount>::Mix(
float* dest, uint32_t dest_frames, uint32_t* dest_offset, const void* src,
uint32_t frac_src_frames, int32_t* frac_src_offset, bool accumulate, Bookkeeping* info) {
FXL_DCHECK(info != nullptr);
bool hasModulo = (info->denominator > 0 && info->rate_modulo > 0);
if (info->gain.IsUnity()) {
return accumulate
? (hasModulo ? Mix<ScalerType::EQ_UNITY, true, true>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info)
: Mix<ScalerType::EQ_UNITY, true, false>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info))
: (hasModulo ? Mix<ScalerType::EQ_UNITY, false, true>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info)
: Mix<ScalerType::EQ_UNITY, false, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info));
} else if (info->gain.IsSilent()) {
return (hasModulo
? Mix<ScalerType::MUTED, true, true>(dest, dest_frames, dest_offset, src,
frac_src_frames, frac_src_offset, info)
: Mix<ScalerType::MUTED, true, false>(dest, dest_frames, dest_offset, src,
frac_src_frames, frac_src_offset, info));
} else if (info->gain.IsRamping()) {
return accumulate
? (hasModulo
? Mix<ScalerType::RAMPING, true, true>(dest, dest_frames, dest_offset, src,
frac_src_frames, frac_src_offset, info)
: Mix<ScalerType::RAMPING, true, false>(dest, dest_frames, dest_offset, src,
frac_src_frames, frac_src_offset,
info))
: (hasModulo ? Mix<ScalerType::RAMPING, false, true>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info)
: Mix<ScalerType::RAMPING, false, false>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info));
} else {
return accumulate
? (hasModulo ? Mix<ScalerType::NE_UNITY, true, true>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info)
: Mix<ScalerType::NE_UNITY, true, false>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info))
: (hasModulo ? Mix<ScalerType::NE_UNITY, false, true>(dest, dest_frames, dest_offset,
src, frac_src_frames,
frac_src_offset, info)
: Mix<ScalerType::NE_UNITY, false, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info));
}
}
// If upper layers call with ScaleType MUTED, they must set DoAccumulate=TRUE. They guarantee new
// buffers are cleared before usage; we optimize accordingly.
template <typename SrcSampleType>
template <ScalerType ScaleType, bool DoAccumulate, bool HasModulo>
inline bool NxNLinearSamplerImpl<SrcSampleType>::Mix(float* dest, uint32_t dest_frames,
uint32_t* dest_offset, const void* src_void,
uint32_t frac_src_frames,
int32_t* frac_src_offset, Bookkeeping* info,
size_t chan_count) {
static_assert(ScaleType != ScalerType::MUTED || DoAccumulate == true,
"Mixing muted streams without accumulation is explicitly unsupported");
// We express number-of-source-frames as fixed-point 19.13 (to align with src_offset) but the
// actual number of frames provided is always an integer.
FXL_DCHECK((frac_src_frames & kPtsFractionalMask) == 0);
// Interpolation offset is int32, so even though frac_src_frames is a uint32,
// callers should not exceed int32_t::max().
FXL_DCHECK(frac_src_frames <= static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
// This method must always be provided at least one source frame.
FXL_DCHECK(frac_src_frames >= FRAC_ONE);
using DM = DestMixer<ScaleType, DoAccumulate>;
uint32_t dest_off = *dest_offset;
uint32_t dest_off_start = dest_off; // Only used when ramping
// Location of first dest frame to produce must be within the provided buffer.
FXL_DCHECK(dest_off < dest_frames);
int32_t src_off = *frac_src_offset;
const auto* src = static_cast<const SrcSampleType*>(src_void);
// "Source offset" can be negative, but within the bounds of pos_filter_width. Otherwise, all
// these src samples are in the future and irrelevant here. Callers explicitly avoid calling Mix
// in this case, so we have detected an error. For linear_sampler, we require src_off > -FRAC_ONE.
