blob: 9fd55f9600b6028f69f8b8649126f6e1d83fafe8 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */
#include "cfg80211.h"
#include <stdlib.h>
#include <threads.h>
#include <zircon/errors.h>
#include <zircon/status.h>
#include <algorithm>
#include <optional>
#include <vector>
#include <ddk/hw/wlan/wlaninfo.h>
#include <ddk/metadata.h>
#include <ddk/protocol/wlanif.h>
#include <ddk/protocol/wlanphyimpl.h>
#include <wifi/wifi-config.h>
#include <wlan/common/macaddr.h>
#include <wlan/common/phy.h>
#include <wlan/common/status_code.h>
#include <wlan/protocol/ieee80211.h>
#include <wlan/protocol/mac.h>
#include "bits.h"
#include "brcmu_d11.h"
#include "brcmu_utils.h"
#include "brcmu_wifi.h"
#include "btcoex.h"
#include "common.h"
#include "core.h"
#include "debug.h"
#include "defs.h"
#include "feature.h"
#include "fweh.h"
#include "fwil.h"
#include "fwil_types.h"
#include "linuxisms.h"
#include "macros.h"
#include "netbuf.h"
#include "pno.h"
#include "proto.h"
#include "third_party/bcmdhd/crossdriver/dhd.h"
#include "workqueue.h"
#define BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS 320
#define BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS 400
#define BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS 20
#define BRCMF_SCAN_CHANNEL_TIME 40
#define BRCMF_SCAN_UNASSOC_TIME 40
#define BRCMF_SCAN_PASSIVE_TIME 120
#define BRCMF_ND_INFO_TIMEOUT_MSEC 2000
#define EXEC_TIMEOUT_WORKER(worker) \
{ \
if (brcmf_bus_get_bus_type(cfg->pub->bus_if) == BRCMF_BUS_TYPE_SIM) { \
(*cfg->worker.handler)(&cfg->worker); \
} else { \
WorkQueue::ScheduleDefault(&cfg->worker); \
} \
}
static bool check_vif_up(struct brcmf_cfg80211_vif* vif) {
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_READY, &vif->sme_state)) {
BRCMF_DBG(INFO, "device is not ready : status (%lu)\n", vif->sme_state.load());
return false;
}
return true;
}
static uint16_t __wl_rates[] = {
BRCM_RATE_1M, BRCM_RATE_2M, BRCM_RATE_5M5, BRCM_RATE_11M, BRCM_RATE_6M, BRCM_RATE_9M,
BRCM_RATE_12M, BRCM_RATE_18M, BRCM_RATE_24M, BRCM_RATE_36M, BRCM_RATE_48M, BRCM_RATE_54M,
};
#define wl_g_rates (__wl_rates + 0)
#define wl_g_rates_size countof(__wl_rates)
#define wl_a_rates (__wl_rates + 4)
#define wl_a_rates_size ((size_t)(wl_g_rates_size - 4))
/* Vendor specific ie. id = 221, oui and type defines exact ie */
struct brcmf_vs_tlv {
uint8_t id;
uint8_t len;
uint8_t oui[3];
uint8_t oui_type;
};
struct parsed_vndr_ie_info {
uint8_t* ie_ptr;
uint32_t ie_len; /* total length including id & length field */
struct brcmf_vs_tlv vndrie;
};
struct parsed_vndr_ies {
uint32_t count;
struct parsed_vndr_ie_info ie_info[VNDR_IE_PARSE_LIMIT];
};
#define BRCMF_CONNECT_STATUS_LIST \
X(BRCMF_CONNECT_STATUS_CONNECTED) \
X(BRCMF_CONNECT_STATUS_DEAUTHENTICATING) \
X(BRCMF_CONNECT_STATUS_DISASSOCIATING) \
X(BRCMF_CONNECT_STATUS_NO_NETWORK) \
X(BRCMF_CONNECT_STATUS_LINK_FAILED) \
X(BRCMF_CONNECT_STATUS_CONNECTING_TIMEOUT) \
X(BRCMF_CONNECT_STATUS_AUTHENTICATION_FAILED) \
X(BRCMF_CONNECT_STATUS_ASSOC_REQ_FAILED)
#define X(CONNECT_STATUS) CONNECT_STATUS,
enum brcmf_connect_status_t : uint8_t { BRCMF_CONNECT_STATUS_LIST };
#undef X
#define X(CONNECT_STATUS) \
case CONNECT_STATUS: \
return #CONNECT_STATUS;
const char* brcmf_get_connect_status_str(brcmf_connect_status_t connect_status) {
switch (connect_status) { BRCMF_CONNECT_STATUS_LIST };
}
#undef X
static inline void fill_with_broadcast_addr(uint8_t* address) { memset(address, 0xff, ETH_ALEN); }
/* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
*/
static const struct brcmf_tlv* brcmf_parse_tlvs(const void* buf, int buflen, uint key) {
const struct brcmf_tlv* elt = static_cast<decltype(elt)>(buf);
int totlen = buflen;
/* find tagged parameter */
while (totlen >= TLV_HDR_LEN) {
int len = elt->len;
/* validate remaining totlen */
if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN))) {
return elt;
}
elt = (struct brcmf_tlv*)((uint8_t*)elt + (len + TLV_HDR_LEN));
totlen -= (len + TLV_HDR_LEN);
}
return nullptr;
}
static zx_status_t brcmf_vif_change_validate(struct brcmf_cfg80211_info* cfg,
struct brcmf_cfg80211_vif* vif, uint16_t new_type) {
struct brcmf_cfg80211_vif* pos;
bool check_combos = false;
zx_status_t ret = ZX_OK;
struct iface_combination_params params = {
.num_different_channels = 1,
};
list_for_every_entry (&cfg->vif_list, pos, struct brcmf_cfg80211_vif, list) {
if (pos == vif) {
params.iftype_num[new_type]++;
} else {
/* concurrent interfaces so need check combinations */
check_combos = true;
params.iftype_num[pos->wdev.iftype]++;
}
}
if (check_combos) {
ret = cfg80211_check_combinations(cfg, &params);
}
return ret;
}
static zx_status_t brcmf_vif_add_validate(struct brcmf_cfg80211_info* cfg,
wlan_info_mac_role_t new_type) {
struct brcmf_cfg80211_vif* pos;
struct iface_combination_params params = {
.num_different_channels = 1,
};
list_for_every_entry (&cfg->vif_list, pos, struct brcmf_cfg80211_vif, list) {
params.iftype_num[pos->wdev.iftype]++;
}
params.iftype_num[new_type]++;
return cfg80211_check_combinations(cfg, &params);
}
static void convert_key_from_CPU(struct brcmf_wsec_key* key, struct brcmf_wsec_key_le* key_le) {
key_le->index = key->index;
key_le->len = key->len;
key_le->algo = key->algo;
key_le->flags = key->flags;
key_le->rxiv.hi = key->rxiv.hi;
key_le->rxiv.lo = key->rxiv.lo;
key_le->iv_initialized = key->iv_initialized;
memcpy(key_le->data, key->data, sizeof(key->data));
memcpy(key_le->ea, key->ea, sizeof(key->ea));
}
static zx_status_t send_key_to_dongle(struct brcmf_if* ifp, struct brcmf_wsec_key* key) {
zx_status_t err;
struct brcmf_wsec_key_le key_le;
convert_key_from_CPU(key, &key_le);
brcmf_netdev_wait_pend8021x(ifp);
err = brcmf_fil_bsscfg_data_set(ifp, "wsec_key", &key_le, sizeof(key_le));
if (err != ZX_OK) {
BRCMF_ERR("wsec_key error (%d)", err);
}
return err;
}
static void brcmf_cfg80211_update_proto_addr_mode(struct wireless_dev* wdev) {
struct brcmf_cfg80211_vif* vif;
struct brcmf_if* ifp;
vif = containerof(wdev, struct brcmf_cfg80211_vif, wdev);
ifp = vif->ifp;
if (wdev->iftype == WLAN_INFO_MAC_ROLE_AP) {
brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_DIRECT);
} else {
brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_INDIRECT);
}
}
static int32_t brcmf_get_first_free_bsscfgidx(struct brcmf_pub* drvr) {
int bsscfgidx;
for (bsscfgidx = 0; bsscfgidx < BRCMF_MAX_IFS; bsscfgidx++) {
/* bsscfgidx 1 is reserved for legacy P2P */
if (bsscfgidx == 1) {
continue;
}
if (!drvr->iflist[bsscfgidx]) {
return bsscfgidx;
}
}
return -1;
}
static int32_t brcmf_get_prealloced_bsscfgidx(struct brcmf_pub* drvr) {
int bsscfgidx;
net_device* ndev;
for (bsscfgidx = 0; bsscfgidx < BRCMF_MAX_IFS; bsscfgidx++) {
/* bsscfgidx 1 is reserved for legacy P2P */
if (bsscfgidx == 1) {
continue;
}
if (drvr->iflist[bsscfgidx]) {
ndev = drvr->iflist[bsscfgidx]->ndev;
if (ndev && ndev->needs_free_net_device) {
return bsscfgidx;
}
}
}
return -1;
}
static zx_status_t brcmf_cfg80211_request_ap_if(struct brcmf_if* ifp) {
struct brcmf_mbss_ssid_le mbss_ssid_le;
int bsscfgidx;
zx_status_t err;
memset(&mbss_ssid_le, 0, sizeof(mbss_ssid_le));
bsscfgidx = brcmf_get_first_free_bsscfgidx(ifp->drvr);
if (bsscfgidx < 0) {
return ZX_ERR_NO_MEMORY;
}
mbss_ssid_le.bsscfgidx = bsscfgidx;
mbss_ssid_le.SSID_len = 5;
sprintf((char*)mbss_ssid_le.SSID, "ssid%d", bsscfgidx);
err = brcmf_fil_bsscfg_data_set(ifp, "bsscfg:ssid", &mbss_ssid_le, sizeof(mbss_ssid_le));
if (err != ZX_OK) {
BRCMF_ERR("setting ssid failed %d", err);
}
return err;
}
/*For now this function should always be called when adding iface*/
static zx_status_t brcmf_set_iface_macaddr(net_device* ndev,
const wlan::common::MacAddr& mac_addr) {
struct brcmf_if* ifp = ndev_to_if(ndev);
bcme_status_t fw_err = BCME_OK;
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter");
// If the existing mac_addr of this iface is the same as it is, just return success.
if (!memcmp(ifp->mac_addr, mac_addr.byte, ETH_ALEN)) {
return ZX_OK;
}
err = brcmf_fil_iovar_data_set(ifp, "cur_etheraddr", mac_addr.byte, ETH_ALEN, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Setting mac address failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
BRCMF_INFO("Setting mac address of ndev:%s to %s\n", ifp->ndev->name, MACSTR(mac_addr));
memcpy(ifp->mac_addr, mac_addr.byte, sizeof(ifp->mac_addr));
return err;
}
// Derive the mac address for the SoftAP interface from the system mac address
// (which is used for the client interface).
zx_status_t brcmf_gen_ap_macaddr(struct brcmf_if* ifp, wlan::common::MacAddr& out_mac_addr) {
bcme_status_t fw_err = BCME_OK;
uint8_t gen_mac_addr[ETH_ALEN];
zx_status_t err = brcmf_fil_iovar_data_get(ifp, "cur_etheraddr", gen_mac_addr, ETH_ALEN, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Retrieving mac address from firmware failed: %s, fw err %s",
zx_status_get_string(err), brcmf_fil_get_errstr(fw_err));
return err;
}
// Modify the mac address as follows:
// Mark the address as unicast and locally administered. In addition, modify
// byte 5 (increment) to ensure that it is different from the original address
gen_mac_addr[0] &= 0xfe; // bit 0: 0 = unicast
gen_mac_addr[0] |= 0x02; // bit 1: 1 = locally-administered
gen_mac_addr[5]++;
out_mac_addr.Set(gen_mac_addr);
return ZX_OK;
}
static zx_status_t brcmf_set_ap_macaddr(struct brcmf_if* ifp,
const std::optional<wlan::common::MacAddr>& in_mac_addr) {
wlan::common::MacAddr mac_addr;
zx_status_t err = ZX_OK;
// Use the provided mac_addr if it passed.
if (in_mac_addr) {
mac_addr = *in_mac_addr;
} else {
// If MAC address is not provided, we generate one using the current MAC address.
// By default it is derived from the system mac address set during init.
err = brcmf_gen_ap_macaddr(ifp, mac_addr);
if (err != ZX_OK) {
BRCMF_ERR("Failed to generate MAC address for AP iface netdev: %s", ifp->ndev->name);
return err;
}
}
err = brcmf_set_iface_macaddr(ifp->ndev, mac_addr);
if (err != ZX_OK) {
BRCMF_ERR("Failed to set MAC address %s for AP iface netdev: %s", MACSTR(mac_addr),
ifp->ndev->name);
return err;
}
return ZX_OK;
}
static zx_status_t brcmf_cfg80211_change_iface(struct brcmf_cfg80211_info* cfg,
struct net_device* ndev, wlan_info_mac_role_t type,
struct vif_params* params) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_vif* vif = ifp->vif;
int32_t infra = 0;
int32_t ap = 0;
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
BRCMF_DBG(TRACE, "Enter");
err = brcmf_vif_change_validate(cfg, vif, type);
if (err != ZX_OK) {
BRCMF_ERR("iface validation failed: err=%d", err);
return err;
}
switch (type) {
case WLAN_INFO_MAC_ROLE_CLIENT:
infra = 1;
break;
case WLAN_INFO_MAC_ROLE_AP:
ap = 1;
break;
default:
err = ZX_ERR_OUT_OF_RANGE;
goto done;
}
if (ap) {
BRCMF_DBG(INFO, "IF Type = AP");
} else {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, infra, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("WLC_SET_INFRA error: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
err = ZX_ERR_UNAVAILABLE;
goto done;
}
BRCMF_DBG(INFO, "IF Type = Infra");
}
vif->wdev.iftype = type;
brcmf_cfg80211_update_proto_addr_mode(&vif->wdev);
done:
BRCMF_DBG(TRACE, "Exit");
return err;
}
/**
* brcmf_ap_add_vif() - create a new AP virtual interface for multiple BSS
*
* @cfg: config of new interface.
* @name: name of the new interface.
* @dev_out: address of wireless dev pointer
*/
static zx_status_t brcmf_ap_add_vif(struct brcmf_cfg80211_info* cfg, const char* name,
const std::optional<wlan::common::MacAddr>& mac_addr,
struct wireless_dev** dev_out) {
struct brcmf_if* ifp = cfg_to_if(cfg);
struct brcmf_cfg80211_vif* vif;
zx_status_t err;
// We need to create the SoftAP IF if we are not operating with manufacturing FW.
if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
if (brcmf_cfg80211_vif_event_armed(cfg)) {
return ZX_ERR_UNAVAILABLE;
}
BRCMF_DBG(INFO, "Adding vif \"%s\"", name);
err = brcmf_alloc_vif(cfg, WLAN_INFO_MAC_ROLE_AP, &vif);
if (err != ZX_OK) {
if (dev_out) {
*dev_out = nullptr;
}
return err;
}
brcmf_cfg80211_arm_vif_event(cfg, vif, BRCMF_E_IF_ADD);
err = brcmf_cfg80211_request_ap_if(ifp);
if (err != ZX_OK) {
brcmf_cfg80211_disarm_vif_event(cfg);
goto fail;
}
/* wait for firmware event */
err = brcmf_cfg80211_wait_vif_event(cfg, ZX_MSEC(BRCMF_VIF_EVENT_TIMEOUT_MSEC));
brcmf_cfg80211_disarm_vif_event(cfg);
if (err != ZX_OK) {
BRCMF_ERR("timeout occurred");
err = ZX_ERR_IO;
goto fail;
}
} else {
// Else reuse the existing IF itself but change its type
vif = ifp->vif;
vif->ifp = ifp;
err = brcmf_cfg80211_change_iface(cfg, ifp->ndev, WLAN_INFO_MAC_ROLE_AP, nullptr);
if (err != ZX_OK) {
BRCMF_ERR("Unable to change IF type err: %u", err);
err = ZX_ERR_IO;
goto fail;
}
}
/* interface created in firmware */
ifp = vif->ifp;
if (!ifp) {
BRCMF_ERR("no if pointer provided");
err = ZX_ERR_INVALID_ARGS;
goto fail;
}
strncpy(ifp->ndev->name, name, sizeof(ifp->ndev->name) - 1);
err = brcmf_net_attach(ifp, true);
if (err != ZX_OK) {
BRCMF_ERR("Registering netdevice failed");
brcmf_free_net_device(ifp->ndev);
goto fail;
}
err = brcmf_set_ap_macaddr(ifp, mac_addr);
if (err != ZX_OK) {
BRCMF_ERR("unable to set mac address of ap if");
goto fail;
}
if (dev_out) {
*dev_out = &ifp->vif->wdev;
}
return ZX_OK;
fail:
brcmf_free_vif(vif);
if (dev_out) {
*dev_out = nullptr;
}
return err;
}
static bool brcmf_is_apmode(struct brcmf_cfg80211_vif* vif) {
uint16_t iftype;
iftype = vif->wdev.iftype;
return iftype == WLAN_INFO_MAC_ROLE_AP;
}
static bool brcmf_is_existing_macaddr(brcmf_pub* drvr, const uint8_t mac_addr[ETH_ALEN],
bool is_ap) {
if (is_ap) {
for (const auto& iface : drvr->iflist) {
if (iface != nullptr && !memcmp(iface->mac_addr, mac_addr, ETH_ALEN)) {
return true;
}
}
} else {
for (const auto& iface : drvr->iflist) {
if (iface != nullptr && iface->vif->wdev.iftype != WLAN_INFO_MAC_ROLE_CLIENT &&
!memcmp(iface->mac_addr, mac_addr, ETH_ALEN)) {
return true;
}
}
}
return false;
}
zx_status_t brcmf_cfg80211_add_iface(brcmf_pub* drvr, const char* name, struct vif_params* params,
const wlanphy_impl_create_iface_req_t* req,
struct wireless_dev** wdev_out) {
zx_status_t err;
net_device* ndev;
wireless_dev* wdev;
int32_t bsscfgidx;
BRCMF_DBG(TRACE, "enter: %s type %d", name, req->role);
if (wdev_out == nullptr) {
BRCMF_ERR("cannot write wdev to nullptr");
return ZX_ERR_INVALID_ARGS;
}
err = brcmf_vif_add_validate(drvr->config, req->role);
if (err != ZX_OK) {
BRCMF_ERR("iface validation failed: err=%d", err);
return err;
}
struct brcmf_if* ifp;
const char* iface_role_name;
std::optional<wlan::common::MacAddr> mac_addr;
if (req->has_init_mac_addr) {
mac_addr.emplace(req->init_mac_addr);
}
switch (req->role) {
case WLAN_INFO_MAC_ROLE_AP:
iface_role_name = "ap";
if (mac_addr && brcmf_is_existing_macaddr(drvr, mac_addr->byte, true)) {
return ZX_ERR_ALREADY_EXISTS;
}
err = brcmf_ap_add_vif(drvr->config, name, mac_addr, &wdev);
if (err != ZX_OK) {
BRCMF_ERR("add iface %s type %d failed: err=%d", name, req->role, err);
return err;
}
brcmf_cfg80211_update_proto_addr_mode(wdev);
ndev = wdev->netdev;
wdev->iftype = req->role;
ndev->sme_channel = zx::channel(req->sme_channel);
break;
case WLAN_INFO_MAC_ROLE_CLIENT: {
iface_role_name = "client";
if (mac_addr && brcmf_is_existing_macaddr(drvr, mac_addr->byte, false)) {
return ZX_ERR_ALREADY_EXISTS;
}
bsscfgidx = brcmf_get_prealloced_bsscfgidx(drvr);
if (bsscfgidx < 0) {
return ZX_ERR_NO_MEMORY;
}
ndev = drvr->iflist[bsscfgidx]->ndev;
if (strncmp(ndev->name, name, sizeof(ndev->name))) {
BRCMF_INFO("Reusing netdev:%s for new client iface, but changing its name to netdev:%s.",
ndev->name, name);
brcmf_write_net_device_name(ndev, name);
}
ifp = brcmf_get_ifp(drvr, 0);
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
// Since a single IF is shared when operating with manufacturing FW, change
// IF type.
err = brcmf_cfg80211_change_iface(drvr->config, ifp->ndev, WLAN_INFO_MAC_ROLE_CLIENT,
nullptr);
if (err != ZX_OK) {
BRCMF_ERR("Unable to change iface to client");
return err;
}
}
wdev = &drvr->iflist[bsscfgidx]->vif->wdev;
wdev->iftype = req->role;
ndev->sme_channel = zx::channel(req->sme_channel);
ndev->needs_free_net_device = false;
// Use input mac_addr if it's provided. Otherwise, fallback to the bootloader
// MAC address. Note that this fallback MAC address is intended for client ifaces only.
wlan::common::MacAddr client_mac_addr;
if (mac_addr) {
client_mac_addr = *mac_addr;
} else {
err = brcmf_bus_get_bootloader_macaddr(drvr->bus_if, client_mac_addr.byte);
if (err != ZX_OK || client_mac_addr.IsZero() || client_mac_addr.IsBcast()) {
BRCMF_ERR("Failed to get valid mac address from bootloader: %s",
(err != ZX_OK) ? zx_status_get_string(err) : MACSTR(client_mac_addr));
err = brcmf_gen_random_mac_addr(client_mac_addr.byte);
if (err != ZX_OK) {
BRCMF_ERR("Failed to generate random MAC address.");
return err;
}
BRCMF_ERR("Falling back to random mac address: %s", MACSTR(client_mac_addr));
} else {
BRCMF_DBG(INFO, "Retrieved bootloader wifi MAC addresss: %s", MACSTR(client_mac_addr));
}
}
err = brcmf_set_iface_macaddr(ndev, client_mac_addr);
if (err != ZX_OK) {
BRCMF_ERR("Failed to set MAC address %s for client iface netdev:%s",
MACSTR(client_mac_addr), ndev->name);
return err;
}
break;
}
default:
return ZX_ERR_INVALID_ARGS;
}
*wdev_out = wdev;
return ZX_OK;
}
static void brcmf_scan_config_mpc(struct brcmf_if* ifp, int mpc) {
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_NEED_MPC)) {
brcmf_enable_mpc(ifp, mpc);
}
}
// This function set "mpc" to the requested value only if SoftAP
// has not been started. Else it sets "mpc" to 0.
void brcmf_enable_mpc(struct brcmf_if* ifp, int mpc) {
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
// If AP has been started, mpc is always 0
if (cfg->ap_started) {
mpc = 0;
}
err = brcmf_fil_iovar_int_set(ifp, "mpc", mpc, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("fail to set mpc: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return;
}
BRCMF_DBG(INFO, "MPC : %d", mpc);
}
static void brcmf_signal_scan_end(struct net_device* ndev, uint64_t txn_id,
uint8_t scan_result_code) {
wlanif_scan_end_t args;
args.txn_id = txn_id;
args.code = scan_result_code;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping signal scan end callback");
} else {
BRCMF_DBG(SCAN, "Signaling on_scan_end with txn_id %ld and code %d", args.txn_id, args.code);
BRCMF_DBG(WLANIF,
"Sending scan end event to SME. txn_id: %" PRIu64
", result: %s"
", APs seen: %" PRIu32 "",
args.txn_id,
args.code == WLAN_SCAN_RESULT_SUCCESS ? "success"
: args.code == WLAN_SCAN_RESULT_NOT_SUPPORTED ? "not supported"
: args.code == WLAN_SCAN_RESULT_INVALID_ARGS ? "invalid args"
: args.code == WLAN_SCAN_RESULT_INTERNAL_ERROR ? "internal error"
: "unknown",
ndev->scan_num_results);
wlanif_impl_ifc_on_scan_end(&ndev->if_proto, &args);
}
}
zx_status_t brcmf_notify_escan_complete(struct brcmf_cfg80211_info* cfg, struct brcmf_if* ifp,
bool aborted, bool fw_abort) {
struct brcmf_scan_params_le params_le;
const wlanif_scan_req_t* scan_request;
uint64_t reqid;
uint32_t bucket;
zx_status_t err = ZX_OK;
BRCMF_DBG(SCAN, "Enter");
/* clear scan request, because the FW abort can cause a second call */
/* to this function and might cause a double signal_scan_end */
scan_request = cfg->scan_request;
cfg->scan_request = nullptr;
// Canceling if it's inactive is OK. Checking if it's active just invites race conditions.
cfg->escan_timer->Stop();
if (fw_abort) {
/* Do a scan abort to stop the driver's scan engine */
BRCMF_DBG(SCAN, "ABORT scan in firmware");
memset(&params_le, 0, sizeof(params_le));
fill_with_broadcast_addr(params_le.bssid);
params_le.bss_type = DOT11_BSSTYPE_ANY;
params_le.scan_type = 0;
params_le.channel_num = 1;
params_le.nprobes = 1;
params_le.active_time = -1;
params_le.passive_time = -1;
params_le.home_time = -1;
/* Scan is aborted by setting channel_list[0] to -1 */
params_le.channel_list[0] = -1;
/* E-Scan (or anyother type) can be aborted by SCAN */
bcme_status_t fwerr = BCME_OK;
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN, &params_le, sizeof(params_le), &fwerr);
if (err != ZX_OK) {
BRCMF_ERR("Scan abort failed: %s (fw err %s)", zx_status_get_string(err),
brcmf_fil_get_errstr(fwerr));
}
}
brcmf_scan_config_mpc(ifp, 1);
/*
* e-scan can be initiated internally
* which takes precedence.
*/
struct net_device* ndev = cfg_to_ndev(cfg);
if (cfg->int_escan_map) {
BRCMF_DBG(SCAN, "scheduled scan completed (%x)", cfg->int_escan_map);
while (cfg->int_escan_map) {
bucket = ffs(cfg->int_escan_map) - 1; // ffs() index is 1-based
cfg->int_escan_map &= ~BIT(bucket);
reqid = brcmf_pno_find_reqid_by_bucket(cfg->pno, bucket);
if (!aborted) {
// TODO(cphoenix): Figure out how to use internal reqid infrastructure, rather
// than storing it separately in wiphy->scan_txn_id.
