blob: 6bea5cac2f55a4a9352852b52b296b30d4062902 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <vm/vm_address_region.h>
#include "vm_priv.h"
#include <assert.h>
#include <err.h>
#include <fbl/alloc_checker.h>
#include <inttypes.h>
#include <lib/vdso.h>
#include <pow2.h>
#include <trace.h>
#include <vm/vm.h>
#include <vm/vm_aspace.h>
#include <vm/vm_object.h>
#include <zircon/types.h>
#define LOCAL_TRACE MAX(VM_GLOBAL_TRACE, 0)
VmAddressRegion::VmAddressRegion(VmAspace& aspace, vaddr_t base, size_t size, uint32_t vmar_flags)
: VmAddressRegionOrMapping(base, size, vmar_flags | VMAR_CAN_RWX_FLAGS,
&aspace, nullptr) {
// We add in CAN_RWX_FLAGS above, since an address space can't usefully
// contain a process without all of these.
strlcpy(const_cast<char*>(name_), "root", sizeof(name_));
LTRACEF("%p '%s'\n", this, name_);
}
VmAddressRegion::VmAddressRegion(VmAddressRegion& parent, vaddr_t base, size_t size,
uint32_t vmar_flags, const char* name)
: VmAddressRegionOrMapping(base, size, vmar_flags, parent.aspace_.get(),
&parent) {
strlcpy(const_cast<char*>(name_), name, sizeof(name_));
LTRACEF("%p '%s'\n", this, name_);
}
VmAddressRegion::VmAddressRegion(VmAspace& kernel_aspace)
: VmAddressRegion(kernel_aspace, kernel_aspace.base(), kernel_aspace.size(),
VMAR_FLAG_CAN_MAP_SPECIFIC) {
// Activate the kernel root aspace immediately
state_ = LifeCycleState::ALIVE;
}
VmAddressRegion::VmAddressRegion()
: VmAddressRegionOrMapping(0, 0, 0, nullptr, nullptr) {
strlcpy(const_cast<char*>(name_), "dummy", sizeof(name_));
LTRACEF("%p '%s'\n", this, name_);
}
zx_status_t VmAddressRegion::CreateRoot(VmAspace& aspace, uint32_t vmar_flags,
fbl::RefPtr<VmAddressRegion>* out) {
DEBUG_ASSERT(out);
fbl::AllocChecker ac;
auto vmar = new (&ac) VmAddressRegion(aspace, aspace.base(), aspace.size(), vmar_flags);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
vmar->state_ = LifeCycleState::ALIVE;
*out = fbl::AdoptRef(vmar);
return ZX_OK;
}
zx_status_t VmAddressRegion::CreateSubVmarInternal(size_t offset, size_t size, uint8_t align_pow2,
uint32_t vmar_flags, fbl::RefPtr<VmObject> vmo,
uint64_t vmo_offset, uint arch_mmu_flags,
const char* name,
fbl::RefPtr<VmAddressRegionOrMapping>* out) {
DEBUG_ASSERT(out);
Guard<fbl::Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
if (size == 0) {
return ZX_ERR_INVALID_ARGS;
}
// Check if there are any RWX privileges that the child would have that the
// parent does not.
if (vmar_flags & ~flags_ & VMAR_CAN_RWX_FLAGS) {
return ZX_ERR_ACCESS_DENIED;
}
bool is_specific_overwrite = static_cast<bool>(vmar_flags & VMAR_FLAG_SPECIFIC_OVERWRITE);
bool is_specific = static_cast<bool>(vmar_flags & VMAR_FLAG_SPECIFIC) || is_specific_overwrite;
if (!is_specific && offset != 0) {
return ZX_ERR_INVALID_ARGS;
}
// Check to see if a cache policy exists if a VMO is passed in. VMOs that do not support
// cache policy return ERR_UNSUPPORTED, anything aside from that and ZX_OK is an error.
if (vmo) {
uint32_t cache_policy = vmo->GetMappingCachePolicy();
// Warn in the event that we somehow receive a VMO that has a cache
// policy set while also holding cache policy flags within the arch
// flags. The only path that should be able to achieve this is if
// something in the kernel maps into their aspace incorrectly.