FXL_DCHECK(src_off + static_cast<int32_t>(pos_filter_width()) >= 0)
<< std::hex << "src_off: 0x" << src_off;
// src_off cannot exceed our last sampleable subframe. We define this as "Source end": the last
// subframe for which this Mix call can produce output. Otherwise, all these src samples are in
// the past and irrelevant here.
auto src_end = static_cast<int32_t>(frac_src_frames - pos_filter_width() - 1);
FXL_DCHECK(src_end >= 0);
FXL_DCHECK(src_off < static_cast<int32_t>(frac_src_frames))
<< std::hex << "src_off: 0x" << src_off << ", src_end: 0x" << src_end
<< ", frac_src_frames: 0x" << frac_src_frames;
// Cache these locally, in the template specialization that uses them. Only src_pos_modulo must be
// written back before returning.
uint32_t step_size = info->step_size;
uint32_t rate_modulo, denominator, src_pos_modulo;
if constexpr (HasModulo) {
rate_modulo = info->rate_modulo;
denominator = info->denominator;
src_pos_modulo = info->src_pos_modulo;
FXL_DCHECK(denominator > 0);
FXL_DCHECK(denominator > rate_modulo);
FXL_DCHECK(denominator > src_pos_modulo);
}
if constexpr (kVerboseRampDebug) {
FXL_LOG(INFO) << "Linear-NxN(" << this << ") Ramping: " << (ScaleType == ScalerType::RAMPING)
<< ", dest_frames: " << dest_frames << ", dest_off: " << dest_off;
}
if constexpr (ScaleType == ScalerType::RAMPING) {
if (dest_frames > Bookkeeping::kScaleArrLen + dest_off) {
dest_frames = Bookkeeping::kScaleArrLen + dest_off;
}
}
// If we are not attenuated to the point of being muted, perform the mix. Otherwise, just update
// the source and dest offsets and cache any relevant filter data from the end of the source.
if constexpr (ScaleType != ScalerType::MUTED) {
Gain::AScale amplitude_scale;
if constexpr (ScaleType != ScalerType::RAMPING) {
amplitude_scale = info->gain.GetGainScale();
}
// TODO(mpuryear): optimize the logic below for common-case performance.
// If src_off is negative, we must incorporate previously-cached samples. Add a new sample, to
// complete the filter set, and compute the output.
while ((dest_off < dest_frames) && (src_off < 0)) {
if constexpr (ScaleType == ScalerType::RAMPING) {
amplitude_scale = info->scale_arr[dest_off - dest_off_start];
}
float* out = dest + (dest_off * chan_count);
for (size_t dest_chan = 0; dest_chan < chan_count; ++dest_chan) {
float cache = filter_data_u_[dest_chan];
float s0 = SampleNormalizer<SrcSampleType>::Read(src + dest_chan);
float sample = LinearInterpolate(cache, s0, src_off + FRAC_ONE);
out[dest_chan] = DM::Mix(out[dest_chan], sample, amplitude_scale);
}
++dest_off;
src_off += step_size;
if constexpr (HasModulo) {
src_pos_modulo += rate_modulo;
if (src_pos_modulo >= denominator) {
++src_off;
src_pos_modulo -= denominator;
}
}
}
// Now we are fully in the current buffer and need not rely on our cache.
while ((dest_off < dest_frames) && (src_off <= src_end)) {
if constexpr (ScaleType == ScalerType::RAMPING) {
amplitude_scale = info->scale_arr[dest_off - dest_off_start];
}
uint32_t src_offset_frame_start = (src_off >> kPtsFractionalBits) * chan_count;
float* out = dest + (dest_off * chan_count);
for (size_t dest_chan = 0; dest_chan < chan_count; ++dest_chan) {
float sample;
float s0 = SampleNormalizer<SrcSampleType>::Read(src + src_offset_frame_start + dest_chan);
if ((src_off & FRAC_MASK) == 0) {
sample = s0;
} else {
float s1 = SampleNormalizer<SrcSampleType>::Read(src + src_offset_frame_start +
dest_chan + chan_count);
sample = LinearInterpolate(s0, s1, src_off & FRAC_MASK);
}
out[dest_chan] = DM::Mix(out[dest_chan], sample, amplitude_scale);
}
++dest_off;
src_off += step_size;
if constexpr (HasModulo) {
src_pos_modulo += rate_modulo;
if (src_pos_modulo >= denominator) {
++src_off;
src_pos_modulo -= denominator;
}
}
}
} else {
// We are muted. Don't mix, but figure out how many samples we WOULD have produced and update
// the src_off and dest_off values appropriately.