BRCMF_DBG(SCAN, " * * report scan results: internal reqid=%lu", reqid);
brcmf_signal_scan_end(ndev, ndev->scan_txn_id, WLAN_SCAN_RESULT_SUCCESS);
}
}
} else if (scan_request) {
BRCMF_DBG(WLANIF, "ESCAN Completed scan: %s", aborted ? "Aborted" : "Done");
brcmf_signal_scan_end(ndev, ndev->scan_txn_id,
aborted ? WLAN_SCAN_RESULT_INTERNAL_ERROR : WLAN_SCAN_RESULT_SUCCESS);
}
if (!brcmf_test_and_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_DBG(SCAN, "Scan complete, probably P2P scan");
}
return err;
}
static zx_status_t brcmf_cfg80211_del_ap_iface(struct brcmf_cfg80211_info* cfg,
struct wireless_dev* wdev) {
struct net_device* ndev = wdev->netdev;
struct brcmf_if* ifp = nullptr;
zx_status_t err;
if (ndev)
ifp = ndev_to_if(ndev);
else {
BRCMF_ERR("Net device is nullptr");
return ZX_ERR_IO;
}
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
// If we are operating with manufacturing FW, we just have a single IF. Pretend like it was
// deleted.
return ZX_OK;
}
brcmf_cfg80211_arm_vif_event(cfg, ifp->vif, BRCMF_E_IF_DEL);
err = brcmf_fil_bsscfg_data_set(ifp, "interface_remove", nullptr, 0);
if (err != ZX_OK) {
BRCMF_ERR("interface_remove interface %d failed %d", ifp->ifidx, err);
goto err_unarm;
}
/* wait for firmware event */
err = brcmf_cfg80211_wait_vif_event(cfg, ZX_MSEC(BRCMF_VIF_EVENT_TIMEOUT_MSEC));
if (err != ZX_OK) {
BRCMF_ERR("BRCMF_VIF_EVENT timeout occurred");
err = ZX_ERR_IO;
goto err_unarm;
}
brcmf_remove_interface(ifp, true);
err_unarm:
brcmf_cfg80211_disarm_vif_event(cfg);
return err;
}
static zx_status_t brcmf_dev_escan_set_randmac(struct brcmf_if* ifp) {
struct brcmf_pno_macaddr_le pfn_mac = {};
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
pfn_mac.version = BRCMF_PFN_MACADDR_CFG_VER;
pfn_mac.flags = BRCMF_PFN_USE_FULL_MACADDR;
err = brcmf_gen_random_mac_addr(pfn_mac.mac);
if (err != ZX_OK) {
return err;
}
err = brcmf_fil_iovar_data_set(ifp, "pfn_macaddr", &pfn_mac, sizeof(pfn_mac), &fw_err);
if (err)
BRCMF_ERR("set escan randmac failed, err=%d, fw_err=%d", err, fw_err);
return err;
}
static zx_status_t brcmf_escan_prep(struct brcmf_cfg80211_info* cfg,
struct brcmf_scan_params_le* params_le,
const wlanif_scan_req_t* request) {
uint32_t n_ssids;
uint32_t n_channels;
int32_t i;
int32_t offset;
uint16_t chanspec;
char* ptr;
struct brcmf_ssid_le ssid_le;
fill_with_broadcast_addr(params_le->bssid);
params_le->bss_type = DOT11_BSSTYPE_ANY;
if (request->scan_type == WLAN_SCAN_TYPE_ACTIVE) {
params_le->scan_type = BRCMF_SCANTYPE_ACTIVE;
params_le->active_time = request->min_channel_time;
params_le->nprobes = BRCMF_ACTIVE_SCAN_NUM_PROBES;
params_le->passive_time = -1;
} else {
params_le->scan_type = BRCMF_SCANTYPE_PASSIVE;
params_le->passive_time = request->min_channel_time;
params_le->active_time = -1;
}
params_le->channel_num = 0;
params_le->home_time = -1;
if (request->ssid.len > IEEE80211_MAX_SSID_LEN) {
BRCMF_ERR("Scan request SSID too long(no longer than %d bytes)", IEEE80211_MAX_SSID_LEN);
return ZX_ERR_INVALID_ARGS;
}
params_le->ssid_le.SSID_len = request->ssid.len;
memcpy(params_le->ssid_le.SSID, request->ssid.data, request->ssid.len);
n_ssids = request->num_ssids;
n_channels = request->num_channels;
/* Copy channel array if applicable */
BRCMF_DBG(SCAN, "### List of channelspecs to scan ### %d", n_channels);
if (n_channels > 0) {
for (i = 0; i < (int32_t)n_channels; i++) {
wlan_channel_t wlan_chan;
wlan_chan.primary = request->channel_list[i];
wlan_chan.cbw = WLAN_CHANNEL_BANDWIDTH__20;
wlan_chan.secondary80 = 0;
chanspec = channel_to_chanspec(&cfg->d11inf, &wlan_chan);
BRCMF_DBG(SCAN, "Chan : %d, Channel spec: %x", request->channel_list[i], chanspec);
params_le->channel_list[i] = chanspec;
}
} else {
BRCMF_DBG(SCAN, "Scanning all channels");
}
/* Copy ssid array if applicable */
BRCMF_DBG(SCAN, "### List of SSIDs to scan ### %d", n_ssids);
if (n_ssids > 0) {
if (params_le->scan_type == BRCMF_SCANTYPE_ACTIVE) {
offset = offsetof(struct brcmf_scan_params_le, channel_list) + n_channels * sizeof(uint16_t);
offset = roundup(offset, sizeof(uint32_t));
ptr = (char*)params_le + offset;
for (i = 0; i < (int32_t)n_ssids; i++) {
if (request->ssid_list[i].len > IEEE80211_MAX_SSID_LEN) {
BRCMF_ERR("SSID in scan request SSID list too long(no longer than %d bytes)",
IEEE80211_MAX_SSID_LEN);
return ZX_ERR_INVALID_ARGS;
}
memset(&ssid_le, 0, sizeof(ssid_le));
ssid_le.SSID_len = request->ssid_list[i].len;
memcpy(ssid_le.SSID, request->ssid_list[i].data, request->ssid_list[i].len);
if (!ssid_le.SSID_len) {
BRCMF_DBG(SCAN, "%d: Broadcast scan", i);
} else {
BRCMF_DBG(SCAN, "%d: scan for %.32s size=%d", i, ssid_le.SSID, ssid_le.SSID_len);
}
memcpy(ptr, &ssid_le, sizeof(ssid_le));
ptr += sizeof(ssid_le);
}
}
}
/* Adding mask to channel numbers */
params_le->channel_num =
(n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) | (n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK);
return ZX_OK;
}
// Calculate the amount of memory needed to hold the escan parameters for a firmware request
static size_t brcmf_escan_params_size(size_t num_channels, size_t num_ssids) {
size_t size = BRCMF_SCAN_PARAMS_FIXED_SIZE;
// escan params headers
size += offsetof(struct brcmf_escan_params_le, params_le);
// Channel specs
size += sizeof(uint32_t) * ((num_channels + 1) / 2);
// SSIDs
size += sizeof(struct brcmf_ssid_le) * num_ssids;
return size;
}
static zx_status_t brcmf_run_escan(struct brcmf_cfg80211_info* cfg, struct brcmf_if* ifp,
const wlanif_scan_req_t* request) {
if (request == nullptr) {
return ZX_ERR_INVALID_ARGS;
}
// Validate dwell times
if (request->min_channel_time == 0 || request->max_channel_time < request->min_channel_time) {
BRCMF_ERR("Invalid dwell times in escan request min: %u max: %u", request->min_channel_time,
request->max_channel_time);
return ZX_ERR_INVALID_ARGS;
}
// Validate channel count
if (request->num_channels > WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS) {
BRCMF_ERR("Number of channels in escan request (%zu) exceeds maximum (%d)",
request->num_channels, WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS);
return ZX_ERR_INVALID_ARGS;
}
// Validate ssid count
if (request->num_ssids > WLAN_SCAN_MAX_SSIDS) {
BRCMF_ERR("Number of SSIDs in escan request (%zu) exceeds maximum (%d)", request->num_ssids,
WLAN_SCAN_MAX_SSIDS);
return ZX_ERR_INVALID_ARGS;
}
// Calculate space needed for parameters
size_t params_size = brcmf_escan_params_size(request->num_channels, request->num_ssids);
// Validate command size
size_t total_cmd_size = params_size + sizeof("escan");
if (total_cmd_size >= BRCMF_DCMD_MEDLEN) {
BRCMF_ERR("Escan params size (%zu) exceeds command max capacity (%d)", total_cmd_size,
BRCMF_DCMD_MEDLEN);
return ZX_ERR_INVALID_ARGS;
}
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
BRCMF_DBG(SCAN, "E-SCAN START");
struct brcmf_escan_params_le* params = static_cast<decltype(params)>(calloc(1, params_size));
if (!params) {
err = ZX_ERR_NO_MEMORY;
goto exit;
}
err = brcmf_escan_prep(cfg, &params->params_le, request);
if (err != ZX_OK) {
BRCMF_ERR("escan preparation failed");
goto exit;
}
params->version = BRCMF_ESCAN_REQ_VERSION;
params->action = WL_ESCAN_ACTION_START;
params->sync_id = 0x1234;
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_SCAN_RANDOM_MAC) &&
(params->params_le.scan_type == BRCMF_SCANTYPE_ACTIVE) &&
!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
if ((err = brcmf_dev_escan_set_randmac(ifp)) != ZX_OK) {
BRCMF_ERR("Failed to set random mac for active scan (%s), using interface mac",
zx_status_get_string(err));
}
}
err = brcmf_fil_iovar_data_set(ifp, "escan", params, params_size, &fw_err);
if (err != ZX_OK) {
if (err == ZX_ERR_UNAVAILABLE) {
BRCMF_ERR("system busy : escan canceled sme state: 0x%lx\n",
atomic_load(&ifp->vif->sme_state));
} else {
BRCMF_ERR("escan failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
}
}
exit:
free(params);
return err;
}
static zx_status_t brcmf_do_escan(struct brcmf_if* ifp, const wlanif_scan_req_t* req) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err;
struct escan_info* escan = &cfg->escan_info;
BRCMF_DBG(SCAN, "Enter");
escan->ifp = ifp;
escan->escan_state = WL_ESCAN_STATE_SCANNING;
brcmf_scan_config_mpc(ifp, 0);
err = escan->run(cfg, ifp, req);
if (err != ZX_OK) {
brcmf_scan_config_mpc(ifp, 1);
}
return err;
}
zx_status_t brcmf_cfg80211_scan(struct net_device* ndev, const wlanif_scan_req_t* req) {
zx_status_t err;
BRCMF_DBG(TRACE, "Enter");
struct wireless_dev* wdev = ndev_to_wdev(ndev);
struct brcmf_cfg80211_vif* vif = containerof(wdev, struct brcmf_cfg80211_vif, wdev);
if (!check_vif_up(vif)) {
BRCMF_DBG(TEMP, "Vif not up");
return ZX_ERR_IO;
}
struct brcmf_cfg80211_info* cfg = ndev_to_if(ndev)->drvr->config;
struct net_device* softap_ndev = cfg_to_softap_ndev(cfg);
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_ERR("Scanning already: status (%lu)\n", cfg->scan_status.load());
return ZX_ERR_UNAVAILABLE;
}
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status)) {
BRCMF_ERR("Scanning being aborted: status (%lu)\n", cfg->scan_status.load());
return ZX_ERR_UNAVAILABLE;
}
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) {
BRCMF_ERR("Scanning suppressed: status (%lu)\n", cfg->scan_status.load());
return ZX_ERR_UNAVAILABLE;
}
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state)) {
BRCMF_ERR("Scan request suppressed: connect in progress (status: %lu)\n",
vif->sme_state.load());
return ZX_ERR_UNAVAILABLE;
}
if (softap_ndev != nullptr && brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING,
&ndev_to_vif(softap_ndev)->sme_state)) {
BRCMF_INFO("AP start request in progress, rejecting scan request, a retry is expected.");
return ZX_ERR_UNAVAILABLE;
}
BRCMF_DBG(SCAN, "START ESCAN\n");
cfg->scan_request = req;
brcmf_set_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->escan_info.run = brcmf_run_escan;
err = brcmf_do_escan(vif->ifp, req);
if (err != ZX_OK) {
goto scan_out;
}
/* Arm scan timeout timer */
cfg->escan_timer->Start(ZX_MSEC(BRCMF_ESCAN_TIMER_INTERVAL_MS));
return ZX_OK;
scan_out:
BRCMF_ERR("scan error (%d)", err);
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->scan_request = nullptr;
return err;
}
static void brcmf_init_prof(struct brcmf_cfg80211_profile* prof) { memset(prof, 0, sizeof(*prof)); }
static zx_status_t brcmf_set_pmk(struct brcmf_if* ifp, const uint8_t* pmk_data, uint16_t pmk_len) {
struct brcmf_wsec_pmk_le pmk;
int i;
zx_status_t err;
/* convert to firmware key format */
pmk.key_len = pmk_len << 1;
pmk.flags = BRCMF_WSEC_PASSPHRASE;
for (i = 0; i < pmk_len; i++) {
// TODO(cphoenix): Make sure handling of pmk keys is consistent with their being
// binary values, not ASCII chars.
snprintf((char*)&pmk.key[2 * i], 3, "%02x", pmk_data[i]);
}
/* store psk in firmware */
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_WSEC_PMK, &pmk, sizeof(pmk), nullptr);
if (err != ZX_OK) {
BRCMF_ERR("failed to change PSK in firmware (len=%u)", pmk_len);
}
return err;
}
static void brcmf_notify_deauth(struct net_device* ndev, const uint8_t peer_sta_address[ETH_ALEN]) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping deauth confirm callback");
return;
}
wlanif_deauth_confirm_t resp = {};
memcpy(resp.peer_sta_address, peer_sta_address, ETH_ALEN);
BRCMF_DBG(WLANIF, "Sending deauth confirm to SME. address: " MAC_FMT_STR "",
MAC_FMT_ARGS(peer_sta_address));
wlanif_impl_ifc_deauth_conf(&ndev->if_proto, &resp);
}
static void brcmf_notify_disassoc(struct net_device* ndev, zx_status_t status) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping disassoc confirm callback");
return;
}
wlanif_disassoc_confirm_t resp = {};
resp.status = status;
BRCMF_DBG(WLANIF, "Sending disassoc confirm to SME. status: %" PRIu32 "", status);
wlanif_impl_ifc_disassoc_conf(&ndev->if_proto, &resp);
}
// Send deauth_ind to SME (can be from client or softap)
static void brcmf_notify_deauth_ind(net_device* ndev, const uint8_t mac_addr[ETH_ALEN],
uint16_t reason, bool locally_initiated) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping deauth ind callback");
return;
}
wlanif_deauth_indication_t ind = {};
BRCMF_DBG(WLANIF,
"Link Down: Sending deauth ind to SME. address: " MAC_FMT_STR
", "
"reason: %" PRIu16,
MAC_FMT_ARGS(mac_addr), reason);
memcpy(ind.peer_sta_address, mac_addr, ETH_ALEN);
ind.reason_code = reason;
ind.locally_initiated = locally_initiated;
wlanif_impl_ifc_deauth_ind(&ndev->if_proto, &ind);
}
// Send disassoc_ind to SME (can be from client or softap)
static void brcmf_notify_disassoc_ind(net_device* ndev, const uint8_t mac_addr[ETH_ALEN],
uint16_t reason, bool locally_initiated) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping disassoc ind callback");
return;
}
wlanif_disassoc_indication_t ind = {};
BRCMF_DBG(WLANIF,
"Link Down: Sending disassoc ind to SME. address: " MAC_FMT_STR
", "
"reason: %" PRIu16,
MAC_FMT_ARGS(mac_addr), reason);
memcpy(ind.peer_sta_address, mac_addr, ETH_ALEN);
ind.reason_code = reason;
ind.locally_initiated = locally_initiated;
wlanif_impl_ifc_disassoc_ind(&ndev->if_proto, &ind);
}
static void cfg80211_disconnected(struct brcmf_cfg80211_vif* vif, uint16_t event_reason,
uint16_t event_code) {
struct net_device* ndev = vif->wdev.netdev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping link down callback");
return;
}
struct brcmf_cfg80211_info* cfg = vif->ifp->drvr->config;
BRCMF_DBG(CONN, "Link Down: address: " MAC_FMT_STR ", SME reason: %d",
MAC_FMT_ARGS(vif->profile.bssid), event_reason);
const bool sme_initiated_deauth =
cfg->disconnect_mode == BRCMF_DISCONNECT_DEAUTH &&
(event_code == BRCMF_E_DEAUTH || event_code == BRCMF_E_DISASSOC);
const bool sme_initiated_disassoc =
cfg->disconnect_mode == BRCMF_DISCONNECT_DISASSOC &&
(event_code == BRCMF_E_DEAUTH || event_code == BRCMF_E_DISASSOC);
if (sme_initiated_deauth) {
brcmf_notify_deauth(ndev, vif->profile.bssid);
} else if (sme_initiated_disassoc) {
brcmf_notify_disassoc(ndev, ZX_OK);
} else {
const bool locally_initiated = event_code == BRCMF_E_DEAUTH || event_code == BRCMF_E_DISASSOC ||
event_code == BRCMF_E_LINK;
// BRCMF_E_DEAUTH is unlikely if not SME-initiated
if (event_code == BRCMF_E_DEAUTH || event_code == BRCMF_E_DEAUTH_IND) {
brcmf_notify_deauth_ind(ndev, vif->profile.bssid, event_reason, locally_initiated);
} else {
// This is a catch-all case - could be E_DISASSOC, E_DISASSOC_IND, E_LINK or IF delete
brcmf_notify_disassoc_ind(ndev, vif->profile.bssid, event_reason, locally_initiated);
}
}
cfg->disconnect_mode = BRCMF_DISCONNECT_NONE;
}
static void brcmf_link_down(struct brcmf_cfg80211_vif* vif, uint16_t event_reason,
uint16_t event_code) {
struct brcmf_cfg80211_info* cfg = vif->ifp->drvr->config;
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter\n");
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state)) {
BRCMF_DBG(INFO, "Call WLC_DISASSOC to stop excess roaming\n ");
bcme_status_t fwerr = BCME_OK;
err = brcmf_fil_cmd_data_set(vif->ifp, BRCMF_C_DISASSOC, nullptr, 0, &fwerr);
if (err != ZX_OK) {
BRCMF_ERR("WLC_DISASSOC failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fwerr));
}
if (vif->wdev.iftype == WLAN_INFO_MAC_ROLE_CLIENT) {
cfg80211_disconnected(vif, event_reason, event_code);
}
}
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0);
if (vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_NONE) {
brcmf_set_pmk(vif->ifp, nullptr, 0);
vif->profile.use_fwsup = BRCMF_PROFILE_FWSUP_NONE;
}
BRCMF_DBG(TRACE, "Exit");
}
static zx_status_t brcmf_set_auth_type(struct net_device* ndev, uint8_t auth_type) {
brcmf_if* ifp = ndev_to_if(ndev);
int32_t val = 0;
zx_status_t status = ZX_OK;
switch (auth_type) {
case WLAN_AUTH_TYPE_OPEN_SYSTEM:
val = BRCMF_AUTH_MODE_OPEN;
break;
case WLAN_AUTH_TYPE_SHARED_KEY:
// When asked to use a shared key (which should only happen for WEP), we will direct the
// firmware to use auto-detect, which will fall back on open WEP if shared WEP fails to
// succeed. This was chosen to allow us to avoid implementing WEP auto-detection at higher
// levels of the wlan stack.
val = BRCMF_AUTH_MODE_AUTO;
break;
case WLAN_AUTH_TYPE_SAE:
val = BRCMF_AUTH_MODE_SAE;
break;
default:
return ZX_ERR_NOT_SUPPORTED;
}
BRCMF_DBG(CONN, "setting auth to %d", val);
status = brcmf_fil_bsscfg_int_set(ifp, "auth", val);
if (status != ZX_OK) {
BRCMF_ERR("set auth failed (%s)", zx_status_get_string(status));
}
return status;
}
static bool brcmf_valid_wpa_oui(uint8_t* oui, bool is_rsn_ie) {
if (is_rsn_ie) {
return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0);
}
return (memcmp(oui, MSFT_OUI, TLV_OUI_LEN) == 0);
}
static zx_status_t brcmf_configure_wpaie(struct brcmf_if* ifp, const struct brcmf_vs_tlv* wpa_ie,
bool is_rsn_ie, bool is_ap) {
uint16_t count;
zx_status_t err = ZX_OK;
int32_t len;
uint32_t i;
uint32_t wsec;
uint32_t pval = 0;
uint32_t gval = 0;
uint32_t wpa_auth = 0;
uint32_t offset;
uint8_t* data;
uint16_t rsn_cap;
uint32_t wme_bss_disable;
uint32_t mfp;
BRCMF_DBG(TRACE, "Enter");
if (wpa_ie == nullptr) {
goto exit;
}
len = wpa_ie->len + TLV_HDR_LEN;
data = (uint8_t*)wpa_ie;
offset = TLV_HDR_LEN;
if (!is_rsn_ie) {
offset += VS_IE_FIXED_HDR_LEN;
} else {
offset += WPA_IE_VERSION_LEN;
}
/* check for multicast cipher suite */
if ((int32_t)offset + WPA_IE_MIN_OUI_LEN > len) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("no multicast cipher suite");
goto exit;
}
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("invalid OUI");
goto exit;
}
offset += TLV_OUI_LEN;
/* pick up multicast cipher */
switch (data[offset]) {
case WPA_CIPHER_NONE:
BRCMF_DBG(CONN, "MCAST WPA CIPHER NONE");
gval = WSEC_NONE;
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
BRCMF_DBG(CONN, "MCAST WPA CIPHER WEP40/104");
gval = WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
BRCMF_DBG(CONN, "MCAST WPA CIPHER TKIP");
gval = TKIP_ENABLED;
break;
case WPA_CIPHER_CCMP_128:
BRCMF_DBG(CONN, "MCAST WPA CIPHER CCMP 128");
gval = AES_ENABLED;
break;
default:
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("Invalid multi cast cipher info");
goto exit;
}
offset++;
/* walk thru unicast cipher list and pick up what we recognize */
count = data[offset] + (data[offset + 1] << 8);
offset += WPA_IE_SUITE_COUNT_LEN;
/* Check for unicast suite(s) */
if ((int32_t)(offset + (WPA_IE_MIN_OUI_LEN * count)) > len) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("no unicast cipher suite");
goto exit;
}
for (i = 0; i < count; i++) {
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("ivalid OUI");
goto exit;
}
offset += TLV_OUI_LEN;
switch (data[offset]) {
case WPA_CIPHER_NONE:
BRCMF_DBG(CONN, "UCAST WPA CIPHER NONE");
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
BRCMF_DBG(CONN, "UCAST WPA CIPHER WEP 40/104");
pval |= WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
BRCMF_DBG(CONN, "UCAST WPA CIPHER TKIP");
pval |= TKIP_ENABLED;
break;
case WPA_CIPHER_CCMP_128:
BRCMF_DBG(CONN, "UCAST WPA CIPHER CCMP 128");
pval |= AES_ENABLED;
break;
default:
BRCMF_DBG(CONN, "Invalid unicast security info");
}
offset++;
}
/* walk thru auth management suite list and pick up what we recognize */
count = data[offset] + (data[offset + 1] << 8);
offset += WPA_IE_SUITE_COUNT_LEN;
/* Check for auth key management suite(s) */
if ((int32_t)(offset + (WPA_IE_MIN_OUI_LEN * count)) > len) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("no auth key mgmt suite");
goto exit;
}
for (i = 0; i < count; i++) {
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("ivalid OUI");
goto exit;
}
offset += TLV_OUI_LEN;
switch (data[offset]) {
case RSN_AKM_NONE:
BRCMF_DBG(CONN, "RSN_AKM_NONE");
wpa_auth |= WPA_AUTH_NONE;
break;
case RSN_AKM_UNSPECIFIED:
BRCMF_DBG(CONN, "RSN_AKM_UNSPECIFIED");
is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) : (wpa_auth |= WPA_AUTH_UNSPECIFIED);
break;
case RSN_AKM_PSK:
BRCMF_DBG(CONN, "RSN_AKM_PSK");
is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) : (wpa_auth |= WPA_AUTH_PSK);
break;
case RSN_AKM_SHA256_PSK:
BRCMF_DBG(CONN, "RSN_AKM_MFP_PSK");
wpa_auth |= WPA2_AUTH_PSK_SHA256;
break;
case RSN_AKM_SHA256_1X:
BRCMF_DBG(CONN, "RSN_AKM_MFP_1X");
wpa_auth |= WPA2_AUTH_1X_SHA256;
break;
case RSN_AKM_SAE_PSK:
BRCMF_DBG(CONN, "RSN_AKM_SAE");
wpa_auth |= WPA3_AUTH_SAE_PSK;
break;
default:
BRCMF_DBG(CONN, "Invalid key mgmt info, the auth mgmt suite is %u", data[offset]);
}
offset++;
}
/* Don't set SES_OW_ENABLED for now (since we don't support WPS yet) */
wsec = (pval | gval);
BRCMF_INFO("WSEC: 0x%x WPA AUTH: 0x%x", wsec, wpa_auth);
/* set wsec */
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
if (err != ZX_OK) {
BRCMF_ERR("wsec error %d", err);
goto exit;
}
mfp = BRCMF_MFP_NONE;
if (is_rsn_ie) {
if (is_ap) {
wme_bss_disable = 1;
if (((int32_t)offset + RSN_CAP_LEN) <= len) {
rsn_cap = data[offset] + (data[offset + 1] << 8);
if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK) {
wme_bss_disable = 0;
}
if (rsn_cap & RSN_CAP_MFPR_MASK) {
BRCMF_DBG(TRACE, "MFP Required");
mfp = BRCMF_MFP_REQUIRED;
/* Firmware only supports mfp required in
* combination with WPA2_AUTH_PSK_SHA256 or
* WPA2_AUTH_1X_SHA256.
*/
if (!(wpa_auth & (WPA2_AUTH_PSK_SHA256 | WPA2_AUTH_1X_SHA256))) {
err = ZX_ERR_INVALID_ARGS;
goto exit;
}
/* Firmware has requirement that WPA2_AUTH_PSK/
* WPA2_AUTH_UNSPECIFIED be set, if SHA256 OUI
* is to be included in the rsn ie.