if ((arch_mmu_flags & ARCH_MMU_FLAG_CACHE_MASK) != 0 &&
(arch_mmu_flags & ARCH_MMU_FLAG_CACHE_MASK) != cache_policy) {
TRACEF("warning: mapping %s has conflicting cache policies: vmo %02x "
"arch_mmu_flags %02x.\n",
name, cache_policy, arch_mmu_flags & ARCH_MMU_FLAG_CACHE_MASK);
}
arch_mmu_flags |= cache_policy;
}
// Check that we have the required privileges if we want a SPECIFIC mapping
if (is_specific && !(flags_ & VMAR_FLAG_CAN_MAP_SPECIFIC)) {
return ZX_ERR_ACCESS_DENIED;
}
if (offset >= size_ || size > size_ - offset) {
return ZX_ERR_INVALID_ARGS;
}
vaddr_t new_base = -1;
if (is_specific) {
new_base = base_ + offset;
if (!IS_PAGE_ALIGNED(new_base)) {
return ZX_ERR_INVALID_ARGS;
}
if (align_pow2 > 0 && (new_base & ((1ULL << align_pow2) - 1))) {
return ZX_ERR_INVALID_ARGS;
}
if (!IsRangeAvailableLocked(new_base, size)) {
if (is_specific_overwrite) {
return OverwriteVmMapping(new_base, size, vmar_flags,
vmo, vmo_offset, arch_mmu_flags, out);
}
return ZX_ERR_NO_MEMORY;
}
} else {
// If we're not mapping to a specific place, search for an opening.
zx_status_t status = AllocSpotLocked(size, align_pow2, arch_mmu_flags, &new_base);
if (status != ZX_OK) {
return status;
}
}
// Notice if this is an executable mapping from the vDSO VMO
// before we lose the VMO reference via ktl::move(vmo).
const bool is_vdso_code = (vmo &&
(arch_mmu_flags & ARCH_MMU_FLAG_PERM_EXECUTE) &&
VDso::vmo_is_vdso(vmo));
fbl::AllocChecker ac;
fbl::RefPtr<VmAddressRegionOrMapping> vmar;
if (vmo) {
vmar = fbl::AdoptRef(new (&ac)
VmMapping(*this, new_base, size, vmar_flags,
ktl::move(vmo), vmo_offset, arch_mmu_flags));
} else {
vmar = fbl::AdoptRef(new (&ac)
VmAddressRegion(*this, new_base, size, vmar_flags, name));
}
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
if (is_vdso_code) {
// For an executable mapping of the vDSO, allow only one per process
// and only for the valid range of the image.
if (aspace_->vdso_code_mapping_ ||
!VDso::valid_code_mapping(vmo_offset, size)) {
return ZX_ERR_ACCESS_DENIED;
}
aspace_->vdso_code_mapping_ = fbl::RefPtr<VmMapping>::Downcast(vmar);
}
vmar->Activate();
*out = ktl::move(vmar);
return ZX_OK;
}
zx_status_t VmAddressRegion::CreateSubVmar(size_t offset, size_t size, uint8_t align_pow2,
uint32_t vmar_flags, const char* name,
fbl::RefPtr<VmAddressRegion>* out) {
DEBUG_ASSERT(out);
if (!IS_PAGE_ALIGNED(size)) {
return ZX_ERR_INVALID_ARGS;
}
// Check that only allowed flags have been set
if (vmar_flags & ~(VMAR_FLAG_SPECIFIC | VMAR_FLAG_CAN_MAP_SPECIFIC | VMAR_FLAG_COMPACT | VMAR_CAN_RWX_FLAGS)) {
return ZX_ERR_INVALID_ARGS;
}
fbl::RefPtr<VmAddressRegionOrMapping> res;
zx_status_t status = CreateSubVmarInternal(offset, size, align_pow2, vmar_flags, nullptr, 0,
ARCH_MMU_FLAG_INVALID, name, &res);
if (status != ZX_OK) {
return status;
}
// TODO(teisenbe): optimize this
*out = res->as_vm_address_region();
return ZX_OK;
}
zx_status_t VmAddressRegion::CreateVmMapping(size_t mapping_offset, size_t size, uint8_t align_pow2,
uint32_t vmar_flags, fbl::RefPtr<VmObject> vmo,
uint64_t vmo_offset, uint arch_mmu_flags, const char* name,
fbl::RefPtr<VmMapping>* out) {
DEBUG_ASSERT(out);
LTRACEF("%p %#zx %#zx %x\n", this, mapping_offset, size, vmar_flags);
// Check that only allowed flags have been set
if (vmar_flags & ~(VMAR_FLAG_SPECIFIC | VMAR_FLAG_SPECIFIC_OVERWRITE | VMAR_CAN_RWX_FLAGS)) {
return ZX_ERR_INVALID_ARGS;
}
// Validate that arch_mmu_flags does not contain any prohibited flags
if (!is_valid_mapping_flags(arch_mmu_flags)) {
return ZX_ERR_ACCESS_DENIED;
}
// If size overflows, it'll become 0 and get rejected in
// CreateSubVmarInternal.
size = ROUNDUP(size, PAGE_SIZE);
// Make sure that vmo_offset is aligned and that a mapping of this size
// wouldn't overflow the vmo offset.