if ((dest_off < dest_frames) && (src_off <= src_end)) {
uint32_t src_avail = ((src_end - src_off) / step_size) + 1;
uint32_t dest_avail = dest_frames - dest_off;
uint32_t avail = std::min(src_avail, dest_avail);
src_off += (avail * step_size);
dest_off += avail;
if constexpr (HasModulo) {
uint64_t total_mod = src_pos_modulo + (avail * rate_modulo);
src_off += (total_mod / denominator);
src_pos_modulo = total_mod % denominator;
int32_t prev_src_off =
(src_pos_modulo < rate_modulo) ? (src_off - step_size - 1) : (src_off - step_size);
while (prev_src_off > src_end) {
if (src_pos_modulo < rate_modulo) {
src_pos_modulo += denominator;
}
--dest_off;
src_off = prev_src_off;
src_pos_modulo -= rate_modulo;
prev_src_off =
(src_pos_modulo < rate_modulo) ? (src_off - step_size - 1) : (src_off - step_size);
}
}
}
}
// Update all our returned in-out parameters
*dest_offset = dest_off;
*frac_src_offset = src_off;
if constexpr (HasModulo) {
info->src_pos_modulo = src_pos_modulo;
}
// If next source position to consume is beyond start of last frame ...
if (src_off > src_end) {
uint32_t src_offset_last_frame = (src_end >> kPtsFractionalBits) * chan_count;
// ... cache our final frame for use in future interpolation ...
for (size_t dest_chan = 0; dest_chan < chan_count; ++dest_chan) {
if constexpr (ScaleType == ScalerType::MUTED) {
// ... which, if MUTE, is silence (what we actually produced).
filter_data_u_[dest_chan] = 0;
} else {
filter_data_u_[dest_chan] =
SampleNormalizer<SrcSampleType>::Read(src + src_offset_last_frame + dest_chan);
}
}
// At this point the source offset (src_off) is either somewhere within the last source sample,
// or entirely beyond the end of the source buffer (if frac_step_size is greater than unity).
// Either way, we've extracted all the information from this source buffer and can return TRUE.
return true;
}
// Source offset (src_off) is at or before the start of the last source
// sample. We have not exhausted this source buffer -- return FALSE.
return false;
}
template <typename SrcSampleType>
bool NxNLinearSamplerImpl<SrcSampleType>::Mix(float* dest, uint32_t dest_frames,
uint32_t* dest_offset, const void* src,
uint32_t frac_src_frames, int32_t* frac_src_offset,
bool accumulate, Bookkeeping* info) {
FXL_DCHECK(info != nullptr);
bool hasModulo = (info->denominator > 0 && info->rate_modulo > 0);
if (info->gain.IsUnity()) {
return accumulate ? (hasModulo ? Mix<ScalerType::EQ_UNITY, true, true>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_)
: Mix<ScalerType::EQ_UNITY, true, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_))
: (hasModulo ? Mix<ScalerType::EQ_UNITY, false, true>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_)
: Mix<ScalerType::EQ_UNITY, false, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_));
} else if (info->gain.IsSilent()) {
return (hasModulo ? Mix<ScalerType::MUTED, true, true>(dest, dest_frames, dest_offset, src,
frac_src_frames, frac_src_offset, info,
chan_count_)
: Mix<ScalerType::MUTED, true, false>(dest, dest_frames, dest_offset, src,
frac_src_frames, frac_src_offset, info,
chan_count_));
} else if (info->gain.IsRamping()) {
return accumulate ? (hasModulo ? Mix<ScalerType::RAMPING, true, true>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_)
: Mix<ScalerType::RAMPING, true, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_))
: (hasModulo ? Mix<ScalerType::RAMPING, false, true>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_)
: Mix<ScalerType::RAMPING, false, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_));
} else {
return accumulate ? (hasModulo ? Mix<ScalerType::NE_UNITY, true, true>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_)
: Mix<ScalerType::NE_UNITY, true, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_))
: (hasModulo ? Mix<ScalerType::NE_UNITY, false, true>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_)
: Mix<ScalerType::NE_UNITY, false, false>(
dest, dest_frames, dest_offset, src, frac_src_frames,
frac_src_offset, info, chan_count_));
}
}
// Templates used to expand the different combinations of possible LinearSampler configurations.