*/
if (wpa_auth & WPA2_AUTH_PSK_SHA256) {
wpa_auth |= WPA2_AUTH_PSK;
} else if (wpa_auth & WPA2_AUTH_1X_SHA256) {
wpa_auth |= WPA2_AUTH_UNSPECIFIED;
}
} else if (rsn_cap & RSN_CAP_MFPC_MASK) {
BRCMF_DBG(TRACE, "MFP Capable");
mfp = BRCMF_MFP_CAPABLE;
}
}
offset += RSN_CAP_LEN;
/* set wme_bss_disable to sync RSN Capabilities */
err = brcmf_fil_bsscfg_int_set(ifp, "wme_bss_disable", wme_bss_disable);
if (err != ZX_OK) {
BRCMF_ERR("wme_bss_disable error %d", err);
goto exit;
}
/* Skip PMKID cnt as it is know to be 0 for AP. */
offset += RSN_PMKID_COUNT_LEN;
/* See if there is BIP wpa suite left for MFP */
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP) &&
((int32_t)(offset + WPA_IE_MIN_OUI_LEN) <= len)) {
err = brcmf_fil_bsscfg_data_set(ifp, "bip", &data[offset], WPA_IE_MIN_OUI_LEN);
if (err != ZX_OK) {
BRCMF_ERR("bip error %d", err);
goto exit;
}
}
} else if (wpa_auth & WPA3_AUTH_SAE_PSK) {
// Set mfp to capable if it's a wpa3 assocation.
mfp = BRCMF_MFP_CAPABLE;
}
}
/* Configure MFP, just a reminder, this needs to go after wsec otherwise the wsec command
* will overwrite the values set by MFP
*/
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP)) {
err = brcmf_fil_bsscfg_int_set(ifp, "mfp", mfp);
if (err != ZX_OK) {
BRCMF_ERR("mfp error %s", zx_status_get_string(err));
goto exit;
}
}
/* set upper-layer auth */
err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_auth);
if (err != ZX_OK) {
BRCMF_ERR("wpa_auth error %d", err);
goto exit;
}
exit:
return err;
}
static zx_status_t brcmf_configure_opensecurity(struct brcmf_if* ifp) {
zx_status_t err;
int32_t wpa_val;
/* set wsec */
BRCMF_DBG(CONN, "Setting wsec to 0");
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", 0);
if (err != ZX_OK) {
BRCMF_ERR("wsec error %d", err);
return err;
}
/* set upper-layer auth */
wpa_val = WPA_AUTH_DISABLED;
BRCMF_DBG(CONN, "Setting wpa_auth to %d", wpa_val);
err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_val);
if (err != ZX_OK) {
BRCMF_ERR("wpa_auth error %d", err);
return err;
}
return ZX_OK;
}
// Retrieve information about the station with the specified MAC address. Note that
// association ID is only available when operating in AP mode (for our clients).
static zx_status_t brcmf_cfg80211_get_station(struct net_device* ndev, const uint8_t* mac,
struct brcmf_sta_info_le* sta_info_le) {
struct brcmf_if* ifp = ndev_to_if(ndev);
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter, MAC " MAC_FMT_STR, MAC_FMT_ARGS(mac));
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
memset(sta_info_le, 0, sizeof(*sta_info_le));
memcpy(sta_info_le, mac, ETH_ALEN);
// First, see if we have a TDLS peer
err = brcmf_fil_iovar_data_get(ifp, "tdls_sta_info", sta_info_le, sizeof(*sta_info_le), nullptr);
if (err != ZX_OK) {
bcme_status_t fw_err = BCME_OK;
err = brcmf_fil_iovar_data_get(ifp, "sta_info", sta_info_le, sizeof(*sta_info_le), &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("GET STA INFO failed: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
}
}
BRCMF_DBG(TRACE, "Exit");
return err;
}
static inline bool brcmf_tlv_ie_has_msft_type(const uint8_t* ie, uint8_t oui_type) {
return (ie[TLV_LEN_OFF] >= TLV_OUI_LEN + TLV_OUI_TYPE_LEN &&
!memcmp(&ie[TLV_BODY_OFF], MSFT_OUI, TLV_OUI_LEN) &&
// The byte after OUI is OUI type
ie[TLV_BODY_OFF + TLV_OUI_LEN] == oui_type);
}
static struct brcmf_vs_tlv* brcmf_find_wpaie(const uint8_t* ie_buf, uint32_t ie_len) {
size_t offset = 0;
while (offset < ie_len) {
uint8_t type = ie_buf[offset];
uint8_t length = ie_buf[offset + TLV_LEN_OFF];
if (type == WLAN_IE_TYPE_VENDOR_SPECIFIC) {
if (brcmf_tlv_ie_has_msft_type(ie_buf + offset, WPA_OUI_TYPE)) {
BRCMF_DBG(CONN, "Found WPA IE");
return (struct brcmf_vs_tlv*)(ie_buf + offset);
}
}
offset += length + TLV_HDR_LEN;
}
return nullptr;
}
void set_assoc_conf_wmm_param(const brcmf_cfg80211_info* cfg, wlanif_assoc_confirm_t* confirm) {
confirm->wmm_param_present = false;
uint8_t* assoc_resp_ie = cfg->conn_info.resp_ie;
size_t assoc_resp_ie_len =
(size_t)cfg->conn_info.resp_ie_len >= 0 ? cfg->conn_info.resp_ie_len : 0;
size_t offset = 0;
while (offset < assoc_resp_ie_len) {
uint8_t type = assoc_resp_ie[offset];
uint8_t len = assoc_resp_ie[offset + TLV_LEN_OFF];
if (type == WLAN_IE_TYPE_VENDOR_SPECIFIC) {
uint8_t wmm_param_hdr[] = {
0x00, 0x50, 0xf2, // MSFT OUI
0x02, // WMM OUI type
0x01, 0x01, // WMM param subtype & version
};
if (len >= sizeof(wmm_param_hdr) &&
!memcmp(assoc_resp_ie + offset + TLV_HDR_LEN, wmm_param_hdr, sizeof(wmm_param_hdr))) {
if (len - sizeof(wmm_param_hdr) == WLAN_WMM_PARAM_LEN &&
offset + TLV_HDR_LEN + len <= assoc_resp_ie_len) {
memcpy(&confirm->wmm_param, &assoc_resp_ie[offset + TLV_HDR_LEN + sizeof(wmm_param_hdr)],
WLAN_WMM_PARAM_LEN);
confirm->wmm_param_present = true;
break;
}
}
}
offset += len + TLV_HDR_LEN;
}
}
void brcmf_return_assoc_result(struct net_device* ndev, uint8_t result_code) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping association callback");
return;
}
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
wlanif_assoc_confirm_t conf;
conf.result_code = result_code;
BRCMF_DBG(TEMP, " * Hard-coding association_id to 42; this will likely break something!");
conf.association_id = 42; // TODO: Use brcmf_cfg80211_get_station() to get aid
set_assoc_conf_wmm_param(cfg, &conf);
BRCMF_DBG(WLANIF, "Sending assoc result to SME. result: %" PRIu8 ", aid: %" PRIu16,
conf.result_code, conf.association_id);
wlanif_impl_ifc_assoc_conf(&ndev->if_proto, &conf);
}
zx_status_t brcmf_cfg80211_connect(struct net_device* ndev, const wlanif_assoc_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_join_params join_params;
uint16_t chanspec;
size_t join_params_size = 0;
const void* ie;
uint32_t ie_len;
zx_status_t err = ZX_OK;
uint32_t ssid_len = 0;
const struct brcmf_vs_tlv* wpa_ie;
bcme_status_t fw_err = BCME_OK;
bool is_rsn_ie = true;
BRCMF_DBG(TRACE, "Enter");
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
// Firmware is already processing a join request. Don't clear the CONNECTING bit because the
// operation is still expected to complete.
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
err = ZX_ERR_BAD_STATE;
BRCMF_WARN("Connection not possible. Another connection attempt in progress.");
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
goto done;
}
if (req->rsne_len) {
BRCMF_DBG(CONN, "using RSNE rsn len: %zu", req->rsne_len);
// Pass RSNE to firmware
ie_len = req->rsne_len;
ie = req->rsne;
} else if (req->vendor_ie_len) {
BRCMF_DBG(CONN, "using WPA1 vendor_ie len: %zu", req->vendor_ie_len);
wpa_ie = brcmf_find_wpaie(req->vendor_ie, req->vendor_ie_len);
if (!wpa_ie) {
BRCMF_ERR("No WPA IE found");
return ZX_ERR_INVALID_ARGS;
}
BRCMF_DBG(CONN, "Found WPA IE, len: %d", wpa_ie->len);
is_rsn_ie = false;
ie_len = wpa_ie->len + TLV_HDR_LEN;
ie = wpa_ie;
} else {
// Neither RSNE or WPA1 is set
ie = nullptr;
ie_len = 0;
}
if (ie) {
// Set wpaie only if ie is set
err = brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("wpaie failed: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
}
// TODO(fxbug.dev/29354): We should be getting the IEs from SME. Passing a null entry seems
// to work for now, presumably because the firmware uses its defaults.
err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG, nullptr, 0);
if (err != ZX_OK) {
BRCMF_ERR("Set Assoc REQ IE Failed");
} else {
BRCMF_DBG(TRACE, "Applied Vndr IEs for Assoc request");
}
if (ie_len > 0) {
struct brcmf_vs_tlv* tmp_ie = (struct brcmf_vs_tlv*)ie;
err = brcmf_configure_wpaie(ifp, tmp_ie, is_rsn_ie, false);
if (err != ZX_OK) {
BRCMF_ERR("Failed to install RSNE: %s", zx_status_get_string(err));
goto fail;
}
}
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
chanspec = channel_to_chanspec(&cfg->d11inf, &ifp->bss.chan);
cfg->channel = chanspec;
ssid_len = std::min<uint32_t>(ifp->bss.ssid.len, WLAN_MAX_SSID_LEN);
join_params_size = sizeof(join_params);
memset(&join_params, 0, join_params_size);
memcpy(&join_params.ssid_le.SSID, ifp->bss.ssid.data, ssid_len);
join_params.ssid_le.SSID_len = ssid_len;
memcpy(join_params.params_le.bssid, ifp->bss.bssid, ETH_ALEN);
join_params.params_le.chanspec_num = 1;
join_params.params_le.chanspec_list[0] = chanspec;
BRCMF_DBG(CONN, "Sending join request");
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, join_params_size, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("join failed (%d)", err);
} else {
cfg->connect_timer->Start(BRCMF_CONNECT_TIMER_DUR_MS);
}
fail:
if (err != ZX_OK) {
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
BRCMF_DBG(CONN, "Failed during join: %s", zx_status_get_string(err));
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
}
done:
BRCMF_DBG(TRACE, "Exit");
return err;
}
static void brcmf_disconnect_done(struct brcmf_cfg80211_info* cfg) {
struct net_device* ndev = cfg_to_ndev(cfg);
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_profile* profile = &ifp->vif->profile;
BRCMF_DBG(TRACE, "Enter");
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_DISCONNECTING, &ifp->vif->sme_state)) {
cfg->disconnect_timer->Stop();
if (cfg->disconnect_mode == BRCMF_DISCONNECT_DEAUTH) {
brcmf_notify_deauth(ndev, profile->bssid);
} else {
brcmf_notify_disassoc(ndev, ZX_OK);
}
}
if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
cfg->signal_report_timer->Stop();
ndev->stats = {};
}
BRCMF_DBG(TRACE, "Exit");
}
static zx_status_t brcmf_get_rssi_snr(net_device* ndev, int8_t* rssi_dbm, int8_t* snr_db) {
struct brcmf_if* ifp = ndev_to_if(ndev);
bcme_status_t fw_err = BCME_OK;
int32_t rssi, snr;
*rssi_dbm = *snr_db = 0;
zx_status_t status = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_RSSI, &rssi, sizeof(rssi), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not get rssi: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
return status;
}
status = brcmf_fil_iovar_data_get(ifp, "snr", &snr, sizeof(snr), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not get snr: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
return status;
}
*rssi_dbm = rssi;
*snr_db = snr;
return status;
}
static void cfg80211_signal_ind(net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
brcmf_cfg80211_info* cfg = ifp->drvr->config;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping signal report indication callback");
// Stop the timer
cfg->signal_report_timer->Stop();
return;
}
// Send signal report indication only if client is in connected state
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
wlanif_signal_report_indication signal_ind;
int8_t rssi, snr;
if (brcmf_get_rssi_snr(ndev, &rssi, &snr) == ZX_OK) {
signal_ind.rssi_dbm = rssi;
signal_ind.snr_db = snr;
// Store the value in ndev (dumped out when link goes down)
ndev->last_known_rssi_dbm = rssi;
ndev->last_known_snr_db = snr;
wlanif_impl_ifc_signal_report(&ndev->if_proto, &signal_ind);
}
} else if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
// If client is not connected, stop the timer
cfg->signal_report_timer->Stop();
}
}
static void brcmf_connect_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
BRCMF_DBG(TRACE, "Enter");
EXEC_TIMEOUT_WORKER(connect_timeout_work);
cfg->pub->irq_callback_lock.unlock();
}
static void brcmf_signal_report_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, signal_report_work);
struct net_device* ndev = cfg_to_ndev(cfg);
cfg80211_signal_ind(ndev);
}
static void brcmf_signal_report_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
BRCMF_DBG(TRACE, "Enter");
// If it's for SIM tests, won't enqueue.
EXEC_TIMEOUT_WORKER(signal_report_work);
cfg->pub->irq_callback_lock.unlock();
}
static void brcmf_disconnect_timeout_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, disconnect_timeout_work);
brcmf_disconnect_done(cfg);
}
static void brcmf_disconnect_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
BRCMF_DBG(TRACE, "Enter");
// If it's for SIM tests, won't enqueue.
EXEC_TIMEOUT_WORKER(disconnect_timeout_work);
cfg->pub->irq_callback_lock.unlock();
}
static zx_status_t brcmf_cfg80211_disconnect(struct net_device* ndev,
const uint8_t peer_sta_address[ETH_ALEN],
uint16_t reason_code, bool deauthenticate) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_profile* profile = &ifp->vif->profile;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_scb_val_le scbval;
zx_status_t status = ZX_OK;
bcme_status_t fw_err = BCME_OK;
BRCMF_DBG(TRACE, "Enter. Reason code = %d", reason_code);
if (!check_vif_up(ifp->vif)) {
status = ZX_ERR_IO;
goto done;
}
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state) &&
!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
status = ZX_ERR_BAD_STATE;
goto done;
}
if (memcmp(peer_sta_address, profile->bssid, ETH_ALEN)) {
BRCMF_ERR(
"peer_sta_address is not matching bssid in brcmf_cfg80211_profile. "
"peer_sta_address:" MAC_FMT_STR ", bssid in profile:" MAC_FMT_STR "",
MAC_FMT_ARGS(peer_sta_address), MAC_FMT_ARGS(profile->bssid));
status = ZX_ERR_INVALID_ARGS;
goto done;
}
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
BRCMF_DBG(CONN, "Disconnecting");
// Set the timer before notifying firmware as this thread might get preempted to
// handle the response event back from firmware. Timer can be stopped if the command
// fails.
cfg->disconnect_timer->Start(BRCMF_DISCONNECT_TIMER_DUR_MS);
memcpy(&scbval.ea, peer_sta_address, ETH_ALEN);
scbval.val = reason_code;
cfg->disconnect_mode = deauthenticate ? BRCMF_DISCONNECT_DEAUTH : BRCMF_DISCONNECT_DISASSOC;
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_DISCONNECTING, &ifp->vif->sme_state);
status = brcmf_fil_cmd_data_set(ifp, BRCMF_C_DISASSOC, &scbval, sizeof(scbval), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Failed to disassociate: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
cfg->disconnect_timer->Stop();
}
done:
BRCMF_DBG(TRACE, "Exit");
return status;
}
static zx_status_t brcmf_cfg80211_del_key(struct net_device* ndev, uint8_t key_idx) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_wsec_key* key;
zx_status_t err;
BRCMF_DBG(TRACE, "Enter");
BRCMF_DBG(CONN, "key index (%d)", key_idx);
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) {
/* we ignore this key index in this case */
return ZX_ERR_INVALID_ARGS;
}
key = &ifp->vif->profile.key[key_idx];
if (key->algo == CRYPTO_ALGO_OFF) {
BRCMF_DBG(CONN, "Ignore clearing of (never configured) key");
return ZX_ERR_BAD_STATE;
}
memset(key, 0, sizeof(*key));
key->index = (uint32_t)key_idx;
key->flags = BRCMF_PRIMARY_KEY;
/* Clear the key/index */
err = send_key_to_dongle(ifp, key);
BRCMF_DBG(TRACE, "Exit");
return err;
}
static zx_status_t brcmf_cfg80211_add_key(struct net_device* ndev,
const set_key_descriptor_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_wsec_key* key;
int32_t val;
int32_t wsec;
zx_status_t err;
bool ext_key;
uint8_t key_idx = req->key_id;
const uint8_t* mac_addr = req->address;
BRCMF_DBG(TRACE, "Enter");
BRCMF_DBG(CONN, "key index (%d)", key_idx);
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) {
/* we ignore this key index in this case */
BRCMF_ERR("invalid key index (%d)", key_idx);
return ZX_ERR_INVALID_ARGS;
}
if (req->key_count == 0) {
return brcmf_cfg80211_del_key(ndev, key_idx);
}
if (req->key_count > sizeof(key->data)) {
BRCMF_ERR("Too long key length (%zu)", req->key_count);
return ZX_ERR_INVALID_ARGS;
}
ext_key = false;
if (mac_addr && !address_is_multicast(mac_addr) &&
(req->cipher_suite_type != WPA_CIPHER_WEP_40) &&
(req->cipher_suite_type != WPA_CIPHER_WEP_104)) {
BRCMF_DBG(TRACE, "Ext key, mac " MAC_FMT_STR, MAC_FMT_ARGS(mac_addr));
ext_key = true;
}
key = &ifp->vif->profile.key[key_idx];
memset(key, 0, sizeof(*key));
if ((ext_key) && (!address_is_multicast(mac_addr))) {
memcpy((char*)&key->ea, (void*)mac_addr, ETH_ALEN);
}
key->len = req->key_count;
key->index = key_idx;
memcpy(key->data, req->key_list, key->len);
if (!ext_key) {
key->flags = BRCMF_PRIMARY_KEY;
}
switch (req->cipher_suite_type) {
case WPA_CIPHER_WEP_40:
key->algo = CRYPTO_ALGO_WEP1;
val = WEP_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_WEP_40");
break;
case WPA_CIPHER_WEP_104:
key->algo = CRYPTO_ALGO_WEP128;
val = WEP_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_WEP_104");
break;
case WPA_CIPHER_TKIP:
/* Note: Linux swaps the Tx and Rx MICs in client mode, but this doesn't work for us (see
fxbug.dev/28642). It's unclear why this would be necessary. */
key->algo = CRYPTO_ALGO_TKIP;
val = TKIP_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_TKIP");
break;
case WPA_CIPHER_CMAC_128:
key->algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_CMAC_128");
break;
case WPA_CIPHER_CCMP_128:
key->algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_CCMP_128");
break;
default:
BRCMF_ERR("Unsupported cipher (0x%x)", req->cipher_suite_type);
err = ZX_ERR_INVALID_ARGS;
goto done;
}
BRCMF_DBG(CONN, "key length (%d) key index (%d) algo (%d) flags (%d)", key->len, key->index,
key->algo, key->flags);
err = send_key_to_dongle(ifp, key);
if (err != ZX_OK) {
goto done;
}
if (ext_key) {
goto done;
}
err = brcmf_fil_bsscfg_int_get(ifp, "wsec", (uint32_t*)&wsec); // TODO(cphoenix): This cast?!?
if (err != ZX_OK) {
BRCMF_ERR("get wsec error (%d)", err);
goto done;
}
wsec |= val;
BRCMF_DBG(CONN, "setting wsec to 0x%x", wsec);
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
if (err != ZX_OK) {
BRCMF_ERR("set wsec error (%d)", err);
goto done;
}
done:
BRCMF_DBG(TRACE, "Exit");
return err;
}
// EAPOL frames are queued up along with event notifications to ensure processing order.
void brcmf_cfg80211_handle_eapol_frame(struct brcmf_if* ifp, const void* data, size_t size) {
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping eapol frame callback");
return;
}
const char* const data_bytes = reinterpret_cast<const char*>(data);
wlanif_eapol_indication_t eapol_ind;
// IEEE Std. 802.1X-2010, 11.3, Figure 11-1
memcpy(&eapol_ind.dst_addr, data_bytes, ETH_ALEN);
memcpy(&eapol_ind.src_addr, data_bytes + 6, ETH_ALEN);
eapol_ind.data_count = size - 14;
eapol_ind.data_list = reinterpret_cast<const uint8_t*>(data_bytes + 14);
BRCMF_DBG(WLANIF, "Sending EAPOL frame to SME. data_len: %zu", eapol_ind.data_count);
wlanif_impl_ifc_eapol_ind(&ndev->if_proto, &eapol_ind);
}
#define EAPOL_ETHERNET_TYPE_UINT16 0x8e88
void brcmf_cfg80211_rx(struct brcmf_if* ifp, const void* data, size_t size) {
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping data recv");
return;
}
THROTTLE(10, BRCMF_DBG_HEX_DUMP(BRCMF_IS_ON(BYTES) && BRCMF_IS_ON(DATA), data,
std::min<size_t>(size, 64u),
"Data received (%zu bytes, max 64 shown):", size));
// IEEE Std. 802.3-2015, 3.1.1
const uint16_t eth_type = ((uint16_t*)(data))[6];
if (eth_type == EAPOL_ETHERNET_TYPE_UINT16) {
// queue up the eapol frame along with events to ensure processing order
brcmf_fweh_queue_eapol_frame(ifp, data, size);
} else {
wlanif_impl_ifc_data_recv(&ndev->if_proto, data, size, 0);
}
}
uint8_t brcmf_cfg80211_classify8021d(const uint8_t* data, size_t size) {
// Make sure packet is sufficiently large to contain the DS field
const size_t kDsFieldLength = 2;
if (size < sizeof(ethhdr) + kDsFieldLength) {
return 0;
}
auto* eh = (struct ethhdr*)data;
uint8_t ds_field = 0;
const uint8_t* eth_body = data + sizeof(ethhdr);
if (eh->h_proto == htobe16(ETH_P_IP)) {
ds_field = eth_body[1];
} else if (eh->h_proto == htobe16(ETH_P_IPV6)) {
ds_field = ((eth_body[0] & 0x0f) << 4) | ((eth_body[1] & 0xf0) >> 4);
}
// DSCP is the 6 most significant bits of the DS field
uint8_t dscp = ds_field >> 2;
// Given the 6-bit DSCP from IPv4 or IPv6 header, convert it to UP
// This follows RFC 8325 - https://tools.ietf.org/html/rfc8325#section-4.3
// For list of DSCP, see https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml
switch (dscp) {
// Network Control - CS6, CS7
case 0b110000:
case 0b111000:
return 7;
// Telephony - EF
case 0b101110:
// VOICE-ADMIT - VA
case 0b101100:
return 6;
// Signaling - CS5
case 0b101000:
return 5;
// Multimedia Conferencing - AF41, AF42, AF43
case 0b100010:
case 0b100100:
case 0b100110:
// Real-Time Interactive - CS4
case 0b100000:
// Multimedia Streaming - AF31, AF32, AF33
case 0b011010:
case 0b011100:
case 0b011110:
// Broadcast Video - CS3
case 0b011000:
return 4;
// Low-Latency Data - AF21, AF22, AF23
case 0b010010:
case 0b010100:
case 0b010110:
return 3;
// Low-Priority Data - CS1
case 0b001000:
return 1;
// OAM, High-Throughput Data, Standard, and unused code points
default:
return 0;
}
}
// Extract the provided information elements into the BSS description.
// Note: be careful if you call this function more than once on the same bss description struct.
// For example, if you provide an ie buffer that has an SSID IE in the first call, and then provide
// an ie buffer that does not have an SSID IE in the second call, the end result will be that the
// bss description struct still has the SSID that was extracted in the first call.
void brcmf_extract_ies(const uint8_t* ie, size_t ie_len, wlanif_bss_description_t* bss) {
bss->vendor_ie_len = 0;
size_t offset = 0;
bool wpa_ie_extracted = false;
bool wsc_ie_extracted = false;
while (offset < ie_len) {
uint8_t type = ie[offset];
uint8_t length = ie[offset + TLV_LEN_OFF];
switch (type) {
case WLAN_IE_TYPE_SSID: {
uint8_t ssid_len = std::min<uint8_t>(length, sizeof(bss->ssid.data));
memcpy(bss->ssid.data, ie + offset + TLV_HDR_LEN, ssid_len);
bss->ssid.len = ssid_len;
break;
}
case WLAN_IE_TYPE_SUPP_RATES: {
uint8_t num_supp_rates = std::min<uint8_t>(length, WLAN_MAC_MAX_SUPP_RATES);
memcpy(bss->rates, ie + offset + TLV_HDR_LEN, num_supp_rates);
bss->num_rates = num_supp_rates;
break;
}
case WLAN_IE_TYPE_EXT_SUPP_RATES: {
uint8_t num_ext_supp_rates = std::min<uint8_t>(length, WLAN_MAC_MAX_EXT_RATES);
memcpy(bss->rates + bss->num_rates, ie + offset + TLV_HDR_LEN, num_ext_supp_rates);
bss->num_rates += num_ext_supp_rates;
break;
}
case WLAN_IE_TYPE_COUNTRY: {
bss->country_len = length;
memcpy(bss->country, ie + offset + TLV_HDR_LEN, bss->country_len);
break;
}
case WLAN_IE_TYPE_RSNE: {
bss->rsne_len = length + TLV_HDR_LEN;
memcpy(bss->rsne, ie + offset, bss->rsne_len);
break;
}
case WLAN_IE_TYPE_VENDOR_SPECIFIC: {
bool extract_wpa_ie =
!wpa_ie_extracted && brcmf_tlv_ie_has_msft_type(ie + offset, WPA_OUI_TYPE);
bool extract_wsc_ie =
!wsc_ie_extracted && brcmf_tlv_ie_has_msft_type(ie + offset, WSC_OUI_TYPE);
if (extract_wpa_ie || extract_wsc_ie) {
size_t this_ie_len = length + TLV_HDR_LEN;
if (bss->vendor_ie_len + this_ie_len < WLAN_VIE_MAX_LEN) {
memcpy(bss->vendor_ie + bss->vendor_ie_len, ie + offset, this_ie_len);
bss->vendor_ie_len += this_ie_len;
if (extract_wpa_ie) {
wpa_ie_extracted = true;
}
if (extract_wsc_ie) {
wsc_ie_extracted = true;
}
}
}
break;
}
default:
break;
}
offset += length + TLV_HDR_LEN;
}
}
static void brcmf_iedump(uint8_t* ies, size_t total_len) {
size_t offset = 0;
while (offset + TLV_HDR_LEN <= total_len) {
uint8_t elem_type = ies[offset];
uint8_t elem_len = ies[offset + TLV_LEN_OFF];
offset += TLV_HDR_LEN;
if (offset + elem_len > total_len) {
break;
}
if (elem_type == 0) {
BRCMF_DBG_STRING_DUMP(true, ies + offset, elem_len, "IE 0 (name), len %d:", elem_len);
} else {
BRCMF_DBG_HEX_DUMP(true, ies + offset, elem_len, "IE %d, len %d:", elem_type, elem_len);
}
offset += elem_len;
}
if (offset != total_len) {
BRCMF_DBG(ALL, " * * Offset %ld didn't match length %ld", offset, total_len);
}
}
static void brcmf_return_scan_result(struct net_device* ndev, uint16_t channel,
const uint8_t* bssid, uint16_t capability, uint16_t interval,
uint8_t* ie, size_t ie_len, int16_t rssi_dbm) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
struct brcmf_cfg80211_info* cfg = ndev_to_if(ndev)->drvr->config;
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping scan result callback");
return;
}
if (!brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
return;
}
wlanif_scan_result_t result = {};
result.txn_id = ndev->scan_txn_id;
memcpy(result.bss.bssid, bssid, ETH_ALEN);
brcmf_extract_ies(ie, ie_len, &result.bss);
result.bss.bss_type = WLAN_BSS_TYPE_ANY_BSS;
result.bss.beacon_period = 0;
result.bss.dtim_period = 0;
result.bss.timestamp = 0;
result.bss.local_time = 0;
result.bss.cap = capability;
result.bss.chan.primary = (uint8_t)channel;
result.bss.chan.cbw = WLAN_CHANNEL_BANDWIDTH__20; // TODO(cphoenix): Don't hard-code this.
result.bss.rssi_dbm = std::min<int16_t>(0, std::max<int16_t>(-255, rssi_dbm));
BRCMF_DBG(SCAN, "Returning scan result %.*s, channel %d, dbm %d, id %lu", result.bss.ssid.len,
result.bss.ssid.data, channel, result.bss.rssi_dbm, result.txn_id);
ndev->scan_num_results++;
wlanif_impl_ifc_on_scan_result(&ndev->if_proto, &result);
}
static zx_status_t brcmf_inform_single_bss(struct net_device* ndev, struct brcmf_cfg80211_info* cfg,
struct brcmf_bss_info_le* bi) {
struct brcmu_chan ch;
uint16_t channel;
uint16_t notify_capability;
uint16_t notify_interval;
uint8_t* notify_ie;
size_t notify_ielen;
int16_t notify_rssi_dbm;
if (bi->length > WL_BSS_INFO_MAX) {
BRCMF_ERR("Bss info is larger than buffer. Discarding");
BRCMF_DBG(TEMP, "Early return, due to length.");
return ZX_OK;
}
if (!bi->ctl_ch) {
ch.chspec = bi->chanspec;
cfg->d11inf.decchspec(&ch);
bi->ctl_ch = ch.control_ch_num;
}
channel = bi->ctl_ch;
notify_capability = bi->capability;
notify_interval = bi->beacon_period;
notify_ie = (uint8_t*)bi + bi->ie_offset;
notify_ielen = bi->ie_length;
notify_rssi_dbm = (int16_t)bi->RSSI;
BRCMF_DBG(CONN,
"Scan result received BSS: " MAC_FMT_STR
" Channel: %3d Capability: %#6x Beacon interval: %5d Signal: %4d",
MAC_FMT_ARGS(bi->BSSID), channel, notify_capability, notify_interval, notify_rssi_dbm);
if (BRCMF_IS_ON(CONN) && BRCMF_IS_ON(BYTES)) {
brcmf_iedump(notify_ie, notify_ielen);
}
brcmf_return_scan_result(ndev, (uint8_t)channel, (const uint8_t*)bi->BSSID, notify_capability,
notify_interval, notify_ie, notify_ielen, notify_rssi_dbm);
return ZX_OK;
}
void brcmf_abort_scanning(struct brcmf_cfg80211_info* cfg) {
struct escan_info* escan = &cfg->escan_info;
brcmf_set_bit_in_array(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
if (cfg->int_escan_map || cfg->scan_request) {
escan->escan_state = WL_ESCAN_STATE_IDLE;
brcmf_notify_escan_complete(cfg, escan->ifp, true, true);
}
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
}
static void brcmf_cfg80211_escan_timeout_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, escan_timeout_work);
BRCMF_WARN("Scan timed out, sending notification of aborted scan");
brcmf_notify_escan_complete(cfg, cfg->escan_info.ifp, true, true);
}
static void brcmf_escan_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
if (cfg->int_escan_map || cfg->scan_request) {
BRCMF_ERR("scan timer expired");
// If it's for SIM tests, won't enqueue.