if (!IS_PAGE_ALIGNED(vmo_offset) || vmo_offset + size < vmo_offset) {
return ZX_ERR_INVALID_ARGS;
}
// If we're mapping it with a specific permission, we should allow
// future Protect() calls on the mapping to keep that permission.
if (arch_mmu_flags & ARCH_MMU_FLAG_PERM_READ) {
vmar_flags |= VMAR_FLAG_CAN_MAP_READ;
}
if (arch_mmu_flags & ARCH_MMU_FLAG_PERM_WRITE) {
vmar_flags |= VMAR_FLAG_CAN_MAP_WRITE;
}
if (arch_mmu_flags & ARCH_MMU_FLAG_PERM_EXECUTE) {
vmar_flags |= VMAR_FLAG_CAN_MAP_EXECUTE;
}
fbl::RefPtr<VmAddressRegionOrMapping> res;
zx_status_t status =
CreateSubVmarInternal(mapping_offset, size, align_pow2, vmar_flags, ktl::move(vmo),
vmo_offset, arch_mmu_flags, name, &res);
if (status != ZX_OK) {
return status;
}
// TODO(teisenbe): optimize this
*out = res->as_vm_mapping();
return ZX_OK;
}
zx_status_t VmAddressRegion::OverwriteVmMapping(
vaddr_t base, size_t size, uint32_t vmar_flags,
fbl::RefPtr<VmObject> vmo, uint64_t vmo_offset,
uint arch_mmu_flags, fbl::RefPtr<VmAddressRegionOrMapping>* out) {
canary_.Assert();
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
DEBUG_ASSERT(vmo);
DEBUG_ASSERT(vmar_flags & VMAR_FLAG_SPECIFIC_OVERWRITE);
fbl::AllocChecker ac;
fbl::RefPtr<VmAddressRegionOrMapping> vmar;
vmar = fbl::AdoptRef(new (&ac)
VmMapping(*this, base, size, vmar_flags,
ktl::move(vmo), vmo_offset, arch_mmu_flags));
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
zx_status_t status = UnmapInternalLocked(base, size, false /* can_destroy_regions */,
false /* allow_partial_vmar */);
if (status != ZX_OK) {
return status;
}
vmar->Activate();
*out = ktl::move(vmar);
return ZX_OK;
}
zx_status_t VmAddressRegion::DestroyLocked() {
canary_.Assert();
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
LTRACEF("%p '%s'\n", this, name_);
// The cur reference prevents regions from being destructed after dropping
// the last reference to them when removing from their parent.
fbl::RefPtr<VmAddressRegion> cur(this);
while (cur) {
// Iterate through children destroying mappings. If we find a
// subregion, stop so we can traverse down.
fbl::RefPtr<VmAddressRegion> child_region = nullptr;
while (!cur->subregions_.is_empty() && !child_region) {
VmAddressRegionOrMapping* child = &cur->subregions_.front();
if (child->is_mapping()) {
// DestroyLocked should remove this child from our list on success.
zx_status_t status = child->DestroyLocked();
if (status != ZX_OK) {
// TODO(teisenbe): Do we want to handle this case differently?
return status;
}
} else {
child_region = child->as_vm_address_region();
}
}
if (child_region) {
// If we found a child region, traverse down the tree.
cur = child_region;
} else {
// All children are destroyed, so now destroy the current node.
if (cur->parent_) {
DEBUG_ASSERT(cur->subregion_list_node_.InContainer());
cur->parent_->RemoveSubregion(cur.get());
}
cur->state_ = LifeCycleState::DEAD;
VmAddressRegion* cur_parent = cur->parent_;
cur->parent_ = nullptr;
// If we destroyed the original node, stop. Otherwise traverse
// up the tree and keep destroying.
cur.reset((cur.get() == this) ? nullptr : cur_parent);
}
}
return ZX_OK;
}
void VmAddressRegion::RemoveSubregion(VmAddressRegionOrMapping* region) {
subregions_.erase(*region);
}
fbl::RefPtr<VmAddressRegionOrMapping> VmAddressRegion::FindRegion(vaddr_t addr) {
Guard<fbl::Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return nullptr;
}
return FindRegionLocked(addr);
}
fbl::RefPtr<VmAddressRegionOrMapping> VmAddressRegion::FindRegionLocked(vaddr_t addr) {
canary_.Assert();
// Find the first region with a base greater than *addr*. If a region
// exists for *addr*, it will be immediately before it.