template <size_t DestChanCount, typename SrcSampleType, size_t SrcChanCount>
static inline std::unique_ptr<Mixer> SelectLSM(const fuchsia::media::AudioStreamType& src_format,
const fuchsia::media::AudioStreamType& dest_format) {
return std::make_unique<LinearSamplerImpl<DestChanCount, SrcSampleType, SrcChanCount>>();
}
template <size_t DestChanCount, typename SrcSampleType>
static inline std::unique_ptr<Mixer> SelectLSM(const fuchsia::media::AudioStreamType& src_format,
const fuchsia::media::AudioStreamType& dest_format) {
switch (src_format.channels) {
case 1:
return SelectLSM<DestChanCount, SrcSampleType, 1>(src_format, dest_format);
case 2:
return SelectLSM<DestChanCount, SrcSampleType, 2>(src_format, dest_format);
case 4:
if (dest_format.channels == 1 || dest_format.channels == 2) {
return SelectLSM<DestChanCount, SrcSampleType, 4>(src_format, dest_format);
}
return nullptr;
default:
return nullptr;
}
}
template <size_t DestChanCount>
static inline std::unique_ptr<Mixer> SelectLSM(const fuchsia::media::AudioStreamType& src_format,
const fuchsia::media::AudioStreamType& dest_format) {
switch (src_format.sample_format) {
case fuchsia::media::AudioSampleFormat::UNSIGNED_8:
return SelectLSM<DestChanCount, uint8_t>(src_format, dest_format);
case fuchsia::media::AudioSampleFormat::SIGNED_16:
return SelectLSM<DestChanCount, int16_t>(src_format, dest_format);
case fuchsia::media::AudioSampleFormat::SIGNED_24_IN_32:
return SelectLSM<DestChanCount, int32_t>(src_format, dest_format);
case fuchsia::media::AudioSampleFormat::FLOAT:
return SelectLSM<DestChanCount, float>(src_format, dest_format);
default:
return nullptr;
}
}
static inline std::unique_ptr<Mixer> SelectNxNLSM(
const fuchsia::media::AudioStreamType& src_format) {
switch (src_format.sample_format) {
case fuchsia::media::AudioSampleFormat::UNSIGNED_8:
return std::make_unique<NxNLinearSamplerImpl<uint8_t>>(src_format.channels);
case fuchsia::media::AudioSampleFormat::SIGNED_16:
return std::make_unique<NxNLinearSamplerImpl<int16_t>>(src_format.channels);
case fuchsia::media::AudioSampleFormat::SIGNED_24_IN_32:
return std::make_unique<NxNLinearSamplerImpl<int32_t>>(src_format.channels);
case fuchsia::media::AudioSampleFormat::FLOAT:
return std::make_unique<NxNLinearSamplerImpl<float>>(src_format.channels);
default:
return nullptr;
}
}
std::unique_ptr<Mixer> LinearSampler::Select(const fuchsia::media::AudioStreamType& src_format,
const fuchsia::media::AudioStreamType& dest_format) {
// If num_channels for src and dest are equal and > 2, directly map these one-to-one.
// TODO(MTWN-75): eliminate the NxN mixers, replacing with flexible rechannelization (see below).
if (src_format.channels == dest_format.channels && src_format.channels > 2) {
return SelectNxNLSM(src_format);
}
switch (dest_format.channels) {
case 1:
return SelectLSM<1>(src_format, dest_format);
case 2:
return SelectLSM<2>(src_format, dest_format);
case 4:
// For now, to mix Mono and Stereo sources to 4-channel destinations, we duplicate source
// channels across multiple destinations (Stereo LR becomes LRLR, Mono M becomes MMMM). Audio
// formats do not include info needed to filter frequencies or locate channels in 3D space.
// TODO(MTWN-399): enable the mixer to rechannelize in a more sophisticated way.
// TODO(MTWN-402): account for frequency range (e.g. a "4-channel" stereo woofer+tweeter).
return SelectLSM<4>(src_format, dest_format);
default:
return nullptr;
}
}
} // namespace media::audio::mixer