EXEC_TIMEOUT_WORKER(escan_timeout_work);
}
cfg->pub->irq_callback_lock.unlock();
}
static zx_status_t brcmf_cfg80211_escan_handler(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = cfg_to_ndev(cfg);
brcmf_fweh_event_status_t status = e->status;
struct brcmf_escan_result_le* escan_result_le;
uint32_t escan_buflen;
struct brcmf_bss_info_le* bss_info_le;
bool aborted;
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
if (status == BRCMF_E_STATUS_ABORT) {
BRCMF_WARN("Firmware aborted escan: %d", e->reason);
goto chk_scan_end;
}
if (!brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_ERR("scan not ready, bsscfgidx=%d", ifp->bsscfgidx);
return ZX_ERR_UNAVAILABLE;
}
escan_result_le = static_cast<decltype(escan_result_le)>(data);
if (!escan_result_le) {
BRCMF_ERR("Invalid escan result (nullptr)");
goto chk_scan_end;
}
bss_info_le = &escan_result_le->bss_info_le;
if (e->datalen < sizeof(*escan_result_le)) {
// Print the error only if the scan result is partial (as end of scan may not
// contain a scan result)
if (status == BRCMF_E_STATUS_PARTIAL) {
BRCMF_ERR("Insufficient escan result data exp: %lu got: %d", sizeof(*escan_result_le),
e->datalen);
}
goto chk_scan_end;
}
escan_buflen = escan_result_le->buflen;
if (escan_buflen > BRCMF_ESCAN_BUF_SIZE || escan_buflen > e->datalen ||
escan_buflen < sizeof(*escan_result_le)) {
BRCMF_ERR("Invalid escan buffer length: %d", escan_buflen);
goto chk_scan_end;
}
if (escan_result_le->bss_count != 1) {
BRCMF_ERR("Invalid bss_count %d: ignoring", escan_result_le->bss_count);
goto chk_scan_end;
}
if (!cfg->int_escan_map && !cfg->scan_request) {
BRCMF_DBG(SCAN, "result without cfg80211 request");
goto chk_scan_end;
}
if (bss_info_le->length != escan_buflen - WL_ESCAN_RESULTS_FIXED_SIZE) {
BRCMF_ERR("Ignoring invalid bss_info length: %d", bss_info_le->length);
goto chk_scan_end;
}
brcmf_inform_single_bss(ndev, cfg, bss_info_le);
if (status == BRCMF_E_STATUS_PARTIAL) {
BRCMF_DBG(SCAN, "ESCAN Partial result");
goto done;
}
chk_scan_end:
// If this is not a partial notification, indicate scan complete to wlanstack
if (status != BRCMF_E_STATUS_PARTIAL) {
cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
if (cfg->int_escan_map || cfg->scan_request) {
aborted = status != BRCMF_E_STATUS_SUCCESS;
if (aborted) {
BRCMF_WARN("Sending notification of aborted scan: %d", status);
}
brcmf_notify_escan_complete(cfg, ifp, aborted, false);
} else {
BRCMF_DBG(SCAN, "Ignored scan complete result 0x%x", status);
}
}
done:
return ZX_OK;
}
static void brcmf_init_escan(struct brcmf_cfg80211_info* cfg) {
brcmf_fweh_register(cfg->pub, BRCMF_E_ESCAN_RESULT, brcmf_cfg80211_escan_handler);
cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
/* Init scan_timeout timer */
cfg->escan_timer = new Timer(cfg->pub, std::bind(brcmf_escan_timeout, cfg), false);
cfg->escan_timeout_work = WorkItem(brcmf_cfg80211_escan_timeout_worker);
}
static wlanif_scan_req_t* brcmf_alloc_internal_escan_request(void) {
return static_cast<wlanif_scan_req_t*>(calloc(1, sizeof(wlanif_scan_req_t)));
}
static zx_status_t brcmf_internal_escan_add_info(wlanif_scan_req_t* req, uint8_t* ssid,
uint8_t ssid_len, uint8_t channel) {
size_t i;
for (i = 0; i < req->num_channels; i++) {
if (req->channel_list[i] == channel) {
break;
}
}
if (i == req->num_channels) {
if (req->num_channels < WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS) {
req->channel_list[req->num_channels++] = channel;
} else {
BRCMF_ERR("escan channel list full, suppressing channel %d", channel);
}
}
for (i = 0; i < req->num_ssids; i++) {
if (req->ssid_list[i].len == ssid_len && !memcmp(req->ssid_list[i].data, ssid, ssid_len)) {
break;
}
}
if (i == req->num_ssids) {
if (req->num_ssids < WLAN_SCAN_MAX_SSIDS) {
memcpy(req->ssid_list[req->num_ssids].data, ssid, ssid_len);
req->ssid_list[req->num_ssids++].len = ssid_len;
} else {
BRCMF_ERR("escan ssid list full, suppressing '%.*s'", ssid_len, ssid);
}
}
return ZX_OK;
}
static zx_status_t brcmf_start_internal_escan(struct brcmf_if* ifp, uint32_t fwmap,
wlanif_scan_req_t* req) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err;
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
if (cfg->int_escan_map) {
BRCMF_DBG(SCAN, "aborting internal scan: map=%u", cfg->int_escan_map);
}
/* Abort any on-going scan */
BRCMF_WARN("Starting internal scan, aborting existing scan in progress");
brcmf_abort_scanning(cfg);
}
BRCMF_DBG(SCAN, "start internal scan: map=%u", fwmap);
brcmf_set_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->escan_info.run = brcmf_run_escan;
err = brcmf_do_escan(ifp, req);
if (err != ZX_OK) {
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
return err;
}
cfg->int_escan_map = fwmap;
return ZX_OK;
}
static struct brcmf_pno_net_info_le* brcmf_get_netinfo_array(
struct brcmf_pno_scanresults_le* pfn_v1) {
struct brcmf_pno_scanresults_v2_le* pfn_v2;
struct brcmf_pno_net_info_le* netinfo;
switch (pfn_v1->version) {
default:
WARN_ON(1);
/* fall-thru */
case 1:
netinfo = (struct brcmf_pno_net_info_le*)(pfn_v1 + 1);
break;
case 2:
pfn_v2 = (struct brcmf_pno_scanresults_v2_le*)pfn_v1;
netinfo = (struct brcmf_pno_net_info_le*)(pfn_v2 + 1);
break;
}
return netinfo;
}
/* PFN result doesn't have all the info which are required by the supplicant
* (For e.g IEs) Do a target Escan so that sched scan results are reported
* via wl_inform_single_bss in the required format.
*/
static zx_status_t brcmf_notify_sched_scan_results(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = cfg_to_ndev(cfg);
wlanif_scan_req_t* req = nullptr;
struct brcmf_pno_net_info_le* netinfo;
struct brcmf_pno_net_info_le* netinfo_start;
int i;
zx_status_t err = ZX_OK;
struct brcmf_pno_scanresults_le* pfn_result;
uint32_t bucket_map;
uint32_t result_count;
uint32_t status;
uint32_t datalen;
BRCMF_DBG(TRACE, "Enter");
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
if (e->datalen < (sizeof(*pfn_result) + sizeof(*netinfo))) {
BRCMF_DBG(SCAN, "Event data to small. Ignore");
return ZX_OK;
}
if (e->event_code == BRCMF_E_PFN_NET_LOST) {
BRCMF_DBG(SCAN, "PFN NET LOST event. Do Nothing");
return ZX_OK;
}
pfn_result = (struct brcmf_pno_scanresults_le*)data;
result_count = pfn_result->count;
status = pfn_result->status;
/* PFN event is limited to fit 512 bytes so we may get
* multiple NET_FOUND events. For now place a warning here.
*/
WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE);
BRCMF_DBG(SCAN, "PFN NET FOUND event. count: %d", result_count);
if (!result_count) {
BRCMF_ERR("FALSE PNO Event. (pfn_count == 0)");
// TODO(cphoenix): err isn't set here. Should it be?
goto out_err;
}
netinfo_start = brcmf_get_netinfo_array(pfn_result);
datalen = e->datalen - ((char*)netinfo_start - (char*)pfn_result);
if (datalen < result_count * sizeof(*netinfo)) {
BRCMF_ERR("insufficient event data");
// TODO(cphoenix): err isn't set here. Should it be?
goto out_err;
}
req = brcmf_alloc_internal_escan_request();
if (!req) {
err = ZX_ERR_NO_MEMORY;
goto out_err;
}
bucket_map = 0;
for (i = 0; i < (int32_t)result_count; i++) {
netinfo = &netinfo_start[i];
if (netinfo->SSID_len > WLAN_MAX_SSID_LEN) {
netinfo->SSID_len = WLAN_MAX_SSID_LEN;
}
BRCMF_DBG(SCAN, "SSID:%.32s Channel:%d", netinfo->SSID, netinfo->channel);
bucket_map |= brcmf_pno_get_bucket_map(cfg->pno, netinfo);
err = brcmf_internal_escan_add_info(req, netinfo->SSID, netinfo->SSID_len, netinfo->channel);
if (err != ZX_OK) {
goto out_err;
}
}
if (!bucket_map) {
goto free_req;
}
err = brcmf_start_internal_escan(ifp, bucket_map, req);
if (err == ZX_OK) {
goto free_req;
}
out_err:
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_ERR("scan id:%lu err %d, signaling scan end", ndev->scan_txn_id, err);
brcmf_signal_scan_end(ndev, ndev->scan_txn_id, WLAN_SCAN_RESULT_INTERNAL_ERROR);
}
free_req:
free(req);
return err;
}
static zx_status_t brcmf_parse_vndr_ies(const uint8_t* vndr_ie_buf, uint32_t vndr_ie_len,
struct parsed_vndr_ies* vndr_ies) {
struct brcmf_vs_tlv* vndrie;
struct brcmf_tlv* ie;
struct parsed_vndr_ie_info* parsed_info;
int32_t remaining_len;
remaining_len = (int32_t)vndr_ie_len;
memset(vndr_ies, 0, sizeof(*vndr_ies));
ie = (struct brcmf_tlv*)vndr_ie_buf;
while (ie) {
if (ie->id != WLAN_IE_TYPE_VENDOR_SPECIFIC) {
goto next;
}
vndrie = (struct brcmf_vs_tlv*)ie;
/* len should be bigger than OUI length + one */
if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) {
BRCMF_ERR("invalid vndr ie. length is too small %d", vndrie->len);
goto next;
}
/* if wpa or wme ie, do not add ie */
if (!memcmp(vndrie->oui, (uint8_t*)MSFT_OUI, TLV_OUI_LEN) &&
((vndrie->oui_type == WPA_OUI_TYPE) || (vndrie->oui_type == WME_OUI_TYPE))) {
BRCMF_DBG(TRACE, "Found WPA/WME oui. Do not add it");
goto next;
}
parsed_info = &vndr_ies->ie_info[vndr_ies->count];
/* save vndr ie information */
parsed_info->ie_ptr = (uint8_t*)vndrie;
parsed_info->ie_len = vndrie->len + TLV_HDR_LEN;
memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie));
vndr_ies->count++;
BRCMF_DBG(TRACE, "** OUI %02x %02x %02x, type 0x%02x", parsed_info->vndrie.oui[0],
parsed_info->vndrie.oui[1], parsed_info->vndrie.oui[2], parsed_info->vndrie.oui_type);
if (vndr_ies->count >= VNDR_IE_PARSE_LIMIT) {
break;
}
next:
remaining_len -= (ie->len + TLV_HDR_LEN);
if (remaining_len <= TLV_HDR_LEN) {
ie = nullptr;
} else {
ie = (struct brcmf_tlv*)(((uint8_t*)ie) + ie->len + TLV_HDR_LEN);
}
}
return ZX_OK;
}
static uint32_t brcmf_vndr_ie(uint8_t* iebuf, int32_t pktflag, uint8_t* ie_ptr, uint32_t ie_len,
int8_t* add_del_cmd) {
strncpy((char*)iebuf, (char*)add_del_cmd, VNDR_IE_CMD_LEN - 1);
iebuf[VNDR_IE_CMD_LEN - 1] = '\0';
*(uint32_t*)&iebuf[VNDR_IE_COUNT_OFFSET] = 1;
*(uint32_t*)&iebuf[VNDR_IE_PKTFLAG_OFFSET] = pktflag;
memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len);
return ie_len + VNDR_IE_HDR_SIZE;
}
zx_status_t brcmf_vif_set_mgmt_ie(struct brcmf_cfg80211_vif* vif, int32_t pktflag,
const uint8_t* vndr_ie_buf, uint32_t vndr_ie_len) {
struct brcmf_if* ifp;
struct vif_saved_ie* saved_ie;
zx_status_t err = ZX_OK;
uint8_t* iovar_ie_buf;
uint8_t* curr_ie_buf;
uint8_t* mgmt_ie_buf = nullptr;
int mgmt_ie_buf_len;
uint32_t* mgmt_ie_len;
uint32_t del_add_ie_buf_len = 0;
uint32_t total_ie_buf_len = 0;
uint32_t parsed_ie_buf_len = 0;
struct parsed_vndr_ies old_vndr_ies;
struct parsed_vndr_ies new_vndr_ies;
struct parsed_vndr_ie_info* vndrie_info;
int32_t i;
uint8_t* ptr;
int remained_buf_len;
if (!vif) {
return ZX_ERR_IO_NOT_PRESENT;
}
ifp = vif->ifp;
saved_ie = &vif->saved_ie;
BRCMF_DBG(TRACE, "bsscfgidx %d, pktflag : 0x%02X", ifp->bsscfgidx, pktflag);
iovar_ie_buf = static_cast<decltype(iovar_ie_buf)>(calloc(1, WL_EXTRA_BUF_MAX));
if (!iovar_ie_buf) {
return ZX_ERR_NO_MEMORY;
}
curr_ie_buf = iovar_ie_buf;
switch (pktflag) {
case BRCMF_VNDR_IE_PRBREQ_FLAG:
mgmt_ie_buf = saved_ie->probe_req_ie;
mgmt_ie_len = &saved_ie->probe_req_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->probe_req_ie);
break;
case BRCMF_VNDR_IE_PRBRSP_FLAG:
mgmt_ie_buf = saved_ie->probe_res_ie;
mgmt_ie_len = &saved_ie->probe_res_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->probe_res_ie);
break;
case BRCMF_VNDR_IE_BEACON_FLAG:
mgmt_ie_buf = saved_ie->beacon_ie;
mgmt_ie_len = &saved_ie->beacon_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->beacon_ie);
break;
case BRCMF_VNDR_IE_ASSOCREQ_FLAG:
mgmt_ie_buf = saved_ie->assoc_req_ie;
mgmt_ie_len = &saved_ie->assoc_req_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->assoc_req_ie);
break;
default:
err = ZX_ERR_WRONG_TYPE;
BRCMF_ERR("not suitable type");
goto exit;
}
if ((int)vndr_ie_len > mgmt_ie_buf_len) {
err = ZX_ERR_NO_MEMORY;
BRCMF_ERR("extra IE size too big");
goto exit;
}
/* parse and save new vndr_ie in curr_ie_buff before comparing it */
if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) {
ptr = curr_ie_buf;
brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies);
for (i = 0; i < (int32_t)new_vndr_ies.count; i++) {
vndrie_info = &new_vndr_ies.ie_info[i];
memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr, vndrie_info->ie_len);
parsed_ie_buf_len += vndrie_info->ie_len;
}
}
if (mgmt_ie_buf && *mgmt_ie_len) {
if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) &&
(memcmp(mgmt_ie_buf, curr_ie_buf, parsed_ie_buf_len) == 0)) {
BRCMF_DBG(TRACE, "Previous mgmt IE equals to current IE");
goto exit;
}
/* parse old vndr_ie */
brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies);
/* make a command to delete old ie */
for (i = 0; i < (int32_t)old_vndr_ies.count; i++) {
vndrie_info = &old_vndr_ies.ie_info[i];
BRCMF_DBG(TRACE, "DEL ID : %d, Len: %d , OUI:%02x:%02x:%02x", vndrie_info->vndrie.id,
vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1],
vndrie_info->vndrie.oui[2]);
del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr,
vndrie_info->ie_len, (int8_t*)"del");
curr_ie_buf += del_add_ie_buf_len;
total_ie_buf_len += del_add_ie_buf_len;
}
}
*mgmt_ie_len = 0;
/* Add if there is any extra IE */
if (mgmt_ie_buf && parsed_ie_buf_len) {
ptr = mgmt_ie_buf;
remained_buf_len = mgmt_ie_buf_len;
/* make a command to add new ie */
for (i = 0; i < (int32_t)new_vndr_ies.count; i++) {
vndrie_info = &new_vndr_ies.ie_info[i];
/* verify remained buf size before copy data */
if (remained_buf_len < (vndrie_info->vndrie.len + VNDR_IE_VSIE_OFFSET)) {
BRCMF_ERR("no space in mgmt_ie_buf: len left %d", remained_buf_len);
break;
}
remained_buf_len -= (vndrie_info->ie_len + VNDR_IE_VSIE_OFFSET);
BRCMF_DBG(TRACE, "ADDED ID : %d, Len: %d, OUI:%02x:%02x:%02x", vndrie_info->vndrie.id,
vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1],
vndrie_info->vndrie.oui[2]);
del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr,
vndrie_info->ie_len, (int8_t*)"add");
/* save the parsed IE in wl struct */
memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr, vndrie_info->ie_len);
*mgmt_ie_len += vndrie_info->ie_len;
curr_ie_buf += del_add_ie_buf_len;
total_ie_buf_len += del_add_ie_buf_len;
}
}
if (total_ie_buf_len) {
err = brcmf_fil_bsscfg_data_set(ifp, "vndr_ie", iovar_ie_buf, total_ie_buf_len);
if (err != ZX_OK) {
BRCMF_ERR("vndr ie set error : %d", err);
}
}
exit:
free(iovar_ie_buf);
return err;
}
zx_status_t brcmf_vif_clear_mgmt_ies(struct brcmf_cfg80211_vif* vif) {
int32_t pktflags[] = {BRCMF_VNDR_IE_PRBREQ_FLAG, BRCMF_VNDR_IE_PRBRSP_FLAG,
BRCMF_VNDR_IE_BEACON_FLAG};
int i;
for (i = 0; i < (int)countof(pktflags); i++) {
brcmf_vif_set_mgmt_ie(vif, pktflags[i], nullptr, 0);
}
memset(&vif->saved_ie, 0, sizeof(vif->saved_ie));
return ZX_OK;
}
// Returns an MLME result code (WLAN_START_RESULT_*) if an error is encountered.
// If all iovars succeed, MLME is notified when E_LINK event is received.
static uint8_t brcmf_cfg80211_start_ap(struct net_device* ndev, const wlanif_start_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state)) {
BRCMF_ERR("AP already started");
return WLAN_START_RESULT_BSS_ALREADY_STARTED_OR_JOINED;
}
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING, &ifp->vif->sme_state)) {
BRCMF_ERR("AP start request received, start pending");
return WLAN_START_RESULT_BSS_ALREADY_STARTED_OR_JOINED;
}
if (req->bss_type != WLAN_BSS_TYPE_INFRASTRUCTURE) {
BRCMF_ERR("Attempt to start AP in unsupported mode (%d)", req->bss_type);
return WLAN_START_RESULT_NOT_SUPPORTED;
}
if (ifp->vif->mbss) {
BRCMF_ERR("Mesh role not yet supported");
return WLAN_START_RESULT_NOT_SUPPORTED;
}
// Enter AP_START_PENDING mode before we abort any on-going scans. As soon as
// we abort a scan we're open for other scans coming in and we want to make
// sure those scans are blocked by setting this bit.
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING, &ifp->vif->sme_state);
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_ERR(
"Scanning in progress when AP start request comes, scan status (%lu), aborting scan to "
"continue AP start request.\n",
cfg->scan_status.load());
brcmf_abort_scanning(cfg);
}
BRCMF_DBG(TRACE, "ssid: %*s beacon period: %d dtim_period: %d channel: %d rsne_len: %zd",
req->ssid.len, req->ssid.data, req->beacon_period, req->dtim_period, req->channel,
req->rsne_len);
wlan_channel_t channel = {};
uint16_t chanspec = 0;
zx_status_t status;
bcme_status_t fw_err = BCME_OK;
struct brcmf_ssid_le ssid_le;
memset(&ssid_le, 0, sizeof(ssid_le));
memcpy(ssid_le.SSID, req->ssid.data, req->ssid.len);
ssid_le.SSID_len = req->ssid.len;
brcmf_enable_mpc(ifp, 0);
brcmf_configure_arp_nd_offload(ifp, false);
// Start timer before starting to issue commands.
cfg->ap_start_timer->Start(BRCMF_AP_START_TIMER_DUR_MS);
// set to open authentication for external supplicant
status = brcmf_fil_bsscfg_int_set(ifp, "auth", BRCMF_AUTH_MODE_OPEN);
if (status != ZX_OK) {
BRCMF_ERR("auth error %s", zx_status_get_string(status));
goto fail;
}
// Configure RSN IE
if (req->rsne_len != 0) {
struct brcmf_vs_tlv* tmp_ie = (struct brcmf_vs_tlv*)req->rsne;
status = brcmf_configure_wpaie(ifp, tmp_ie, true, true);
if (status != ZX_OK) {
BRCMF_ERR("Failed to install RSNE: %s", zx_status_get_string(status));
goto fail;
}
} else {
status = brcmf_configure_opensecurity(ifp);
if (status != ZX_OK) {
BRCMF_ERR("Failed to configure AP for open security: %s", zx_status_get_string(status));
goto fail;
}
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, req->beacon_period, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Beacon Interval Set Error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
ifp->vif->profile.beacon_period = req->beacon_period;
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_DTIMPRD, req->dtim_period, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("DTIM Interval Set Error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
// If we are operating with manufacturing FW, we have access to just one IF
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("BRCMF_C_DOWN error %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
// Disable simultaneous STA/AP operation
status = brcmf_fil_iovar_int_set(ifp, "apsta", 0, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Set apsta error %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SET INFRA error %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Set AP mode failed %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
channel = {.primary = req->channel, .cbw = WLAN_CHANNEL_BANDWIDTH__20, .secondary80 = 0};
chanspec = channel_to_chanspec(&cfg->d11inf, &channel);
status = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Set Channel failed: chspec=%d, status=%s, fw_err=%s", chanspec,
zx_status_get_string(status), brcmf_fil_get_errstr(fw_err));
goto fail;
}
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("BRCMF_C_UP error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
}
struct brcmf_join_params join_params;
memset(&join_params, 0, sizeof(join_params));
// join parameters starts with ssid
memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le));
// create softap
status =
brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SET SSID error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
BRCMF_DBG(TRACE, "AP mode configuration complete");
brcmf_net_setcarrier(ifp, true);
cfg->ap_started = true;
return WLAN_START_RESULT_SUCCESS;
fail:
// Stop the timer when the function fails to issue any of the commands.
cfg->ap_start_timer->Stop();
brcmf_enable_mpc(ifp, 1);
brcmf_configure_arp_nd_offload(ifp, true);
return WLAN_START_RESULT_NOT_SUPPORTED;
}
// Returns an MLME result code (WLAN_STOP_RESULT_*)
static uint8_t brcmf_cfg80211_stop_ap(struct net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
zx_status_t status;
bcme_status_t fw_err = BCME_OK;
uint8_t result = WLAN_STOP_RESULT_SUCCESS;
struct brcmf_join_params join_params;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state) &&
!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING, &ifp->vif->sme_state)) {
BRCMF_INFO("attempt to stop already stopped AP\n");
return WLAN_STOP_RESULT_BSS_ALREADY_STOPPED;
}
memset(&join_params, 0, sizeof(join_params));
status =
brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SET SSID error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
result = WLAN_STOP_RESULT_INTERNAL_ERROR;
}
// Issue "bss" iovar to bring down the SoftAP IF.
brcmf_bss_ctrl bss_down;
bss_down.bsscfgidx = ifp->bsscfgidx;
bss_down.value = 0;
status = brcmf_fil_bsscfg_data_set(ifp, "bss", &bss_down, sizeof(bss_down));
if (status != ZX_OK) {
BRCMF_ERR("bss down failed %s. Issue C_DOWN (will take down client IF too)",
zx_status_get_string(status));
// If bss down does not work, use C_DOWN which has the side effect of
// taking down all active IFs
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("BRCMF_C_DOWN error %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("BRCMF_C_UP error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
}
}
// Disable AP mode in MFG build since the IF is shared.
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 0, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Unset AP mode failed %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
}
}
brcmf_vif_clear_mgmt_ies(ifp->vif);
brcmf_configure_arp_nd_offload(ifp, true);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING, &ifp->vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);
brcmf_net_setcarrier(ifp, false);
cfg->ap_started = false;
brcmf_enable_mpc(ifp, 1);
return result;
}
// Deauthenticate with specified STA. The reason provided should be from WLAN_DEAUTH_REASON_*
static zx_status_t brcmf_cfg80211_del_station(struct net_device* ndev, const uint8_t* mac,
uint8_t reason) {
BRCMF_DBG(TRACE, "Enter: reason: %d", reason);
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_scb_val_le scbval;
memset(&scbval, 0, sizeof(scbval));
memcpy(&scbval.ea, mac, ETH_ALEN);
scbval.val = reason;
bcme_status_t fw_err = BCME_OK;
zx_status_t status = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON, &scbval,
sizeof(scbval), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SCB_DEAUTHENTICATE_FOR_REASON failed: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
}
BRCMF_DBG(TRACE, "Exit");
return status;
}
static zx_status_t brcmf_notify_tdls_peer_event(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
switch (e->reason) {
case BRCMF_E_REASON_TDLS_PEER_DISCOVERED:
BRCMF_DBG(TRACE, "TDLS Peer Discovered");
break;
case BRCMF_E_REASON_TDLS_PEER_CONNECTED:
BRCMF_DBG(TRACE, "TDLS Peer Connected");
brcmf_proto_add_tdls_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
break;
case BRCMF_E_REASON_TDLS_PEER_DISCONNECTED:
BRCMF_DBG(TRACE, "TDLS Peer Disconnected");
brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
break;
}
return ZX_OK;
}
// Country is initialized to US by default. This should be retrieved from location services
// when available.
zx_status_t brcmf_if_start(net_device* ndev, const wlanif_impl_ifc_protocol_t* ifc,
zx_handle_t* out_sme_channel) {
if (!ndev->sme_channel.is_valid()) {
return ZX_ERR_ALREADY_BOUND;
}
BRCMF_DBG(WLANIF, "Starting wlanif interface");
{
std::lock_guard<std::shared_mutex> guard(ndev->if_proto_lock);
ndev->if_proto = *ifc;
}
brcmf_netdev_open(ndev);
ndev->is_up = true;
ZX_DEBUG_ASSERT(out_sme_channel != nullptr);
*out_sme_channel = ndev->sme_channel.release();
return ZX_OK;
}
void brcmf_if_stop(net_device* ndev) {
BRCMF_DBG(WLANIF, "Stopping wlanif interface");
std::lock_guard<std::shared_mutex> guard(ndev->if_proto_lock);
ndev->if_proto.ops = nullptr;
ndev->if_proto.ctx = nullptr;
}
void brcmf_if_start_scan(net_device* ndev, const wlanif_scan_req_t* req) {
zx_status_t result;
BRCMF_DBG(WLANIF, "Scan request from SME. txn_id: %" PRIu64 ", type: %s", req->txn_id,
req->scan_type == WLAN_SCAN_TYPE_PASSIVE ? "passive"
: req->scan_type == WLAN_SCAN_TYPE_ACTIVE ? "active"
: "invalid");
ndev->scan_txn_id = req->txn_id;
ndev->scan_num_results = 0;
BRCMF_DBG(SCAN, "About to scan! Txn ID %lu", ndev->scan_txn_id);
result = brcmf_cfg80211_scan(ndev, req);
if (result != ZX_OK) {
BRCMF_ERR("Couldn't start scan: %d %s", result, zx_status_get_string(result));
brcmf_signal_scan_end(ndev, req->txn_id, WLAN_SCAN_RESULT_INTERNAL_ERROR);
}
}
// Because brcm's join/assoc is handled in a single operation (BRCMF_C_SET_SSID), we save off the
// bss information, but otherwise wait until an ASSOCIATE.request is received to join so that we
// have the negotiated RSNE.
void brcmf_if_join_req(net_device* ndev, const wlanif_join_req_t* req) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping join callback");
return;
}
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_profile* profile = &ifp->vif->profile;
const wlanif_bss_description_t& sme_bss = req->selected_bss;
BRCMF_DBG(WLANIF, "Join request from SME. ssid: %.*s, bssid: " MAC_FMT_STR ", channel: %u",
sme_bss.ssid.len, sme_bss.ssid.data, MAC_FMT_ARGS(sme_bss.bssid), sme_bss.chan.primary);
memcpy(&ifp->bss, &sme_bss, sizeof(ifp->bss));
memcpy(profile->bssid, sme_bss.bssid, ETH_ALEN);
wlanif_join_confirm_t result;
result.result_code = WLAN_JOIN_RESULT_SUCCESS;
zx_status_t status = brcmf_configure_opensecurity(ifp);
if (status != ZX_OK) {
result.result_code = WLAN_JOIN_RESULT_INTERNAL_ERROR;
}
BRCMF_DBG(WLANIF, "Sending join confirm to SME. result: %s",
result.result_code == WLAN_JOIN_RESULT_SUCCESS ? "success"
: result.result_code == WLAN_JOIN_RESULT_FAILURE_TIMEOUT ? "timeout"
: result.result_code == WLAN_JOIN_RESULT_INTERNAL_ERROR ? "internal error"
: "unknown");
wlanif_impl_ifc_join_conf(&ndev->if_proto, &result);
}
void brcmf_if_auth_req(net_device* ndev, const wlanif_auth_req_t* req) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping auth callback");
return;
}
struct brcmf_if* ifp = ndev_to_if(ndev);
wlanif_auth_confirm_t response;
BRCMF_DBG(WLANIF, "Auth request from SME. type: %s, address: " MAC_FMT_STR "",
req->auth_type == WLAN_AUTH_TYPE_OPEN_SYSTEM ? "open"
: req->auth_type == WLAN_AUTH_TYPE_SHARED_KEY ? "shared"
: req->auth_type == WLAN_AUTH_TYPE_FAST_BSS_TRANSITION ? "fast BSS"
: req->auth_type == WLAN_AUTH_TYPE_SAE ? "SAE"
: "invalid",
MAC_FMT_ARGS(req->peer_sta_address));
// Ensure that join bssid matches auth bssid
if (memcmp(req->peer_sta_address, ifp->bss.bssid, ETH_ALEN)) {
const uint8_t* old_mac = ifp->bss.bssid;
const uint8_t* new_mac = req->peer_sta_address;
BRCMF_ERR("Auth MAC (" MAC_FMT_STR
") != "
"join MAC (" MAC_FMT_STR ").",
MAC_FMT_ARGS(new_mac), MAC_FMT_ARGS(old_mac));
// In debug builds, we should investigate why the MLME is giving us inconsitent
// requests.
ZX_DEBUG_ASSERT(0);
// In release builds, ignore and continue.
BRCMF_ERR("Ignoring mismatch and using join MAC address");
}
if (brcmf_set_auth_type(ndev, req->auth_type) == ZX_OK) {
response.result_code = WLAN_AUTH_RESULT_SUCCESS;
} else {
response.result_code = WLAN_AUTH_RESULT_REJECTED;
}
response.auth_type = req->auth_type;
memcpy(&response.peer_sta_address, ifp->bss.bssid, ETH_ALEN);
BRCMF_DBG(WLANIF, "Sending auth confirm to SME. result: %s",
response.result_code == WLAN_AUTH_RESULT_SUCCESS ? "success"
: response.result_code == WLAN_AUTH_RESULT_REFUSED ? "refused"
: response.result_code == WLAN_AUTH_RESULT_ANTI_CLOGGING_TOKEN_REQUIRED
? "anti-clogging token required"
: response.result_code == WLAN_AUTH_RESULT_FINITE_CYCLIC_GROUP_NOT_SUPPORTED
? "finite cyclic group not supported"
: response.result_code == WLAN_AUTH_RESULT_REJECTED ? "rejected"
: response.result_code == WLAN_AUTH_RESULT_FAILURE_TIMEOUT ? "timeout"
: "unknown");
wlanif_impl_ifc_auth_conf(&ndev->if_proto, &response);
}
// In AP mode, receive a response from wlanif confirming that a client was successfully
// authenticated.
void brcmf_if_auth_resp(net_device* ndev, const wlanif_auth_resp_t* ind) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF, "Auth response from SME. result: %s, address: " MAC_FMT_STR "\n",
ind->result_code == WLAN_AUTH_RESULT_SUCCESS ? "success"
: ind->result_code == WLAN_AUTH_RESULT_REFUSED ? "refused"
: ind->result_code == WLAN_AUTH_RESULT_ANTI_CLOGGING_TOKEN_REQUIRED
? "anti-clogging token required"
: ind->result_code == WLAN_AUTH_RESULT_FINITE_CYCLIC_GROUP_NOT_SUPPORTED
? "finite cyclic group not supported"
: ind->result_code == WLAN_AUTH_RESULT_REJECTED ? "rejected"
: ind->result_code == WLAN_AUTH_RESULT_FAILURE_TIMEOUT ? "timeout"
: "invalid",
MAC_FMT_ARGS(ind->peer_sta_address));
if (!brcmf_is_apmode(ifp->vif)) {
BRCMF_ERR("Received AUTHENTICATE.response but not in AP mode - ignoring");
return;
}
if (ind->result_code == WLAN_AUTH_RESULT_SUCCESS) {
const uint8_t* mac = ind->peer_sta_address;
BRCMF_DBG(CONN, "Successfully authenticated client " MAC_FMT_STR "\n", MAC_FMT_ARGS(mac));
return;
}
uint8_t reason;
switch (ind->result_code) {
case WLAN_AUTH_RESULT_REFUSED:
case WLAN_AUTH_RESULT_REJECTED:
reason = WLAN_DEAUTH_REASON_NOT_AUTHENTICATED;
break;
case WLAN_AUTH_RESULT_FAILURE_TIMEOUT:
reason = WLAN_DEAUTH_REASON_TIMEOUT;
break;
case WLAN_AUTH_RESULT_ANTI_CLOGGING_TOKEN_REQUIRED:
case WLAN_AUTH_RESULT_FINITE_CYCLIC_GROUP_NOT_SUPPORTED:
default:
reason = WLAN_DEAUTH_REASON_UNSPECIFIED;
break;
}
brcmf_cfg80211_del_station(ndev, ind->peer_sta_address, reason);
}
// Respond to a MLME-DEAUTHENTICATE.request message. Note that we are required to respond with a
// MLME-DEAUTHENTICATE.confirm on completion (or failure), even though there is no status
// reported.
void brcmf_if_deauth_req(net_device* ndev, const wlanif_deauth_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF, "Deauth request from SME. reason: %" PRIu16 "", req->reason_code);
if (brcmf_is_apmode(ifp->vif)) {
struct brcmf_scb_val_le scbval;
bcme_status_t fw_err = BCME_OK;
memcpy(&scbval.ea, req->peer_sta_address, ETH_ALEN);
scbval.val = req->reason_code;
zx_status_t status = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON, &scbval,
sizeof(scbval), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Failed to disassociate: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
}
// Deauth confirm will get sent when the driver receives the DEAUTH_EVENT
return;
}
// Client IF processing
if (brcmf_cfg80211_disconnect(ndev, req->peer_sta_address, req->reason_code, true) != ZX_OK) {
// Request to disconnect failed, so respond immediately
brcmf_notify_deauth(ndev, req->peer_sta_address);
} // else wait for disconnect to complete before sending response
// Workaround for fxbug.dev/28829: allow time for disconnect to complete
zx_nanosleep(zx_deadline_after(ZX_MSEC(50)));
}
void brcmf_if_assoc_req(net_device* ndev, const wlanif_assoc_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF, "Assoc request from SME. address: " MAC_FMT_STR ", rsne_len: %zd venie len %zd",
MAC_FMT_ARGS(req->peer_sta_address), req->rsne_len, req->vendor_ie_len);
if (req->rsne_len != 0) {
BRCMF_DBG(TEMP, " * * RSNE non-zero! %ld", req->rsne_len);
BRCMF_DBG_HEX_DUMP(BRCMF_IS_ON(BYTES), req->rsne, req->rsne_len, "RSNE:");
}
if (memcmp(req->peer_sta_address, ifp->bss.bssid, ETH_ALEN)) {
const uint8_t* old_mac = ifp->bss.bssid;
const uint8_t* new_mac = req->peer_sta_address;
BRCMF_ERR("Requested MAC " MAC_FMT_STR
" != "
"connected MAC " MAC_FMT_STR,
MAC_FMT_ARGS(new_mac), MAC_FMT_ARGS(old_mac));
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
} else {
brcmf_cfg80211_connect(ndev, req);
}
}
void brcmf_if_assoc_resp(net_device* ndev, const wlanif_assoc_resp_t* ind) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF,
"Assoc response from SME. address: " MAC_FMT_STR
", "
"result: %" PRIu8 ", aid: %" PRIu16 "",
MAC_FMT_ARGS(ind->peer_sta_address), ind->result_code, ind->association_id);
if (!brcmf_is_apmode(ifp->vif)) {
BRCMF_ERR("Received ASSOCIATE.response but not in AP mode - ignoring");
return;
}
if (ind->result_code == WLAN_ASSOC_RESULT_SUCCESS) {
const uint8_t* mac = ind->peer_sta_address;
BRCMF_DBG(CONN, "Successfully associated client " MAC_FMT_STR, MAC_FMT_ARGS(mac));
return;
}
// TODO(fxb/62115): The translation here is poor because the set of result codes
// available for an association response is too small.
uint8_t reason;
switch (ind->result_code) {
case WLAN_ASSOC_RESULT_REFUSED_NOT_AUTHENTICATED:
reason = WLAN_DEAUTH_REASON_NOT_AUTHENTICATED;
break;
case WLAN_ASSOC_RESULT_REFUSED_CAPABILITIES_MISMATCH:
reason = WLAN_DEAUTH_REASON_INVALID_RSNE_CAPABILITIES;
break;
case WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED:
case WLAN_ASSOC_RESULT_REFUSED_EXTERNAL_REASON:
case WLAN_ASSOC_RESULT_REFUSED_AP_OUT_OF_MEMORY:
case WLAN_ASSOC_RESULT_REFUSED_BASIC_RATES_MISMATCH:
case WLAN_ASSOC_RESULT_REJECTED_EMERGENCY_SERVICES_NOT_SUPPORTED:
case WLAN_ASSOC_RESULT_REFUSED_TEMPORARILY:
default:
reason = WLAN_DEAUTH_REASON_UNSPECIFIED;
break;
}
brcmf_cfg80211_del_station(ndev, ind->peer_sta_address, reason);
}
void brcmf_if_disassoc_req(net_device* ndev, const wlanif_disassoc_req_t* req) {
BRCMF_DBG(WLANIF, "Disassoc request from SME. address: " MAC_FMT_STR ", reason: %" PRIu16 "",
MAC_FMT_ARGS(req->peer_sta_address), req->reason_code);
zx_status_t status =
brcmf_cfg80211_disconnect(ndev, req->peer_sta_address, req->reason_code, false);
if (status != ZX_OK) {
brcmf_notify_disassoc(ndev, status);
} // else notification will happen asynchronously
}
void brcmf_if_reset_req(net_device* ndev, const wlanif_reset_req_t* req) {
BRCMF_DBG(WLANIF, "Reset request from SME. address: " MAC_FMT_STR "",
MAC_FMT_ARGS(req->sta_address));
BRCMF_ERR("Unimplemented");
}
void brcmf_if_start_conf(net_device* ndev, uint8_t result) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping AP start callback");
return;
}
wlanif_start_confirm_t start_conf = {.result_code = result};
BRCMF_DBG(WLANIF, "Sending AP start confirm to SME. result_code: %s",
result == WLAN_START_RESULT_SUCCESS ? "success"
: result == WLAN_START_RESULT_BSS_ALREADY_STARTED_OR_JOINED ? "already started"
: result == WLAN_START_RESULT_RESET_REQUIRED_BEFORE_START ? "reset required"
: result == WLAN_START_RESULT_NOT_SUPPORTED ? "not supported"
: "unknown");
wlanif_impl_ifc_start_conf(&ndev->if_proto, &start_conf);
}
// AP start timeout worker
static void brcmf_ap_start_timeout_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, ap_start_timeout_work);
struct net_device* ndev = cfg_to_softap_ndev(cfg);
struct brcmf_if* ifp = ndev_to_if(ndev);
// Indicate status only if AP start pending is set
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING, &ifp->vif->sme_state)) {
// Indicate AP start failed
brcmf_if_start_conf(ndev, WLAN_START_RESULT_NOT_SUPPORTED);
}
}
// AP start timeout handler
static void brcmf_ap_start_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
BRCMF_DBG(TRACE, "Enter");
EXEC_TIMEOUT_WORKER(ap_start_timeout_work);
cfg->pub->irq_callback_lock.unlock();
}
/* Start AP mode */
void brcmf_if_start_req(net_device* ndev, const wlanif_start_req_t* req) {
BRCMF_DBG(WLANIF, "Start AP request from SME. ssid: %.*s, channel: %u, rsne_len: %zu",
req->ssid.len, req->ssid.data, req->channel, req->rsne_len);
uint8_t result_code = brcmf_cfg80211_start_ap(ndev, req);
if (result_code != WLAN_START_RESULT_SUCCESS) {
brcmf_if_start_conf(ndev, result_code);
}
}
/* Stop AP mode */
void brcmf_if_stop_req(net_device* ndev, const wlanif_stop_req_t* req) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping AP stop callback");
return;
}
BRCMF_DBG(WLANIF, "Stop AP request from SME. ssid: %.*s", req->ssid.len, req->ssid.data);
uint8_t result_code = brcmf_cfg80211_stop_ap(ndev);
wlanif_stop_confirm_t result = {.result_code = result_code};
BRCMF_DBG(WLANIF, "Sending AP stop confirm to SME. result_code: %s",
result_code == WLAN_STOP_RESULT_SUCCESS ? "success"
: result_code == WLAN_STOP_RESULT_BSS_ALREADY_STOPPED ? "already stopped"
: result_code == WLAN_STOP_RESULT_INTERNAL_ERROR ? "internal error"
: "unknown");
wlanif_impl_ifc_stop_conf(&ndev->if_proto, &result);
}
void brcmf_if_set_keys_req(net_device* ndev, const wlanif_set_keys_req_t* req) {
BRCMF_DBG(WLANIF, "Set keys request from SME. num_keys: %zu", req->num_keys);
zx_status_t result;
for (size_t i = 0; i < req->num_keys; i++) {
result = brcmf_cfg80211_add_key(ndev, &req->keylist[i]);
if (result != ZX_OK) {
BRCMF_WARN("Error setting key %zu: %s.", i, zx_status_get_string(result));
}
}
}
void brcmf_if_del_keys_req(net_device* ndev, const wlanif_del_keys_req_t* req) {
BRCMF_DBG(WLANIF, "Del keys request from SME. num_keys: %zu", req->num_keys);
BRCMF_ERR("Unimplemented");
}
void brcmf_if_eapol_req(net_device* ndev, const wlanif_eapol_req_t* req) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping EAPOL xmit callback");
return;
}
BRCMF_DBG(WLANIF, "EAPOL xmit request from SME. data_len: %zu", req->data_count);
wlanif_eapol_confirm_t confirm;
int packet_length;
// Ethernet header length + EAPOL PDU length
packet_length = 2 * ETH_ALEN + sizeof(uint16_t) + req->data_count;
auto packet_data = std::make_unique<char[]>(packet_length);
// IEEE Std. 802.3-2015, 3.1.1
memcpy(packet_data.get(), req->dst_addr, ETH_ALEN);
memcpy(packet_data.get() + ETH_ALEN, req->src_addr, ETH_ALEN);
*(uint16_t*)(packet_data.get() + 2 * ETH_ALEN) = EAPOL_ETHERNET_TYPE_UINT16;
memcpy(packet_data.get() + 2 * ETH_ALEN + sizeof(uint16_t), req->data_list, req->data_count);
auto packet =
std::make_unique<wlan::brcmfmac::AllocatedNetbuf>(std::move(packet_data), packet_length);
brcmf_netdev_start_xmit(ndev, std::move(packet));
confirm.result_code = WLAN_EAPOL_RESULT_SUCCESS;
zx_nanosleep(zx_deadline_after(ZX_MSEC(5)));
BRCMF_DBG(WLANIF, "Sending EAPOL xmit confirm to SME. result: %s",
confirm.result_code == WLAN_EAPOL_RESULT_SUCCESS ? "success"
: confirm.result_code == WLAN_EAPOL_RESULT_TRANSMISSION_FAILURE ? "failure"
: "unknown");
wlanif_impl_ifc_eapol_conf(&ndev->if_proto, &confirm);
}
static void brcmf_get_bwcap(struct brcmf_if* ifp, uint32_t bw_cap[]) {
// 2.4 GHz
uint32_t val = WLC_BAND_2G;
zx_status_t status = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val, nullptr);
if (status == ZX_OK) {
bw_cap[WLAN_INFO_BAND_2GHZ] = val;
// 5 GHz
val = WLC_BAND_5G;
status = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val, nullptr);
if (status == ZX_OK) {
bw_cap[WLAN_INFO_BAND_5GHZ] = val;
return;
}
BRCMF_WARN(
"Failed to retrieve 5GHz bandwidth info, but sucessfully retrieved bandwidth "
"info for 2.4GHz bands.");
return;
}
// bw_cap not supported in this version of fw
uint32_t mimo_bwcap = 0;
status = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &mimo_bwcap, nullptr);
if (status != ZX_OK) {
/* assume 20MHz if firmware does not give a clue */
BRCMF_WARN("Failed to retrieve bandwidth capability info. Assuming 20MHz for all.");
mimo_bwcap = WLC_N_BW_20ALL;
}
switch (mimo_bwcap) {
case WLC_N_BW_40ALL:
bw_cap[WLAN_INFO_BAND_2GHZ] |= WLC_BW_40MHZ_BIT;
/* fall-thru */
case WLC_N_BW_20IN2G_40IN5G:
bw_cap[WLAN_INFO_BAND_5GHZ] |= WLC_BW_40MHZ_BIT;
/* fall-thru */
case WLC_N_BW_20ALL:
bw_cap[WLAN_INFO_BAND_2GHZ] |= WLC_BW_20MHZ_BIT;
bw_cap[WLAN_INFO_BAND_5GHZ] |= WLC_BW_20MHZ_BIT;
break;
default:
BRCMF_ERR("invalid mimo_bw_cap value");
}
}
static uint16_t brcmf_get_mcs_map(uint32_t nchain, uint16_t supp) {
uint16_t mcs_map = 0xffff;
for (uint32_t i = 0; i < nchain; i++) {
mcs_map = (mcs_map << 2) | supp;
}
return mcs_map;
}
static void brcmf_update_ht_cap(struct brcmf_if* ifp, wlanif_band_capabilities_t* band,
uint32_t bw_cap[2], uint32_t ldpc_cap, uint32_t nchain,
uint32_t max_ampdu_len_exp) {
zx_status_t status;
band->ht_supported = true;
// LDPC Support
if (ldpc_cap) {
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_LDPC;
}
// Bandwidth-related flags
if (bw_cap[band->band_id] & WLC_BW_40MHZ_BIT) {
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_CHAN_WIDTH;
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_SGI_40;
}
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_SGI_20;
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_DSSS_CCK_40;
// SM Power Save
// At present SMPS appears to never be enabled in firmware (see fxbug.dev/29648)
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_SMPS_DISABLED;
// Rx STBC
uint32_t rx_stbc = 0;
(void)brcmf_fil_iovar_int_get(ifp, "stbc_rx", &rx_stbc, nullptr);
band->ht_caps.ht_capability_info |= ((rx_stbc & 0x3) << IEEE80211_HT_CAPS_RX_STBC_SHIFT);
// Tx STBC
// According to Broadcom, Tx STBC capability should be induced from the value of the
// "stbc_rx" iovar and not "stbc_tx".
if (rx_stbc != 0) {
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_TX_STBC;
}
// AMPDU Parameters
uint32_t ampdu_rx_density = 0;
status = brcmf_fil_iovar_int_get(ifp, "ampdu_rx_density", &ampdu_rx_density, nullptr);
if (status != ZX_OK) {
BRCMF_ERR("Failed to retrieve value for AMPDU Rx density from firmware, using 16 us");
ampdu_rx_density = 7;
}
band->ht_caps.ampdu_params |= ((ampdu_rx_density & 0x7) << IEEE80211_AMPDU_DENSITY_SHIFT);
if (max_ampdu_len_exp > 3) {
// Cap A-MPDU length at 64K
max_ampdu_len_exp = 3;
}
band->ht_caps.ampdu_params |= (max_ampdu_len_exp << IEEE80211_AMPDU_RX_LEN_SHIFT);
// Supported MCS Set
size_t mcs_set_size = sizeof(band->ht_caps.supported_mcs_set.bytes);
if (nchain > mcs_set_size) {
BRCMF_ERR("Supported MCS set too small for nchain (%u), truncating", nchain);
nchain = mcs_set_size;
}
memset(&band->ht_caps.supported_mcs_set.bytes[0], 0xff, nchain);
}
static void brcmf_update_vht_cap(struct brcmf_if* ifp, wlanif_band_capabilities_t* band,
uint32_t bw_cap[2], uint32_t nchain, uint32_t ldpc_cap,
uint32_t max_ampdu_len_exp) {
uint16_t mcs_map;
band->vht_supported = true;
// Set Max MPDU length to 11454
// TODO (fxbug.dev/29107): Value hardcoded from firmware behavior of the BCM4356 and BCM4359
// chips.
band->vht_caps.vht_capability_info |= (2 << IEEE80211_VHT_CAPS_MAX_MPDU_LEN_SHIFT);
/* 80MHz is mandatory */
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SGI_80;
if (bw_cap[band->band_id] & WLC_BW_160MHZ_BIT) {
band->vht_caps.vht_capability_info |= (1 << IEEE80211_VHT_CAPS_SUPP_CHAN_WIDTH_SHIFT);
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SGI_160;
}
if (ldpc_cap) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_RX_LDPC;
}
// Tx STBC
// TODO (fxbug.dev/29107): Value is hardcoded for now
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_IS_4359)) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_TX_STBC;
}
/* all support 256-QAM */
mcs_map = brcmf_get_mcs_map(nchain, IEEE80211_VHT_MCS_0_9);
/* Rx MCS map (B0:15) */
band->vht_caps.supported_vht_mcs_and_nss_set = (uint64_t)mcs_map;
/* Tx MCS map (B0:15) */
band->vht_caps.supported_vht_mcs_and_nss_set |= ((uint64_t)mcs_map << 32);
/* Beamforming support information */
uint32_t txbf_bfe_cap = 0;
uint32_t txbf_bfr_cap = 0;
// Use the *_cap_hw value when possible, since the reflects the capabilities of the device
// regardless of current operating mode.
zx_status_t status;
status = brcmf_fil_iovar_int_get(ifp, "txbf_bfe_cap_hw", &txbf_bfe_cap, nullptr);
if (status != ZX_OK) {
(void)brcmf_fil_iovar_int_get(ifp, "txbf_bfe_cap", &txbf_bfe_cap, nullptr);
}
status = brcmf_fil_iovar_int_get(ifp, "txbf_bfr_cap_hw", &txbf_bfr_cap, nullptr);
if (status != ZX_OK) {
BRCMF_DBG(INFO, "Failed to get iovar txbf_bfr_cap_hw. Falling back to txbf_bfr_cap.");
(void)brcmf_fil_iovar_int_get(ifp, "txbf_bfr_cap", &txbf_bfr_cap, nullptr);
}
if (txbf_bfe_cap & BRCMF_TXBF_SU_BFE_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SU_BEAMFORMEE;
}
if (txbf_bfe_cap & BRCMF_TXBF_MU_BFE_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_MU_BEAMFORMEE;
}
if (txbf_bfr_cap & BRCMF_TXBF_SU_BFR_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SU_BEAMFORMER;
}
if (txbf_bfr_cap & BRCMF_TXBF_MU_BFR_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_MU_BEAMFORMER;
}
uint32_t txstreams = 0;
// txstreams_cap is not supported in all firmware versions, but when it is supported it
// provides capability info regardless of current operating state.
status = brcmf_fil_iovar_int_get(ifp, "txstreams_cap", &txstreams, nullptr);
if (status != ZX_OK) {
(void)brcmf_fil_iovar_int_get(ifp, "txstreams", &txstreams, nullptr);
}
if ((txbf_bfe_cap || txbf_bfr_cap) && (txstreams > 1)) {
band->vht_caps.vht_capability_info |= (2 << IEEE80211_VHT_CAPS_BEAMFORMEE_STS_SHIFT);
band->vht_caps.vht_capability_info |=
(((txstreams - 1) << IEEE80211_VHT_CAPS_SOUND_DIM_SHIFT) & IEEE80211_VHT_CAPS_SOUND_DIM);
// Link adapt = Both
band->vht_caps.vht_capability_info |= (3 << IEEE80211_VHT_CAPS_VHT_LINK_ADAPT_SHIFT);
}
// Maximum A-MPDU Length Exponent
band->vht_caps.vht_capability_info |=
((max_ampdu_len_exp & 0x7) << IEEE80211_VHT_CAPS_MAX_AMPDU_LEN_SHIFT);
}
static void brcmf_dump_ht_caps(ieee80211_ht_capabilities_t* caps) {
BRCMF_INFO(" ht_capability_info: %#x", caps->ht_capability_info);
BRCMF_INFO(" ampdu_params: %#x", caps->ampdu_params);
char mcs_set_str[countof(caps->supported_mcs_set.bytes) * 5 + 1];
char* str = mcs_set_str;
for (unsigned i = 0; i < countof(caps->supported_mcs_set.bytes); i++) {
str += sprintf(str, "%s0x%02hhx", i > 0 ? " " : "", caps->supported_mcs_set.bytes[i]);
}
BRCMF_INFO(" mcs_set: %s", mcs_set_str);
BRCMF_INFO(" ht_ext_capabilities: %#x", caps->ht_ext_capabilities);
BRCMF_INFO(" asel_capabilities: %#x", caps->asel_capabilities);
}
static void brcmf_dump_vht_caps(ieee80211_vht_capabilities_t* caps) {
BRCMF_INFO(" vht_capability_info: %#x", caps->vht_capability_info);
BRCMF_INFO(" supported_vht_mcs_and_nss_set: %#" PRIx64 "",
caps->supported_vht_mcs_and_nss_set);
}
static void brcmf_dump_band_caps(wlanif_band_capabilities_t* band) {
char band_id_str[32];
switch (band->band_id) {
case WLAN_INFO_BAND_2GHZ:
sprintf(band_id_str, "2GHz");
break;
case WLAN_INFO_BAND_5GHZ:
sprintf(band_id_str, "5GHz");
break;
default:
sprintf(band_id_str, "unknown (%d)", band->band_id);
break;
}
BRCMF_INFO(" band_id: %s", band_id_str);
if (band->num_rates > WLAN_INFO_BAND_INFO_MAX_RATES) {
BRCMF_ERR("Number of rates reported (%zu) exceeds limit (%d), truncating", band->num_rates,
WLAN_INFO_BAND_INFO_MAX_RATES);
band->num_rates = WLAN_INFO_BAND_INFO_MAX_RATES;
}
char rates_str[WLAN_INFO_BAND_INFO_MAX_RATES * 6 + 1];
char* str = rates_str;
for (unsigned i = 0; i < band->num_rates; i++) {
str += sprintf(str, "%s%d", i > 0 ? " " : "", band->rates[i]);
}
BRCMF_INFO(" basic_rates: %s", rates_str);
BRCMF_INFO(" base_frequency: %d", band->base_frequency);
if (band->num_channels > WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS) {
BRCMF_ERR("Number of channels reported (%zu) exceeds limit (%d), truncating",
band->num_channels, WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS);
band->num_channels = WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS;
}
char channels_str[WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS * 4 + 1];
str = channels_str;
for (unsigned i = 0; i < band->num_channels; i++) {
str += sprintf(str, "%s%d", i > 0 ? " " : "", band->channels[i]);
}
BRCMF_INFO(" channels: %s", channels_str);
BRCMF_INFO(" ht_supported: %s", band->ht_supported ? "true" : "false");
if (band->ht_supported) {
brcmf_dump_ht_caps(&band->ht_caps);
}
BRCMF_INFO(" vht_supported: %s", band->vht_supported ? "true" : "false");
if (band->vht_supported) {
brcmf_dump_vht_caps(&band->vht_caps);
}
}
static void brcmf_dump_query_info(wlanif_query_info_t* info) {
BRCMF_INFO(" Device capabilities as reported to wlanif:");
BRCMF_INFO(" mac_addr: " MAC_FMT_STR, MAC_FMT_ARGS(info->mac_addr));
BRCMF_INFO(" role(s): %s%s%s", info->role & WLAN_INFO_MAC_ROLE_CLIENT ? "client " : "",
info->role & WLAN_INFO_MAC_ROLE_AP ? "ap " : "",
info->role & WLAN_INFO_MAC_ROLE_MESH ? "mesh " : "");
BRCMF_INFO(" feature(s): %s%s", info->features & WLANIF_FEATURE_DMA ? "DMA " : "",
info->features & WLANIF_FEATURE_SYNTH ? "SYNTH " : "");
for (unsigned i = 0; i < info->num_bands; i++) {
brcmf_dump_band_caps(&info->bands[i]);
}
}
void brcmf_if_query(net_device* ndev, wlanif_query_info_t* info) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct wireless_dev* wdev = ndev_to_wdev(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_chanspec_list* list = nullptr;
uint32_t nmode = 0;
uint32_t vhtmode = 0;
uint32_t rxchain = 0, nchain = 0;
uint32_t bw_cap[2] = {WLC_BW_20MHZ_BIT, WLC_BW_20MHZ_BIT};
uint32_t ldpc_cap = 0;
uint32_t max_ampdu_len_exp = 0;
zx_status_t status;
bcme_status_t fw_err = BCME_OK;
BRCMF_DBG(WLANIF, "Query request received from SME.");
memset(info, 0, sizeof(*info));
// mac_addr
memcpy(info->mac_addr, ifp->mac_addr, ETH_ALEN);
// role
info->role = wdev->iftype;
// features
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_DFS)) {
info->driver_features |= WLAN_INFO_DRIVER_FEATURE_DFS;
}
// bands
uint32_t bandlist[3];
status = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST, &bandlist, sizeof(bandlist), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not obtain band info: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
return;
}
wlanif_band_capabilities_t* band_2ghz = nullptr;
wlanif_band_capabilities_t* band_5ghz = nullptr;
/* first entry in bandlist is number of bands */
info->num_bands = bandlist[0];
for (unsigned i = 1; i <= info->num_bands && i < countof(bandlist); i++) {
if (i > countof(info->bands)) {
BRCMF_ERR("insufficient space in query response for all bands, truncating");
continue;
}
wlanif_band_capabilities_t* band = &info->bands[i - 1];
if (bandlist[i] == WLC_BAND_2G) {
band->band_id = WLAN_INFO_BAND_2GHZ;
band->num_rates = std::min<size_t>(WLAN_INFO_BAND_INFO_MAX_RATES, wl_g_rates_size);
memcpy(band->rates, wl_g_rates, band->num_rates * sizeof(uint16_t));
band->base_frequency = 2407;
band_2ghz = band;
} else if (bandlist[i] == WLC_BAND_5G) {
band->band_id = WLAN_INFO_BAND_5GHZ;
band->num_rates = std::min<size_t>(WLAN_INFO_BAND_INFO_MAX_RATES, wl_a_rates_size);
memcpy(band->rates, wl_a_rates, band->num_rates * sizeof(uint16_t));
band->base_frequency = 5000;
band_5ghz = band;
}
}
// channels
uint8_t* pbuf = static_cast<decltype(pbuf)>(calloc(BRCMF_DCMD_MEDLEN, 1));
if (pbuf == nullptr) {
BRCMF_ERR("unable to allocate memory for channel information");
return;
}
status = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf, BRCMF_DCMD_MEDLEN, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("get chanspecs error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail_pbuf;
}
list = (struct brcmf_chanspec_list*)pbuf;
for (uint32_t i = 0; i < list->count; i++) {
struct brcmu_chan ch;
ch.chspec = list->element[i];
cfg->d11inf.decchspec(&ch);
// Find the appropriate band
wlanif_band_capabilities_t* band = nullptr;
if (ch.band == BRCMU_CHAN_BAND_2G) {
band = band_2ghz;
} else if (ch.band == BRCMU_CHAN_BAND_5G) {
band = band_5ghz;
} else {
BRCMF_ERR("unrecognized band for channel %d", ch.control_ch_num);
continue;
}
if (band == nullptr) {
continue;
}
// Fuchsia's wlan channels are simply the control channel (for now), whereas
// brcm specifies each channel + bw + sb configuration individually. Until we
// offer that level of resolution, just filter out duplicates.
uint32_t j;
for (j = 0; j < band->num_channels; j++) {
if (band->channels[j] == ch.control_ch_num) {
break;
}
}
if (j != band->num_channels) {
continue;
}
if (band->num_channels + 1 >= sizeof(band->channels)) {
BRCMF_ERR("insufficient space for channel %d, skipping", ch.control_ch_num);
continue;
}
band->channels[band->num_channels++] = ch.control_ch_num;
}
// Parse HT/VHT information
nmode = 0;
vhtmode = 0;
rxchain = 0;
nchain = 0;
(void)brcmf_fil_iovar_int_get(ifp, "vhtmode", &vhtmode, nullptr);
status = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("nmode error: %s, fw err %s. Assuming both HT mode and VHT mode are not available.",
zx_status_get_string(status), brcmf_fil_get_errstr(fw_err));
// VHT requires HT support
vhtmode = 0;
} else {
brcmf_get_bwcap(ifp, bw_cap);
}
BRCMF_DBG(INFO, "nmode=%d, vhtmode=%d, bw_cap=(%d, %d)", nmode, vhtmode,
bw_cap[WLAN_INFO_BAND_2GHZ], bw_cap[WLAN_INFO_BAND_5GHZ]);
// LDPC support, applies to both HT and VHT
ldpc_cap = 0;
(void)brcmf_fil_iovar_int_get(ifp, "ldpc_cap", &ldpc_cap, nullptr);
// Max AMPDU length
max_ampdu_len_exp = 0;
status = brcmf_fil_iovar_int_get(ifp, "ampdu_rx_factor", &max_ampdu_len_exp, nullptr);
if (status != ZX_OK) {
BRCMF_ERR("Failed to retrieve value for AMPDU maximum Rx length, using 8191 bytes");
}
// Rx chains (and streams)
// The "rxstreams_cap" iovar, when present, indicates the maximum number of Rx streams
// possible, encoded as one bit per stream (i.e., a value of 0x3 indicates 2 streams/chains).
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_IS_4359)) {
// TODO (fxbug.dev/29107): The BCM4359 firmware supports rxstreams_cap, but it returns 0x2
// instead of 0x3, which is incorrect.
rxchain = 0x3;
} else {
// According to Broadcom, rxstreams_cap, when available, is an accurate representation of
// the number of rx chains.
status = brcmf_fil_iovar_int_get(ifp, "rxstreams_cap", &rxchain, nullptr);
if (status != ZX_OK) {
// TODO (fxbug.dev/29107): The rxstreams_cap iovar isn't yet supported in the BCM4356
// firmware. For now we use a hard-coded value (another option would be to parse the
// nvram contents ourselves (looking for the value associated with the key "rxchain").
BRCMF_DBG(INFO,
"Failed to retrieve value for Rx chains. Assuming chip supports 2 Rx chains.");
rxchain = 0x3;
}
}
for (nchain = 0; rxchain; nchain++) {
rxchain = rxchain & (rxchain - 1);
}
BRCMF_DBG(INFO, "nchain=%d", nchain);
if (nmode) {
if (band_2ghz) {
brcmf_update_ht_cap(ifp, band_2ghz, bw_cap, ldpc_cap, nchain, max_ampdu_len_exp);
}
if (band_5ghz) {
brcmf_update_ht_cap(ifp, band_5ghz, bw_cap, ldpc_cap, nchain, max_ampdu_len_exp);
}
}
if (vhtmode && band_5ghz) {
brcmf_update_vht_cap(ifp, band_5ghz, bw_cap, nchain, ldpc_cap, max_ampdu_len_exp);
}
if (BRCMF_IS_ON(INFO)) {
brcmf_dump_query_info(info);
}
fail_pbuf:
free(pbuf);
}
namespace {
zx_status_t brcmf_convert_antenna_id(const histograms_report_t& histograms_report,
wlanif_antenna_id_t* out_antenna_id) {
switch (histograms_report.antennaid.freq) {
case ANTENNA_2G:
out_antenna_id->freq = WLANIF_ANTENNA_FREQ_ANTENNA_2_G;
break;
case ANTENNA_5G:
out_antenna_id->freq = WLANIF_ANTENNA_FREQ_ANTENNA_5_G;
break;
default:
return ZX_ERR_OUT_OF_RANGE;
}
out_antenna_id->index = histograms_report.antennaid.idx;
return ZX_OK;
}
void brcmf_get_noise_floor_samples(const histograms_report_t& histograms_report,
std::vector<wlanif_hist_bucket_t>* out_noise_floor_samples,
uint64_t* out_invalid_samples) {
for (size_t i = 0; i < WLANIF_MAX_NOISE_FLOOR_SAMPLES; ++i) {
wlanif_hist_bucket_t bucket;
bucket.bucket_index = i;
bucket.num_samples = histograms_report.rxnoiseflr[i];
out_noise_floor_samples->push_back(bucket);
}
// rxnoiseflr has an extra bucket. If there is anything in it, it is invalid.
*out_invalid_samples = histograms_report.rxsnr[255];
}
void brcmf_get_rssi_samples(const histograms_report_t& histograms_report,
std::vector<wlanif_hist_bucket_t>* out_rssi_samples,
uint64_t* out_invalid_samples) {
for (size_t i = 0; i < WLANIF_MAX_RSSI_SAMPLES; ++i) {
wlanif_hist_bucket_t bucket;
bucket.bucket_index = i;
bucket.num_samples = histograms_report.rxrssi[i];
out_rssi_samples->push_back(bucket);
}
// rxrssi has an extra bucket. If there is anything in it, it is invalid.
*out_invalid_samples = histograms_report.rxrssi[255];
}
void brcmf_get_snr_samples(const histograms_report_t& histograms_report,
std::vector<wlanif_hist_bucket_t>* out_snr_samples,
uint64_t* out_invalid_samples) {
for (size_t i = 0; i < WLANIF_MAX_SNR_SAMPLES; ++i) {
wlanif_hist_bucket_t bucket;
bucket.bucket_index = i;
bucket.num_samples = histograms_report.rxsnr[i];
out_snr_samples->push_back(bucket);
}
// rxsnr does not have any indices that should be considered invalid buckets.
*out_invalid_samples = 0;
}
void brcmf_get_rx_rate_index_samples(const histograms_report_t& histograms_report,
std::vector<wlanif_hist_bucket_t>* out_rx_rate_index_samples,
uint64_t* out_invalid_samples) {
uint32_t rxrate[WLANIF_MAX_RX_RATE_INDEX_SAMPLES];
brcmu_set_rx_rate_index_hist_rx11ac(histograms_report.rx11ac, rxrate);
brcmu_set_rx_rate_index_hist_rx11b(histograms_report.rx11b, rxrate);
brcmu_set_rx_rate_index_hist_rx11g(histograms_report.rx11g, rxrate);
brcmu_set_rx_rate_index_hist_rx11n(histograms_report.rx11n, rxrate);
for (uint8_t i = 0; i < WLANIF_MAX_RX_RATE_INDEX_SAMPLES; ++i) {
wlanif_hist_bucket_t bucket;
bucket.bucket_index = i;
bucket.num_samples = rxrate[i];
out_rx_rate_index_samples->push_back(bucket);
}
// rxrate does not have any indices that should be considered invalid buckets.
*out_invalid_samples = 0;
}
void brcmf_convert_histograms_report_noise_floor(const histograms_report_t& histograms_report,
const wlanif_antenna_id_t& antenna_id,
wlanif_noise_floor_histogram_t* out_hist,
std::vector<wlanif_hist_bucket_t>* out_samples) {
out_hist->antenna_id = antenna_id;
out_hist->hist_scope = WLANIF_HIST_SCOPE_PER_ANTENNA;
brcmf_get_noise_floor_samples(histograms_report, out_samples, &out_hist->invalid_samples);
out_hist->noise_floor_samples_count = out_samples->size();
out_hist->noise_floor_samples_list = out_samples->data();
}
void brcmf_convert_histograms_report_rx_rate_index(const histograms_report_t& histograms_report,
const wlanif_antenna_id_t& antenna_id,
wlanif_rx_rate_index_histogram_t* out_hist,
std::vector<wlanif_hist_bucket_t>* out_samples) {
out_hist->antenna_id = antenna_id;
out_hist->hist_scope = WLANIF_HIST_SCOPE_PER_ANTENNA;
brcmf_get_rx_rate_index_samples(histograms_report, out_samples, &out_hist->invalid_samples);
out_hist->rx_rate_index_samples_count = out_samples->size();
out_hist->rx_rate_index_samples_list = out_samples->data();
}
void brcmf_convert_histograms_report_rssi(const histograms_report_t& histograms_report,
const wlanif_antenna_id_t& antenna_id,
wlanif_rssi_histogram_t* out_hist,
std::vector<wlanif_hist_bucket_t>* out_samples) {
out_hist->antenna_id = antenna_id;
out_hist->hist_scope = WLANIF_HIST_SCOPE_PER_ANTENNA;
brcmf_get_rssi_samples(histograms_report, out_samples, &out_hist->invalid_samples);
out_hist->rssi_samples_count = out_samples->size();
out_hist->rssi_samples_list = out_samples->data();
}
void brcmf_convert_histograms_report_snr(const histograms_report_t& histograms_report,
const wlanif_antenna_id_t& antenna_id,
wlanif_snr_histogram_t* out_hist,
std::vector<wlanif_hist_bucket_t>* out_samples) {
out_hist->antenna_id = antenna_id;
out_hist->hist_scope = WLANIF_HIST_SCOPE_PER_ANTENNA;
brcmf_get_snr_samples(histograms_report, out_samples, &out_hist->invalid_samples);
out_hist->snr_samples_count = out_samples->size();
out_hist->snr_samples_list = out_samples->data();
}
zx_status_t brcmf_get_histograms_report(brcmf_if* ifp, histograms_report_t* out_report) {
if (ifp == nullptr) {
BRCMF_ERR("Invalid interface\n");
return ZX_ERR_INTERNAL;
}
if (out_report == nullptr) {
BRCMF_ERR("Invalid histograms_report_t pointer\n");
return ZX_ERR_INTERNAL;
}
bcme_status_t fw_err = BCME_OK;
wl_wstats_cnt_t wl_stats_cnt;
std::memset(&wl_stats_cnt, 0, sizeof(wl_wstats_cnt_t));
const auto wstats_counters_status = brcmf_fil_iovar_data_get(
ifp, "wstats_counters", &wl_stats_cnt, sizeof(wl_wstats_cnt_t), &fw_err);
if (wstats_counters_status != ZX_OK) {
BRCMF_ERR("Failed to get wstats_counters: %s, fw err %s",
zx_status_get_string(wstats_counters_status), brcmf_fil_get_errstr(fw_err));
return wstats_counters_status;
}
uint32_t chanspec = 0;
const auto chanspec_status = brcmf_fil_iovar_int_get(ifp, "chanspec", &chanspec, &fw_err);
if (chanspec_status != ZX_OK) {
BRCMF_ERR("Failed to retrieve chanspec: %s, fw err %s", zx_status_get_string(chanspec_status),
brcmf_fil_get_errstr(fw_err));
return chanspec_status;
}
uint32_t version;
const auto version_status = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION, &version, &fw_err);
if (version_status != ZX_OK) {
BRCMF_ERR("Failed to retrieve version: %s, fw err %s", zx_status_get_string(version_status),
brcmf_fil_get_errstr(fw_err));
return version_status;
}
uint32_t rxchain = 0;
const auto rxchain_status = brcmf_fil_iovar_int_get(ifp, "rxchain", &rxchain, &fw_err);
if (rxchain_status != ZX_OK) {
BRCMF_ERR("Failed to retrieve rxchain: %s, fw err %s", zx_status_get_string(rxchain_status),
brcmf_fil_get_errstr(fw_err));
return rxchain_status;
}
const bool get_histograms_success =
get_histograms(wl_stats_cnt, static_cast<chanspec_t>(chanspec), version, rxchain, out_report);
if (get_histograms_success) {
return ZX_OK;
}
BRCMF_ERR("Failed to get per-antenna metrics\n");
return ZX_ERR_INTERNAL;
}
} // namespace
void brcmf_if_stats_query_req(net_device* ndev) {
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping stats query response");
return;
}
struct wireless_dev* wdev = ndev_to_wdev(ndev);
wlanif_stats_query_response_t response = {};
struct brcmf_if* ifp = ndev_to_if(ndev);
bcme_status_t fw_err;
BRCMF_DBG(TRACE, "Enter");
response.stats.mlme_stats_list = nullptr;
response.stats.mlme_stats_count = 0;
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
// MFG builds do not support many of the stats iovars.
goto send_resp;
}
// TODO(cphoenix): Fill in all the stats fields.
switch (wdev->iftype) {
case WLAN_INFO_MAC_ROLE_CLIENT: {
zx_status_t status;
brcmf_pktcnt_le pktcnt;
wlanif_mlme_stats_t* mlme_stats;
// Will hold per-antenna samples for each histogram type.
std::vector<wlanif_hist_bucket_t> noise_floor_samples, rssi_samples, rx_rate_index_samples,
snr_samples;
std::vector<wlanif_noise_floor_histogram_t> noise_floor_histograms;
std::vector<wlanif_rssi_histogram_t> rssi_histograms;
std::vector<wlanif_rx_rate_index_histogram_t> rx_rate_index_histograms;
std::vector<wlanif_snr_histogram_t> snr_histograms;
mlme_stats = &ndev->stats.mlme_stats;
*mlme_stats = {};
response.stats.mlme_stats_list = mlme_stats;
mlme_stats->tag = WLANIF_MLME_STATS_TYPE_CLIENT;
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
response.stats.mlme_stats_count = 1;
// Retrieve the stats from firmware and fill in the relevant mlme
// stats if the client is associated
status =
brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_GET_PKTCNTS, &pktcnt, sizeof(pktcnt), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not get pkt cnts: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
} else {
BRCMF_DBG(INFO, "Cntrs: rxgood:%d rxbad:%d txgood:%d txbad:%d rxocast:%d",
pktcnt.rx_good_pkt, pktcnt.rx_bad_pkt, pktcnt.tx_good_pkt, pktcnt.tx_bad_pkt,
pktcnt.rx_ocast_good_pkt);
mlme_stats->stats.client_mlme_stats.rx_frame.in.count =
pktcnt.rx_good_pkt + pktcnt.rx_bad_pkt + pktcnt.rx_ocast_good_pkt;
mlme_stats->stats.client_mlme_stats.rx_frame.in.name = "Good+Bad+Ocast";
mlme_stats->stats.client_mlme_stats.rx_frame.out.count =
pktcnt.rx_good_pkt + pktcnt.rx_ocast_good_pkt;
mlme_stats->stats.client_mlme_stats.rx_frame.out.name = "Good+Ocast";
mlme_stats->stats.client_mlme_stats.rx_frame.drop.count = pktcnt.rx_bad_pkt;
mlme_stats->stats.client_mlme_stats.rx_frame.drop.name = "Bad";
mlme_stats->stats.client_mlme_stats.tx_frame.in.count =
pktcnt.tx_good_pkt + pktcnt.tx_bad_pkt;
mlme_stats->stats.client_mlme_stats.tx_frame.in.name = "Good+Bad";
mlme_stats->stats.client_mlme_stats.tx_frame.out.count = pktcnt.tx_good_pkt;
mlme_stats->stats.client_mlme_stats.tx_frame.out.name = "Good";
mlme_stats->stats.client_mlme_stats.tx_frame.drop.count = pktcnt.tx_bad_pkt;
mlme_stats->stats.client_mlme_stats.tx_frame.drop.name = "Bad";
}
mlme_stats->stats.client_mlme_stats.assoc_data_rssi.hist_count = 0;
// Skip wlanif detailed histogram collection if feature is not enabled.
if (!brcmf_feat_is_enabled(ifp->drvr, BRCMF_FEAT_DHIST)) {
break;
}
histograms_report_t histograms_report;
const auto hist_status = brcmf_get_histograms_report(ifp, &histograms_report);
if (hist_status != ZX_OK) {
// If wlanif detailed histogram collection fails, leave the histogram fields empty.
break;
}
wlanif_antenna_id_t antenna_id;
const auto antenna_id_status = brcmf_convert_antenna_id(histograms_report, &antenna_id);
if (antenna_id_status != ZX_OK) {
BRCMF_ERR("Invalid antenna ID, freq: %d idx: %d\n", histograms_report.antennaid.freq,
histograms_report.antennaid.idx);
return;
}
noise_floor_histograms.resize(1);
brcmf_convert_histograms_report_noise_floor(
histograms_report, antenna_id, &noise_floor_histograms[0], &noise_floor_samples);
rx_rate_index_histograms.resize(1);
brcmf_convert_histograms_report_rx_rate_index(
histograms_report, antenna_id, &rx_rate_index_histograms[0], &rx_rate_index_samples);
rssi_histograms.resize(1);
brcmf_convert_histograms_report_rssi(histograms_report, antenna_id, &rssi_histograms[0],
&rssi_samples);
snr_histograms.resize(1);
brcmf_convert_histograms_report_snr(histograms_report, antenna_id, &snr_histograms[0],
&snr_samples);
mlme_stats->stats.client_mlme_stats.noise_floor_histograms_count =
noise_floor_histograms.size();
mlme_stats->stats.client_mlme_stats.noise_floor_histograms_list =
noise_floor_histograms.data();
mlme_stats->stats.client_mlme_stats.rssi_histograms_count = rssi_histograms.size();
mlme_stats->stats.client_mlme_stats.rssi_histograms_list = rssi_histograms.data();
mlme_stats->stats.client_mlme_stats.rx_rate_index_histograms_count =
rx_rate_index_histograms.size();
mlme_stats->stats.client_mlme_stats.rx_rate_index_histograms_list =
rx_rate_index_histograms.data();
mlme_stats->stats.client_mlme_stats.snr_histograms_count = snr_histograms.size();
mlme_stats->stats.client_mlme_stats.snr_histograms_list = snr_histograms.data();
}
// else if client not connected, send back an empty response.
// Return here as the histograms will go out of scope.
wlanif_impl_ifc_stats_query_resp(&ndev->if_proto, &response);
return;
break;
}
case WLAN_INFO_MAC_ROLE_AP:
// Not supported for AP, send back an empty response.
break;
default:
break;
}
// Send out the response
send_resp:
wlanif_impl_ifc_stats_query_resp(&ndev->if_proto, &response);
}
void brcmf_if_data_queue_tx(net_device* ndev, uint32_t options, ethernet_netbuf_t* netbuf,
ethernet_impl_queue_tx_callback completion_cb, void* cookie) {
auto b = std::make_unique<wlan::brcmfmac::EthernetNetbuf>(netbuf, completion_cb, cookie);
brcmf_netdev_start_xmit(ndev, std::move(b));
}
zx_status_t brcmf_if_sae_handshake_resp(net_device* ndev, const wlanif_sae_handshake_resp_t* resp) {
brcmf_ext_auth auth_data;
struct brcmf_if* ifp = ndev_to_if(ndev);
bcme_status_t fw_err = BCME_OK;
zx_status_t err = ZX_OK;
if (!resp) {
BRCMF_ERR("Invalid arguments, resp is nullptr.");
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_EXTERNAL_REASON);
return ZX_ERR_INVALID_ARGS;
}
if (memcmp(resp->peer_sta_address, ifp->bss.bssid, ETH_ALEN)) {
const uint8_t* old_mac = ifp->bss.bssid;
const uint8_t* new_mac = resp->peer_sta_address;
BRCMF_ERR("Auth MAC (" MAC_FMT_STR
") !="
" join MAC (" MAC_FMT_STR ").",
MAC_FMT_ARGS(new_mac), MAC_FMT_ARGS(old_mac));
// Just in case, in debug builds, we should investigate why the MLME is giving us inconsitent
// requests.
ZX_DEBUG_ASSERT(0);
// In release builds, ignore and continue.
BRCMF_ERR("Ignoring mismatch and using join MAC address");
}
memcpy(&auth_data.bssid, &resp->peer_sta_address, ETH_ALEN);
memcpy(&auth_data.ssid.SSID, &ifp->bss.ssid.data, ifp->bss.ssid.len);
auth_data.ssid.SSID_len = ifp->bss.ssid.len;
auth_data.status = resp->result_code;
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_SAE_AUTHENTICATING, &ifp->vif->sme_state);
// Using "scb_assoc" iovar to continue the association process in firmware.
err = brcmf_fil_iovar_data_set(ifp, "scb_assoc", &auth_data, sizeof(brcmf_ext_auth), &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Set iovar scb_assoc fail. err: %s, fw_err: %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
}
return err;
}
zx_status_t brcmf_if_sae_frame_tx(net_device* ndev, const wlanif_sae_frame_t* frame) {
struct brcmf_if* ifp = ndev_to_if(ndev);
bcme_status_t fw_err = BCME_OK;
zx_status_t err = ZX_OK;
// Mac header(24 bytes) + Auth frame header(6 bytes) + sae_fields length.
uint32_t frame_size =
sizeof(wlan::MgmtFrameHeader) + sizeof(wlan::Authentication) + frame->sae_fields_count;
uint8_t frame_buf[frame_size];
auto sae_frame = reinterpret_cast<brcmf_sae_auth_frame*>(frame_buf);
// Set MAC addresses in MAC header, firmware will check these parts, and fill other missing parts.
sae_frame->mac_hdr.addr1 = wlan::common::MacAddr(frame->peer_sta_address);
sae_frame->mac_hdr.addr2 = wlan::common::MacAddr(ifp->mac_addr);
sae_frame->mac_hdr.addr3 = wlan::common::MacAddr(frame->peer_sta_address);
BRCMF_DBG(CONN,
"The peer_sta_address: " MAC_FMT_STR ", the ifp mac is: " MAC_FMT_STR
", the seq_num is %u, the result_code is %u",
MAC_FMT_ARGS(frame->peer_sta_address), MAC_FMT_ARGS(ifp->mac_addr), frame->seq_num,
frame->result_code);
// Fill the authentication frame header fields.
sae_frame->auth_hdr.auth_algorithm_number = BRCMF_AUTH_MODE_SAE;
sae_frame->auth_hdr.auth_txn_seq_number = frame->seq_num;
sae_frame->auth_hdr.status_code = frame->result_code;
BRCMF_DBG(CONN, "auth_algorithm_number: %u, auth_txn_seq_number: %u, status_code: %u",
sae_frame->auth_hdr.auth_algorithm_number, sae_frame->auth_hdr.auth_txn_seq_number,
sae_frame->auth_hdr.status_code);
// Attach SAE payload after authentication frame header.
memcpy(sae_frame->sae_payload, frame->sae_fields_list, frame->sae_fields_count);
// Use command BRCMF_C_SCB_AUTHENTICATE to send SAE authentication frames to firmware.
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_AUTHENTICATE, frame_buf, frame_size, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Auth frame is not set correctly to firmware. err: %s, fw_err: %s",
zx_status_get_string(err), brcmf_fil_get_errstr(fw_err));
// TODO: Even when the frame is successfully passed to firmware, it will still return
// a BCME_ERROR, the ZX_ERR code will be set to ZX_ERR_IO_REFUSED in this case(refer
// to brcmf_fil_cmd_data() in fwil.cc). This is most likely to be a firmware bug, we
// should return an assoc result to SME here once the bug is fixed.
}
return err;
}
zx_status_t brcmf_if_set_multicast_promisc(net_device* ndev, bool enable) {
BRCMF_DBG(WLANIF, "%s promiscuous mode", enable ? "Enabling" : "Disabling");
ndev->multicast_promisc = enable;
brcmf_netdev_set_allmulti(ndev);
return ZX_OK;
}
void brcmf_if_start_capture_frames(net_device* ndev, const wlanif_start_capture_frames_req_t* req,
wlanif_start_capture_frames_resp_t* resp) {
BRCMF_ERR("start_capture_frames not supported");
resp->status = ZX_ERR_NOT_SUPPORTED;
resp->supported_mgmt_frames = 0;
}
void brcmf_if_stop_capture_frames(net_device* ndev) {
BRCMF_ERR("stop_capture_frames not supported");
}
zx_status_t brcmf_alloc_vif(struct brcmf_cfg80211_info* cfg, uint16_t type,
struct brcmf_cfg80211_vif** vif_out) {
struct brcmf_cfg80211_vif* vif_walk;
struct brcmf_cfg80211_vif* vif;
bool mbss;
BRCMF_DBG(TRACE, "allocating virtual interface (size=%zu)", sizeof(*vif));
vif = static_cast<decltype(vif)>(calloc(1, sizeof(*vif)));
if (!vif) {
if (vif_out) {
*vif_out = nullptr;
}
return ZX_ERR_NO_MEMORY;
}
vif->wdev.iftype = type;
vif->saved_ie.assoc_req_ie_len = 0;
brcmf_init_prof(&vif->profile);
if (type == WLAN_INFO_MAC_ROLE_AP) {
mbss = false;
list_for_every_entry (&cfg->vif_list, vif_walk, struct brcmf_cfg80211_vif, list) {
if (vif_walk->wdev.iftype == WLAN_INFO_MAC_ROLE_AP) {
mbss = true;
break;
}
}
vif->mbss = mbss;
}
list_add_tail(&cfg->vif_list, &vif->list);
if (vif_out) {
*vif_out = vif;
}
return ZX_OK;
}
void brcmf_free_vif(struct brcmf_cfg80211_vif* vif) {
list_delete(&vif->list);
free(vif);
}
void brcmf_free_net_device_vif(struct net_device* ndev) {
struct brcmf_cfg80211_vif* vif = ndev_to_vif(ndev);
if (vif) {
brcmf_free_vif(vif);
}
}
// Returns true if client is connected (also includes CONNECTING and DISCONNECTING).
static bool brcmf_is_client_connected(brcmf_if* ifp) {
return (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state) ||
brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state) ||
brcmf_test_bit_in_array(BRCMF_VIF_STATUS_DISCONNECTING, &ifp->vif->sme_state));
}
static const char* brcmf_get_client_connect_state_string(brcmf_if* ifp) {
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
return "Connected";
}
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
return "Connecting";
}
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_DISCONNECTING, &ifp->vif->sme_state)) {
return "Disconnecting";
}
return "Not connected";
}
static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info* cfg) {
struct brcmf_cfg80211_connect_info* conn_info = cfg_to_conn(cfg);
free(conn_info->req_ie);
conn_info->req_ie = nullptr;
conn_info->req_ie_len = 0;
free(conn_info->resp_ie);
conn_info->resp_ie = nullptr;
conn_info->resp_ie_len = 0;
}
static zx_status_t brcmf_get_assoc_ies(struct brcmf_cfg80211_info* cfg, struct brcmf_if* ifp) {
struct brcmf_cfg80211_assoc_ielen_le* assoc_info;
struct brcmf_cfg80211_connect_info* conn_info = cfg_to_conn(cfg);
uint32_t req_len;
uint32_t resp_len;
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
brcmf_clear_assoc_ies(cfg);
err = brcmf_fil_iovar_data_get(ifp, "assoc_info", cfg->extra_buf, WL_ASSOC_INFO_MAX, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("could not get assoc info: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
assoc_info = (struct brcmf_cfg80211_assoc_ielen_le*)cfg->extra_buf;
req_len = assoc_info->req_len;
resp_len = assoc_info->resp_len;
if (req_len) {
err =
brcmf_fil_iovar_data_get(ifp, "assoc_req_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("could not get assoc req: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
conn_info->req_ie_len = req_len;
conn_info->req_ie = static_cast<decltype(conn_info->req_ie)>(
brcmu_alloc_and_copy(cfg->extra_buf, conn_info->req_ie_len));
if (conn_info->req_ie == nullptr) {
conn_info->req_ie_len = 0;
}
} else {
conn_info->req_ie_len = 0;
conn_info->req_ie = nullptr;
}
if (resp_len) {
err =
brcmf_fil_iovar_data_get(ifp, "assoc_resp_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("could not get assoc resp: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
conn_info->resp_ie_len = resp_len;
conn_info->resp_ie = static_cast<decltype(conn_info->resp_ie)>(
brcmu_alloc_and_copy(cfg->extra_buf, conn_info->resp_ie_len));
if (conn_info->resp_ie == nullptr) {
conn_info->resp_ie_len = 0;
}
} else {
conn_info->resp_ie_len = 0;
conn_info->resp_ie = nullptr;
}
BRCMF_DBG(CONN, "req len (%d) resp len (%d)", conn_info->req_ie_len, conn_info->resp_ie_len);
return err;
}
zx_status_t brcmf_get_ctrl_channel(brcmf_if* ifp, uint16_t* chanspec_out, uint8_t* ctl_chan_out) {
bcme_status_t fw_err;
zx_status_t err;
// Get chanspec of the given IF from firmware.
err = brcmf_fil_iovar_data_get(ifp, "chanspec", chanspec_out, sizeof(uint16_t), &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Failed to retrieve chanspec: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
// Get the control channel given chanspec
err = chspec_ctlchan(*chanspec_out, ctl_chan_out);
if (err != ZX_OK) {
BRCMF_ERR("Failed to get control channel from chanspec: 0x%x status: %s", *chanspec_out,
zx_status_get_string(err));
return err;
}
return ZX_OK;
}
// Notify SME of channel switch
zx_status_t brcmf_notify_channel_switch(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
if (!ifp) {
return ZX_ERR_INVALID_ARGS;
}
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping channel switch callback");
return ZX_ERR_INVALID_ARGS;
}
uint16_t chanspec = 0;
uint8_t ctl_chan;
wlanif_channel_switch_info_t info;
zx_status_t err = ZX_OK;
struct brcmf_cfg80211_info* cfg = nullptr;
struct wireless_dev* wdev = nullptr;
// TODO(b/155092471): This if can be removed once brcmf_notify_channel_switch() is no longer
// called out-of-band by brcmf_bss_connect_done().
if (e != nullptr) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
}
cfg = ifp->drvr->config;
wdev = ndev_to_wdev(ndev);
// For client IF, ensure it is connected.
if (wdev->iftype == WLAN_INFO_MAC_ROLE_CLIENT) {
// Status should be connected.
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
BRCMF_ERR("CSA on %s. Not associated.\n", ndev->name);
return ZX_ERR_BAD_STATE;
}
}
if ((err = brcmf_get_ctrl_channel(ifp, &chanspec, &ctl_chan)) != ZX_OK) {
return err;
}
BRCMF_DBG(CONN, "Channel switch ind IF: %d chanspec: 0x%x control channel: %d", ifp->ifidx,
chanspec, ctl_chan);
info.new_channel = ctl_chan;
// Inform wlanif of the channel switch.
wlanif_impl_ifc_on_channel_switch(&ndev->if_proto, &info);
return ZX_OK;
}
static zx_status_t brcmf_notify_ap_started(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
return brcmf_notify_channel_switch(ifp, e, data);
}
static zx_status_t brcmf_notify_start_auth(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping SAE auth start notifications.");
return ZX_ERR_BAD_HANDLE;
}
wlanif_sae_handshake_ind_t ind;
brcmf_ext_auth* auth_start_evt = (brcmf_ext_auth*)data;
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
BRCMF_ERR("Receiving a BRCMF_E_START_AUTH event when we are not even connecting to an AP.");
ZX_DEBUG_ASSERT(0);
return ZX_ERR_BAD_STATE;
}
BRCMF_DBG(EVENT,
"The peer addr received from data is: " MAC_FMT_STR
", the addr in event_msg is: " MAC_FMT_STR "\n",
MAC_FMT_ARGS(auth_start_evt->bssid), MAC_FMT_ARGS(e->addr));
memcpy(ind.peer_sta_address, &auth_start_evt->bssid, ETH_ALEN);
// SAE four-way authentication start.
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_SAE_AUTHENTICATING, &ifp->vif->sme_state);
wlanif_impl_ifc_sae_handshake_ind(&ndev->if_proto, &ind);
return ZX_OK;
}
static zx_status_t brcmf_rx_auth_frame(struct brcmf_if* ifp, const uint32_t datalen, void* data) {
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping SAE auth frame receive handler.");
return ZX_ERR_BAD_HANDLE;
}
wlanif_sae_frame_t frame = {};
auto pframe = (uint8_t*)data;
auto pframe_hdr = reinterpret_cast<wlan::Authentication*>(pframe);
BRCMF_DBG(TRACE, "Receive SAE authentication frame.");
BRCMF_DBG(CONN, "SAE authentication frame: ");
BRCMF_DBG(CONN, " status code: %u", pframe_hdr->status_code);
BRCMF_DBG(CONN, " sequence number: %u", pframe_hdr->auth_txn_seq_number);
// Copy authentication frame header information.
memcpy(frame.peer_sta_address, &ifp->bss.bssid, ETH_ALEN);
frame.result_code = pframe_hdr->status_code;
frame.seq_num = pframe_hdr->auth_txn_seq_number;
// Copy challenge text to sae_fields.
frame.sae_fields_count = datalen - sizeof(wlan::Authentication);
frame.sae_fields_list = pframe + sizeof(wlan::Authentication);
// Sending SAE authentication up to SME, not rx from SME.
wlanif_impl_ifc_sae_frame_rx(&ndev->if_proto, &frame);
return ZX_OK;
}
static zx_status_t brcmf_bss_connect_done(brcmf_if* ifp, brcmf_connect_status_t connect_status) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = ifp->ndev;
BRCMF_DBG(TRACE, "Enter");
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
// Stop connect timer no matter connect success or not, this timer only timeout when nothing
// is heard from firmware.
cfg->connect_timer->Stop();
BRCMF_DBG(CONN, "connect_status %s", brcmf_get_connect_status_str(connect_status));
switch (connect_status) {
case BRCMF_CONNECT_STATUS_AUTHENTICATION_FAILED:
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_NOT_AUTHENTICATED);
break;
case BRCMF_CONNECT_STATUS_CONNECTED: {
brcmf_get_assoc_ies(cfg, ifp);
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFG)) {
// Start the signal report timer
cfg->signal_report_timer->Start(BRCMF_SIGNAL_REPORT_TIMER_DUR_MS);
// Indicate the rssi soon after connection
cfg80211_signal_ind(ndev);
}
// Workaround to update SoftAP channel once client has associated.
// TODO(karthikrish): This check can be removed once the issue is fixed in FW.
if (cfg->ap_started) {
for (const auto& iface : cfg->pub->iflist) {
if (!iface ||
!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &iface->vif->sme_state)) {
continue;
}
BRCMF_INFO("Updating SoftAP channel after client associated... (b/155092471)");
(void)brcmf_notify_channel_switch(iface, nullptr, nullptr);
}
}
if (BRCMF_IS_ON(CONN)) {
// Get channel information from firmware.
uint16_t chanspec = 0;
uint8_t ctl_chan;
zx_status_t err = brcmf_get_ctrl_channel(ifp, &chanspec, &ctl_chan);
if (err == ZX_OK) {
BRCMF_DBG(CONN, "Client IF Channel info: chanspec: 0x%x control channel: %d", chanspec,
ctl_chan);
}
}
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_SUCCESS);
break;
}
default:
BRCMF_WARN("Unsuccessful connect status: %s", brcmf_get_connect_status_str(connect_status));
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
break;
}
}
BRCMF_DBG(TRACE, "Exit");
return ZX_OK;
}
static void brcmf_connect_timeout_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, connect_timeout_work);
struct brcmf_if* ifp = cfg_to_if(cfg);
brcmf_bss_connect_done(ifp, BRCMF_CONNECT_STATUS_CONNECTING_TIMEOUT);
}
static zx_status_t brcmf_indicate_client_connect(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter\n");
BRCMF_DBG(CONN, "Connect Event %d, status %s reason %d auth %s flags 0x%x\n", e->event_code,
brcmf_fweh_get_event_status_str(e->status), e->reason,
brcmf_fweh_get_auth_type_str(e->auth_type), e->flags);
BRCMF_DBG(CONN, "Linkup\n");
brcmf_bss_connect_done(ifp, BRCMF_CONNECT_STATUS_CONNECTED);
brcmf_net_setcarrier(ifp, true);
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
// Handler for ASSOC event (client only)
static zx_status_t brcmf_handle_assoc_event(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
ZX_DEBUG_ASSERT(!brcmf_is_apmode(ifp->vif));
return brcmf_bss_connect_done(ifp, (e->status == BRCMF_E_STATUS_SUCCESS)
? BRCMF_CONNECT_STATUS_CONNECTED
: BRCMF_CONNECT_STATUS_ASSOC_REQ_FAILED);
}
// Handler to ASSOC_IND and REASSOC_IND events. These are explicitly meant for SoftAP
static zx_status_t brcmf_handle_assoc_ind(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping assoc ind callback");
return ZX_OK;
}
BRCMF_DBG(EVENT, "IF: %d event %s (%u) status %s reason %d auth %s flags 0x%x", ifp->ifidx,
brcmf_fweh_event_name(static_cast<brcmf_fweh_event_code>(e->event_code)), e->event_code,
brcmf_fweh_get_event_status_str(e->status), e->reason,
brcmf_fweh_get_auth_type_str(e->auth_type), e->flags);
ZX_DEBUG_ASSERT(brcmf_is_apmode(ifp->vif));
if (e->reason != BRCMF_E_STATUS_SUCCESS) {
return ZX_OK;
}
if (data == nullptr || e->datalen == 0) {
BRCMF_ERR("Received ASSOC_IND with no IEs\n");
return ZX_ERR_INVALID_ARGS;
}
const struct brcmf_tlv* ssid_ie = brcmf_parse_tlvs(data, e->datalen, WLAN_IE_TYPE_SSID);
if (ssid_ie == nullptr) {
BRCMF_ERR("Received ASSOC_IND with no SSID IE\n");
return ZX_ERR_INVALID_ARGS;
}
if (ssid_ie->len > WLAN_MAX_SSID_LEN) {
BRCMF_ERR("Received ASSOC_IND with invalid SSID IE\n");
return ZX_ERR_INVALID_ARGS;
}
const struct brcmf_tlv* rsn_ie = brcmf_parse_tlvs(data, e->datalen, WLAN_IE_TYPE_RSNE);
if (rsn_ie && rsn_ie->len > WLAN_IE_BODY_MAX_LEN) {
BRCMF_ERR("Received ASSOC_IND with invalid RSN IE\n");
return ZX_ERR_INVALID_ARGS;
}
wlanif_assoc_ind_t assoc_ind_params;
memset(&assoc_ind_params, 0, sizeof(assoc_ind_params));
memcpy(assoc_ind_params.peer_sta_address, e->addr, ETH_ALEN);
// Unfortunately, we have to ask the firmware to provide the associated station's
// listen interval.
struct brcmf_sta_info_le sta_info;
uint8_t mac[ETH_ALEN];
memcpy(mac, e->addr, ETH_ALEN);
brcmf_cfg80211_get_station(ndev, mac, &sta_info);
// convert from ms to beacon periods
assoc_ind_params.listen_interval =
sta_info.listen_interval_inms / ifp->vif->profile.beacon_period;
// Extract the SSID from the IEs
assoc_ind_params.ssid.len = ssid_ie->len;
memcpy(assoc_ind_params.ssid.data, ssid_ie->data, ssid_ie->len);
// Extract the RSN information from the IEs
if (rsn_ie != nullptr) {
assoc_ind_params.rsne_len = rsn_ie->len + TLV_HDR_LEN;
memcpy(assoc_ind_params.rsne, rsn_ie, assoc_ind_params.rsne_len);
}
BRCMF_DBG(WLANIF, "Sending assoc indication to SME. address: " MAC_FMT_STR "",
MAC_FMT_ARGS(assoc_ind_params.peer_sta_address));
wlanif_impl_ifc_assoc_ind(&ndev->if_proto, &assoc_ind_params);
return ZX_OK;
}
// Handler for AUTH event (client only)
static zx_status_t brcmf_process_auth_event(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
BRCMF_DBG_EVENT(ifp, e, "%s", [](uint32_t reason) {
return wlan_status_code_str(static_cast<wlan_status_code_t>(reason));
});
ZX_DEBUG_ASSERT(!brcmf_is_apmode(ifp->vif));
if (e->status != BRCMF_E_STATUS_SUCCESS) {
BRCMF_ERR("Failed to authenticate with AP.");
BRCMF_ERR(" auth %s", brcmf_fweh_get_auth_type_str(e->auth_type));
BRCMF_ERR(" status %s", brcmf_fweh_get_event_status_str(e->status));
BRCMF_ERR(" reason %s", wlan_status_code_str(static_cast<wlan_status_code_t>(e->reason)));
BRCMF_ERR(" flags 0x%x", e->flags);
// It appears FW continues to be busy with authentication when this event is received
// specifically with WEP. Attempt to shutdown the IF.
bcme_status_t fwerr = BCME_OK;
zx_status_t status;
brcmf_bss_ctrl bss_down;
bss_down.bsscfgidx = ifp->bsscfgidx;
bss_down.value = 0;
BRCMF_DBG(CONN, "Attempt to stop IF id:%d", ifp->ifidx);
status = brcmf_fil_bsscfg_data_set(ifp, "bss", &bss_down, sizeof(bss_down));
if (status != ZX_OK) {
BRCMF_ERR("bss iovar error: %s, fw err %s", zx_status_get_string(status),
brcmf_fil_get_errstr(fwerr));
}
brcmf_bss_connect_done(ifp, BRCMF_CONNECT_STATUS_AUTHENTICATION_FAILED);
}
if (e->datalen > 0) {
// Ignore the auth frame when SAE is not in progress.
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_SAE_AUTHENTICATING, &ifp->vif->sme_state)) {
BRCMF_ERR("Received auth frame when sme is not doing SAE four-way authentication.");
return ZX_ERR_BAD_STATE;
}
return brcmf_rx_auth_frame(ifp, e->datalen, data);
}
return ZX_OK;
}
// AUTH_IND handler. AUTH_IND is meant only for SoftAP IF
static zx_status_t brcmf_process_auth_ind_event(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
ZX_DEBUG_ASSERT(brcmf_is_apmode(ifp->vif));
if (e->reason == BRCMF_E_STATUS_SUCCESS) {
struct net_device* ndev = ifp->ndev;
std::shared_lock<std::shared_mutex> guard(ndev->if_proto_lock);
if (ndev->if_proto.ops == nullptr) {
BRCMF_DBG(WLANIF, "interface stopped -- skipping auth ind callback");
return ZX_OK;
}
wlanif_auth_ind_t auth_ind_params;
const char* auth_type;
memset(&auth_ind_params, 0, sizeof(auth_ind_params));
memcpy(auth_ind_params.peer_sta_address, e->addr, ETH_ALEN);
// We always authenticate as an open system for WPA
auth_ind_params.auth_type = WLAN_AUTH_TYPE_OPEN_SYSTEM;
switch (auth_ind_params.auth_type) {
case WLAN_AUTH_TYPE_OPEN_SYSTEM:
auth_type = "open";
break;
case WLAN_AUTH_TYPE_SHARED_KEY:
auth_type = "shared key";
break;
case WLAN_AUTH_TYPE_FAST_BSS_TRANSITION:
auth_type = "fast bss transition";
break;
case WLAN_AUTH_TYPE_SAE:
auth_type = "SAE";
break;
default:
auth_type = "unknown";
}
BRCMF_DBG(WLANIF, "Sending auth indication to SME. address: " MAC_FMT_STR ", type: %s",
MAC_FMT_ARGS(auth_ind_params.peer_sta_address), auth_type);
wlanif_impl_ifc_auth_ind(&ndev->if_proto, &auth_ind_params);
}
return ZX_OK;
}
static void brcmf_indicate_no_network(struct brcmf_if* ifp) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
BRCMF_DBG(CONN, "No network\n");
brcmf_bss_connect_done(ifp, BRCMF_CONNECT_STATUS_NO_NETWORK);
brcmf_disconnect_done(cfg);
}
static zx_status_t brcmf_indicate_client_disconnect(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data,
brcmf_connect_status_t connect_status) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = ifp->ndev;
zx_status_t status = ZX_OK;
BRCMF_DBG(TRACE, "Enter\n");
if (!brcmf_is_client_connected(ifp)) {
// Client is already disconnected.
return status;
}
// TODO(fxb/61311): Remove once this verbose logging is no longer needed in
// brcmf_indicate_client_disconnect(). This log should be moved to CONN
// for production code.
BRCMF_INFO("client disconnect indicated. state %s, rssi, %d snr, %d\n",
brcmf_get_client_connect_state_string(ifp), ndev->last_known_rssi_dbm,
ndev->last_known_snr_db);
BRCMF_INFO_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
brcmf_bss_connect_done(ifp, connect_status);
brcmf_disconnect_done(cfg);
brcmf_link_down(ifp->vif, e->reason, e->event_code);
brcmf_init_prof(ndev_to_prof(ndev));
if (ndev != cfg_to_ndev(cfg)) {
sync_completion_signal(&cfg->vif_disabled);
}
brcmf_net_setcarrier(ifp, false);
BRCMF_DBG(TRACE, "Exit\n");
return status;
}
static zx_status_t brcmf_process_link_event(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
if (brcmf_is_apmode(ifp->vif)) {
struct net_device* ndev = ifp->ndev;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
// TODO(karthikrish): Confirm with vendor if flags is indeed a bitmask.
if (!(e->flags & BRCMF_EVENT_MSG_LINK)) {
BRCMF_DBG(CONN, "AP mode link down\n");
sync_completion_signal(&cfg->vif_disabled);
return ZX_OK;
}
BRCMF_DBG(CONN, "AP mode link up\n");
struct brcmf_if* ifp = ndev_to_if(ndev);
// Indicate status only if AP is in start pending state (could have been cleared if
// a stop request comes in before this event is received).
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_AP_START_PENDING,
&ifp->vif->sme_state)) {
// Stop the timer when we get a result from firmware.
cfg->ap_start_timer->Stop();
// confirm AP Start
brcmf_if_start_conf(ndev, WLAN_START_RESULT_SUCCESS);
// Set AP_CREATED
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);
// Update channel (in case it changed because of client IF).
brcmf_notify_channel_switch(ifp, e, data);
}
} else {
if (e->status == BRCMF_E_STATUS_SUCCESS && (e->flags & BRCMF_EVENT_MSG_LINK)) {
return brcmf_indicate_client_connect(ifp, e, data);
}
if (!(e->flags & BRCMF_EVENT_MSG_LINK)) {
return brcmf_indicate_client_disconnect(ifp, e, data, BRCMF_CONNECT_STATUS_LINK_FAILED);
}
if (e->status == BRCMF_E_STATUS_NO_NETWORKS) {
brcmf_indicate_no_network(ifp);
}
}
return ZX_OK;
}
static zx_status_t brcmf_process_deauth_event(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
if (brcmf_is_apmode(ifp->vif)) {
if (e->event_code == BRCMF_E_DEAUTH_IND) {
brcmf_notify_deauth_ind(ifp->ndev, e->addr, e->reason, false);
} else {
// E_DEAUTH
brcmf_notify_deauth(ifp->ndev, e->addr);
}
return ZX_OK;
}
// Sometimes FW sends E_DEAUTH when a unicast packet is received before association
// is complete. Ignore it.
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state) &&
e->reason == BRCMF_E_REASON_UCAST_FROM_UNASSOC_STA) {
BRCMF_DBG(EVENT, "E_DEAUTH because data rcvd before assoc...ignore");
return ZX_OK;
}
return brcmf_indicate_client_disconnect(ifp, e, data, BRCMF_CONNECT_STATUS_DEAUTHENTICATING);
}
static zx_status_t brcmf_process_disassoc_ind_event(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
if (brcmf_is_apmode(ifp->vif)) {
if (e->event_code == BRCMF_E_DISASSOC_IND)
brcmf_notify_disassoc_ind(ifp->ndev, e->addr, e->reason, false);
else
// E_DISASSOC
brcmf_notify_disassoc(ifp->ndev, ZX_OK);
return ZX_OK;
}
return brcmf_indicate_client_disconnect(ifp, e, data, BRCMF_CONNECT_STATUS_DISASSOCIATING);
}
static zx_status_t brcmf_process_set_ssid_event(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
if (e->status == BRCMF_E_STATUS_SUCCESS) {
BRCMF_DBG(CONN, "set ssid success\n");
memcpy(ifp->vif->profile.bssid, e->addr, ETH_ALEN);
} else {
BRCMF_DBG(CONN, "set ssid failed - no network found\n");
brcmf_indicate_no_network(ifp);
}
return ZX_OK;
}
static zx_status_t brcmf_notify_roaming_status(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
uint32_t event = e->event_code;
brcmf_fweh_event_status_t status = e->status;
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) {
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
BRCMF_ERR("Received roaming notification - unsupported\n");
} else {
brcmf_bss_connect_done(ifp, BRCMF_CONNECT_STATUS_CONNECTED);
brcmf_net_setcarrier(ifp, true);
}
}
return ZX_OK;
}
static zx_status_t brcmf_notify_mic_status(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
uint16_t flags = e->flags;
enum nl80211_key_type key_type;
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
if (flags & BRCMF_EVENT_MSG_GROUP) {
key_type = NL80211_KEYTYPE_GROUP;
} else {
key_type = NL80211_KEYTYPE_PAIRWISE;
}
cfg80211_michael_mic_failure(ifp->ndev, (uint8_t*)&e->addr, key_type, -1, nullptr);
return ZX_OK;
}
static zx_status_t brcmf_notify_vif_event(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_if_event* ifevent = (struct brcmf_if_event*)data;
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
struct brcmf_cfg80211_vif* vif;
BRCMF_DBG_EVENT(ifp, e, "%d", [](uint32_t reason) { return reason; });
BRCMF_DBG(EVENT, "IF event: action %u flags %u ifidx %u bsscfgidx %u", ifevent->action,
ifevent->flags, ifevent->ifidx, ifevent->bsscfgidx);
mtx_lock(&event->vif_event_lock);
event->action = ifevent->action;
vif = event->vif;
switch (ifevent->action) {
case BRCMF_E_IF_ADD:
/* waiting process may have timed out */
if (!cfg->vif_event.vif) {
mtx_unlock(&event->vif_event_lock);
return ZX_ERR_SHOULD_WAIT;
}
ifp->vif = vif;
vif->ifp = ifp;
if (ifp->ndev) {
vif->wdev.netdev = ifp->ndev;
}
mtx_unlock(&event->vif_event_lock);
if (event->action == cfg->vif_event_pending_action) {
sync_completion_signal(&event->vif_event_wait);
}
return ZX_OK;
case BRCMF_E_IF_DEL:
mtx_unlock(&event->vif_event_lock);
/* event may not be upon user request */
if (brcmf_cfg80211_vif_event_armed(cfg) && event->action == cfg->vif_event_pending_action) {
sync_completion_signal(&event->vif_event_wait);
}
return ZX_OK;
case BRCMF_E_IF_CHANGE:
mtx_unlock(&event->vif_event_lock);
if (event->action == cfg->vif_event_pending_action) {
sync_completion_signal(&event->vif_event_wait);
}
return ZX_OK;
default:
mtx_unlock(&event->vif_event_lock);
break;
}
return ZX_ERR_INVALID_ARGS;
}
static void brcmf_init_conf(struct brcmf_cfg80211_conf* conf) {
conf->frag_threshold = (uint32_t)-1;
conf->rts_threshold = (uint32_t)-1;
conf->retry_short = (uint32_t)-1;
conf->retry_long = (uint32_t)-1;
}
static void brcmf_register_event_handlers(struct brcmf_cfg80211_info* cfg) {
brcmf_fweh_register(cfg->pub, BRCMF_E_LINK, brcmf_process_link_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_AUTH, brcmf_process_auth_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_AUTH_IND, brcmf_process_auth_ind_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH_IND, brcmf_process_deauth_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH, brcmf_process_deauth_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC_IND, brcmf_process_disassoc_ind_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC, brcmf_process_disassoc_ind_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC, brcmf_handle_assoc_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC_IND, brcmf_handle_assoc_ind);
brcmf_fweh_register(cfg->pub, BRCMF_E_REASSOC_IND, brcmf_handle_assoc_ind);
brcmf_fweh_register(cfg->pub, BRCMF_E_ROAM, brcmf_notify_roaming_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_MIC_ERROR, brcmf_notify_mic_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_SET_SSID, brcmf_process_set_ssid_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND, brcmf_notify_sched_scan_results);
brcmf_fweh_register(cfg->pub, BRCMF_E_IF, brcmf_notify_vif_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_CSA_COMPLETE_IND, brcmf_notify_channel_switch);
brcmf_fweh_register(cfg->pub, BRCMF_E_AP_STARTED, brcmf_notify_ap_started);
brcmf_fweh_register(cfg->pub, BRCMF_E_START_AUTH, brcmf_notify_start_auth);
}
static void brcmf_deinit_cfg_mem(struct brcmf_cfg80211_info* cfg) {
free(cfg->conf);
cfg->conf = nullptr;
free(cfg->extra_buf);
cfg->extra_buf = nullptr;
free(cfg->wowl.nd);
cfg->wowl.nd = nullptr;
free(cfg->wowl.nd_info);
cfg->wowl.nd_info = nullptr;
delete cfg->disconnect_timer;
delete cfg->escan_timer;
delete cfg->signal_report_timer;
delete cfg->ap_start_timer;
delete cfg->connect_timer;
}
static zx_status_t brcmf_init_cfg_mem(struct brcmf_cfg80211_info* cfg) {
cfg->conf = static_cast<decltype(cfg->conf)>(calloc(1, sizeof(*cfg->conf)));
if (!cfg->conf) {
goto init_priv_mem_out;
}
cfg->extra_buf = static_cast<decltype(cfg->extra_buf)>(calloc(1, WL_EXTRA_BUF_MAX));
if (!cfg->extra_buf) {
goto init_priv_mem_out;
}
cfg->wowl.nd =
static_cast<decltype(cfg->wowl.nd)>(calloc(1, sizeof(*cfg->wowl.nd) + sizeof(uint32_t)));
if (!cfg->wowl.nd) {
goto init_priv_mem_out;
}
cfg->wowl.nd_info = static_cast<decltype(cfg->wowl.nd_info)>(
calloc(1, sizeof(*cfg->wowl.nd_info) + sizeof(struct cfg80211_wowlan_nd_match*)));
if (!cfg->wowl.nd_info) {
goto init_priv_mem_out;
}
return ZX_OK;
init_priv_mem_out:
brcmf_deinit_cfg_mem(cfg);
return ZX_ERR_NO_MEMORY;
}
static zx_status_t brcmf_init_cfg(struct brcmf_cfg80211_info* cfg) {
zx_status_t err = ZX_OK;
cfg->scan_request = nullptr;
cfg->pwr_save = false; // FIXME #37793: should be set per-platform
cfg->dongle_up = false; /* dongle is not up yet */
err = brcmf_init_cfg_mem(cfg);
if (err != ZX_OK) {
return err;
}
brcmf_register_event_handlers(cfg);
mtx_init(&cfg->usr_sync, mtx_plain);
brcmf_init_escan(cfg);
brcmf_init_conf(cfg->conf);
// Initialize the disconnect timer
cfg->disconnect_timer = new Timer(cfg->pub, std::bind(brcmf_disconnect_timeout, cfg), false);
cfg->disconnect_timeout_work = WorkItem(brcmf_disconnect_timeout_worker);
// Initialize the signal report timer
cfg->signal_report_timer = new Timer(cfg->pub, std::bind(brcmf_signal_report_timeout, cfg), true);
cfg->signal_report_work = WorkItem(brcmf_signal_report_worker);
// Initialize the ap start timer
cfg->ap_start_timer = new Timer(cfg->pub, std::bind(brcmf_ap_start_timeout, cfg), false);
cfg->ap_start_timeout_work = WorkItem(brcmf_ap_start_timeout_worker);
// Initialize the connect timer
cfg->connect_timer = new Timer(cfg->pub, std::bind(brcmf_connect_timeout, cfg), false);
cfg->connect_timeout_work = WorkItem(brcmf_connect_timeout_worker);
cfg->vif_disabled = {};
return err;
}
static void brcmf_deinit_cfg(struct brcmf_cfg80211_info* cfg) {
cfg->dongle_up = false; /* dongle down */
brcmf_abort_scanning(cfg);
brcmf_deinit_cfg_mem(cfg);
}
static void init_vif_event(struct brcmf_cfg80211_vif_event* event) {
event->vif_event_wait = {};
mtx_init(&event->vif_event_lock, mtx_plain);
}
static zx_status_t brcmf_dongle_roam(struct brcmf_if* ifp) {
zx_status_t err;
bcme_status_t fw_err = BCME_OK;
uint32_t bcn_timeout;
uint32_t roamtrigger[2];
uint32_t roam_delta[2];
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_IS_4359)) {
return ZX_OK; // TODO(fxbug.dev/29354) Find out why, and document.
}
/* Configure beacon timeout value based upon roaming setting */
if (ifp->drvr->settings->roamoff) {
bcn_timeout = BRCMF_DEFAULT_BCN_TIMEOUT_ROAM_OFF;
} else {
bcn_timeout = BRCMF_DEFAULT_BCN_TIMEOUT_ROAM_ON;
}
err = brcmf_fil_iovar_int_set(ifp, "bcn_timeout", bcn_timeout, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("bcn_timeout error: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
/* Enable/Disable built-in roaming to allow supplicant to take care of
* roaming.
*/
BRCMF_DBG(INFO, "Internal Roaming = %s", ifp->drvr->settings->roamoff ? "Off" : "On");
err = brcmf_fil_iovar_int_set(ifp, "roam_off", ifp->drvr->settings->roamoff, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("roam_off error: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
roamtrigger[0] = WL_ROAM_TRIGGER_LEVEL;
roamtrigger[1] = BRCM_BAND_ALL;
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_TRIGGER, roamtrigger, sizeof(roamtrigger),
&fw_err);
if (err != ZX_OK) {
BRCMF_ERR("WLC_SET_ROAM_TRIGGER error: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
roam_delta[0] = WL_ROAM_DELTA;
roam_delta[1] = BRCM_BAND_ALL;
err =
brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_DELTA, roam_delta, sizeof(roam_delta), &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("WLC_SET_ROAM_DELTA error: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
roam_setup_done:
return err;
}
static zx_status_t brcmf_dongle_scantime(struct brcmf_if* ifp) {
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_CHANNEL_TIME, BRCMF_SCAN_CHANNEL_TIME, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Scan assoc time error: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto dongle_scantime_out;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_UNASSOC_TIME, BRCMF_SCAN_UNASSOC_TIME, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Scan unassoc time error %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto dongle_scantime_out;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_PASSIVE_TIME, BRCMF_SCAN_PASSIVE_TIME, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Scan passive time error %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto dongle_scantime_out;
}
dongle_scantime_out:
return err;
}
static zx_status_t brcmf_enable_bw40_2g(struct brcmf_cfg80211_info* cfg) {
struct brcmf_if* ifp = cfg_to_if(cfg);
struct brcmf_fil_bwcap_le band_bwcap;
uint32_t val;
zx_status_t err;
/* verify support for bw_cap command */
val = WLC_BAND_5G;
err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val, nullptr);
if (err == ZX_OK) {
/* only set 2G bandwidth using bw_cap command */
band_bwcap.band = WLC_BAND_2G;
band_bwcap.bw_cap = WLC_BW_CAP_40MHZ;
err = brcmf_fil_iovar_data_set(ifp, "bw_cap", &band_bwcap, sizeof(band_bwcap), nullptr);
} else {
BRCMF_DBG(INFO, "Falling back to mimo_bw_cap to set 40MHz bandwidth for 2.4GHz bands.");
val = WLC_N_BW_40ALL;
err = brcmf_fil_iovar_int_set(ifp, "mimo_bw_cap", val, nullptr);
}
return err;
}
static zx_status_t brcmf_config_dongle(struct brcmf_cfg80211_info* cfg) {
struct net_device* ndev;
struct wireless_dev* wdev;
struct brcmf_if* ifp;
int32_t power_mode;
zx_status_t err = ZX_OK;
BRCMF_DBG(TEMP, "Enter");
if (cfg->dongle_up) {
BRCMF_DBG(TEMP, "Early done");
return err;
}
ndev = cfg_to_ndev(cfg);
wdev = ndev_to_wdev(ndev);
ifp = ndev_to_if(ndev);
/* make sure RF is ready for work */
brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0, nullptr);
brcmf_dongle_scantime(ifp);
power_mode = cfg->pwr_save ? PM_FAST : PM_OFF;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, power_mode, nullptr);
if (err != ZX_OK) {
goto default_conf_out;
}
BRCMF_DBG(INFO, "power save set to %s", (power_mode ? "enabled" : "disabled"));
err = brcmf_dongle_roam(ifp);
if (err != ZX_OK) {
goto default_conf_out;
}
err = brcmf_cfg80211_change_iface(cfg, ndev, wdev->iftype, nullptr);
if (err != ZX_OK) {
goto default_conf_out;
}
brcmf_configure_arp_nd_offload(ifp, true);
cfg->dongle_up = true;
default_conf_out:
BRCMF_DBG(TEMP, "Returning %d", err);
return err;
}
static zx_status_t __brcmf_cfg80211_up(struct brcmf_if* ifp) {
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);
return brcmf_config_dongle(ifp->drvr->config);
}
static zx_status_t __brcmf_cfg80211_down(struct brcmf_if* ifp) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
/*
* While going down, if associated with AP disassociate
* from AP to save power
*/
if (check_vif_up(ifp->vif)) {
brcmf_link_down(ifp->vif, WLAN_DEAUTH_REASON_UNSPECIFIED, 0);
/* Make sure WPA_Supplicant receives all the event
generated due to DISASSOC call to the fw to keep
the state fw and WPA_Supplicant state consistent
*/
msleep(500);
}
brcmf_abort_scanning(cfg);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);
return ZX_OK;
}
zx_status_t brcmf_cfg80211_up(struct net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err = ZX_OK;
mtx_lock(&cfg->usr_sync);
err = __brcmf_cfg80211_up(ifp);
mtx_unlock(&cfg->usr_sync);
return err;
}
zx_status_t brcmf_cfg80211_down(struct net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err = ZX_OK;
mtx_lock(&cfg->usr_sync);
err = __brcmf_cfg80211_down(ifp);
mtx_unlock(&cfg->usr_sync);
return err;
}
uint16_t brcmf_cfg80211_get_iftype(struct brcmf_if* ifp) {
struct wireless_dev* wdev = &ifp->vif->wdev;
return wdev->iftype;
}
bool brcmf_get_vif_state_any(struct brcmf_cfg80211_info* cfg, unsigned long state) {
struct brcmf_cfg80211_vif* vif;
list_for_every_entry (&cfg->vif_list, vif, struct brcmf_cfg80211_vif, list) {
if (brcmf_test_bit_in_array(state, &vif->sme_state)) {
return true;
}
}
return false;
}
void brcmf_cfg80211_arm_vif_event(struct brcmf_cfg80211_info* cfg, struct brcmf_cfg80211_vif* vif,
uint8_t pending_action) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
mtx_lock(&event->vif_event_lock);
event->vif = vif;
event->action = 0;
sync_completion_reset(&event->vif_event_wait);
cfg->vif_event_pending_action = pending_action;
mtx_unlock(&event->vif_event_lock);
}
void brcmf_cfg80211_disarm_vif_event(struct brcmf_cfg80211_info* cfg) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
mtx_lock(&event->vif_event_lock);
event->vif = nullptr;
event->action = 0;
mtx_unlock(&event->vif_event_lock);
}
bool brcmf_cfg80211_vif_event_armed(struct brcmf_cfg80211_info* cfg) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
bool armed;
mtx_lock(&event->vif_event_lock);
armed = event->vif != nullptr;
mtx_unlock(&event->vif_event_lock);
return armed;
}
zx_status_t brcmf_cfg80211_wait_vif_event(struct brcmf_cfg80211_info* cfg, zx_duration_t timeout) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
return sync_completion_wait(&event->vif_event_wait, timeout);
}
zx_status_t brcmf_cfg80211_del_iface(struct brcmf_cfg80211_info* cfg, struct wireless_dev* wdev) {
struct net_device* ndev = wdev->netdev;
struct brcmf_if* ifp = cfg_to_if(cfg);
/* vif event pending in firmware */
if (brcmf_cfg80211_vif_event_armed(cfg)) {
return ZX_ERR_UNAVAILABLE;
}
if (ndev) {
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status) &&
cfg->escan_info.ifp == ndev_to_if(ndev)) {
BRCMF_WARN("Aborting scan, interface being removed");
brcmf_notify_escan_complete(cfg, ndev_to_if(ndev), true, true);
}
brcmf_enable_mpc(ifp, 1);
}
switch (wdev->iftype) {
case WLAN_INFO_MAC_ROLE_AP:
// Stop the AP in an attempt to exit gracefully.
brcmf_cfg80211_stop_ap(ndev);
ndev->sme_channel.reset();
return brcmf_cfg80211_del_ap_iface(cfg, wdev);
case WLAN_INFO_MAC_ROLE_CLIENT:
// Dissconnect the client in an attempt to exit gracefully.
brcmf_link_down(ifp->vif, WLAN_DEAUTH_REASON_UNSPECIFIED, false);
// The default client iface 0 is always assumed to exist by the driver, and is never
// explicitly deleted.
ndev->sme_channel.reset();
ndev->needs_free_net_device = true;
brcmf_write_net_device_name(ndev, kPrimaryNetworkInterfaceName);
return ZX_OK;
default:
return ZX_ERR_NOT_SUPPORTED;
}
}
zx_status_t brcmf_cfg80211_attach(struct brcmf_pub* drvr) {
struct net_device* ndev = brcmf_get_ifp(drvr, 0)->ndev;
struct brcmf_cfg80211_info* cfg;
struct brcmf_cfg80211_vif* vif;
struct brcmf_if* ifp;
zx_status_t err = ZX_OK;
bcme_status_t fw_err = BCME_OK;
int32_t io_type;
BRCMF_DBG(TEMP, "Enter");
if (!ndev) {
BRCMF_ERR("ndev is invalid");
return ZX_ERR_UNAVAILABLE;
}
ifp = ndev_to_if(ndev);
cfg = static_cast<decltype(cfg)>(calloc(1, sizeof(struct brcmf_cfg80211_info)));
if (cfg == nullptr) {
goto cfg80211_info_out;
}
cfg->pub = drvr;
init_vif_event(&cfg->vif_event);
list_initialize(&cfg->vif_list);
err = brcmf_alloc_vif(cfg, WLAN_INFO_MAC_ROLE_CLIENT, &vif);
if (err != ZX_OK) {
goto cfg80211_info_out;
}
vif->ifp = ifp;
vif->wdev.netdev = ndev;
err = brcmf_init_cfg(cfg);
if (err != ZX_OK) {
BRCMF_ERR("Failed to init cfg (%d)", err);
brcmf_free_vif(vif);
goto cfg80211_info_out;
}
ifp->vif = vif;
/* determine d11 io type before wiphy setup */
err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION, (uint32_t*)&io_type, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Failed to get D11 version: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto cfg_out;
}
cfg->d11inf.io_type = (uint8_t)io_type;
brcmu_d11_attach(&cfg->d11inf);
// NOTE: linux first verifies that 40 MHz operation is enabled in 2.4 GHz channels.
err = brcmf_enable_bw40_2g(cfg);
if (err == ZX_OK) {
err = brcmf_fil_iovar_int_set(ifp, "obss_coex", BRCMF_OBSS_COEX_AUTO, nullptr);
}
drvr->config = cfg;
err = brcmf_btcoex_attach(cfg);
if (err != ZX_OK) {
BRCMF_ERR("BT-coex initialisation failed (%d)", err);
goto unreg_out;
}
err = brcmf_pno_attach(cfg);
if (err != ZX_OK) {
BRCMF_ERR("PNO initialisation failed (%d)", err);
brcmf_btcoex_detach(cfg);
goto unreg_out;
}
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_TDLS)) {
err = brcmf_fil_iovar_int_set(ifp, "tdls_enable", 1, &fw_err);
if (err != ZX_OK) {
BRCMF_DBG(INFO, "TDLS not enabled: %s, fw err %s", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
} else {
brcmf_fweh_register(cfg->pub, BRCMF_E_TDLS_PEER_EVENT, brcmf_notify_tdls_peer_event);
}
}
BRCMF_DBG(TEMP, "Exit");
return ZX_OK;
unreg_out:
BRCMF_DBG(TEMP, "* * Would have called wiphy_unregister(cfg->wiphy);");
cfg_out:
brcmf_deinit_cfg(cfg);
brcmf_free_vif(vif);
ifp->vif = nullptr;
cfg80211_info_out:
free(cfg);
return err;
}
void brcmf_cfg80211_detach(struct brcmf_cfg80211_info* cfg) {
if (!cfg) {
return;
}
brcmf_pno_detach(cfg);
brcmf_btcoex_detach(cfg);
BRCMF_DBG(TEMP, "* * Would have called wiphy_unregister(cfg->wiphy);");
brcmf_deinit_cfg(cfg);
brcmf_clear_assoc_ies(cfg);
free(cfg);
}