auto itr = --subregions_.upper_bound(addr);
if (!itr.IsValid() || itr->base() > addr || addr > itr->base() + itr->size() - 1) {
return nullptr;
}
return itr.CopyPointer();
}
size_t VmAddressRegion::AllocatedPagesLocked() const {
canary_.Assert();
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
if (state_ != LifeCycleState::ALIVE) {
return 0;
}
size_t sum = 0;
for (const auto& child : subregions_) {
sum += child.AllocatedPagesLocked();
}
return sum;
}
zx_status_t VmAddressRegion::PageFault(vaddr_t va, uint pf_flags, PageRequest* page_request) {
canary_.Assert();
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
auto vmar = WrapRefPtr(this);
while (auto next = vmar->FindRegionLocked(va)) {
if (next->is_mapping()) {
return next->PageFault(va, pf_flags, page_request);
}
vmar = next->as_vm_address_region();
}
return ZX_ERR_NOT_FOUND;
}
bool VmAddressRegion::IsRangeAvailableLocked(vaddr_t base, size_t size) {
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
DEBUG_ASSERT(size > 0);
// Find the first region with base > *base*. Since subregions_ has no
// overlapping elements, we just need to check this one and the prior
// child.
auto prev = subregions_.upper_bound(base);
auto next = prev--;
if (prev.IsValid()) {
vaddr_t prev_last_byte;
if (add_overflow(prev->base(), prev->size() - 1, &prev_last_byte)) {
return false;
}
if (prev_last_byte >= base) {
return false;
}
}
if (next.IsValid() && next != subregions_.end()) {
vaddr_t last_byte;
if (add_overflow(base, size - 1, &last_byte)) {
return false;
}
if (next->base() <= last_byte) {
return false;
}
}
return true;
}
bool VmAddressRegion::CheckGapLocked(const ChildList::iterator& prev,
const ChildList::iterator& next,
vaddr_t* pva, vaddr_t search_base, vaddr_t align,
size_t region_size, size_t min_gap, uint arch_mmu_flags) {
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
vaddr_t gap_beg; // first byte of a gap
vaddr_t gap_end; // last byte of a gap
uint prev_arch_mmu_flags;
uint next_arch_mmu_flags;
DEBUG_ASSERT(pva);
// compute the starting address of the gap
if (prev.IsValid()) {
if (add_overflow(prev->base(), prev->size(), &gap_beg) ||
add_overflow(gap_beg, min_gap, &gap_beg)) {
goto not_found;
}
} else {
gap_beg = base_;
}
// compute the ending address of the gap
if (next.IsValid()) {
if (gap_beg == next->base()) {
goto next_gap; // no gap between regions
}
if (sub_overflow(next->base(), 1, &gap_end) ||
sub_overflow(gap_end, min_gap, &gap_end)) {
goto not_found;
}
} else {
if (gap_beg == base_ + size_) {
goto not_found; // no gap at the end of address space. Stop search
}
if (add_overflow(base_, size_ - 1, &gap_end)) {
goto not_found;
}
}
DEBUG_ASSERT(gap_end > gap_beg);
// trim it to the search range
if (gap_end <= search_base) {
return false;
}
if (gap_beg < search_base) {
gap_beg = search_base;
}
DEBUG_ASSERT(gap_end > gap_beg);
LTRACEF_LEVEL(2, "search base %#" PRIxPTR " gap_beg %#" PRIxPTR " end %#" PRIxPTR "\n",
search_base, gap_beg, gap_end);
prev_arch_mmu_flags = (prev.IsValid() && prev->is_mapping())
? prev->as_vm_mapping()->arch_mmu_flags()
: ARCH_MMU_FLAG_INVALID;
next_arch_mmu_flags = (next.IsValid() && next->is_mapping())
? next->as_vm_mapping()->arch_mmu_flags()
: ARCH_MMU_FLAG_INVALID;
*pva = aspace_->arch_aspace().PickSpot(gap_beg, prev_arch_mmu_flags, gap_end,
next_arch_mmu_flags, align, region_size, arch_mmu_flags);
if (*pva < gap_beg) {
goto not_found; // address wrapped around
}
if (*pva < gap_end && ((gap_end - *pva + 1) >= region_size)) {
// we have enough room
return true; // found spot, stop search
}
next_gap:
return false; // continue search
not_found:
*pva = -1;
return true; // not_found: stop search
}
zx_status_t VmAddressRegion::AllocSpotLocked(size_t size, uint8_t align_pow2, uint arch_mmu_flags,
vaddr_t* spot) {
canary_.Assert();
DEBUG_ASSERT(size > 0 && IS_PAGE_ALIGNED(size));
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
LTRACEF_LEVEL(2, "aspace %p size 0x%zx align %hhu\n", this, size,
align_pow2);
if (aspace_->is_aslr_enabled()) {
if (flags_ & VMAR_FLAG_COMPACT) {
return CompactRandomizedRegionAllocatorLocked(size, align_pow2, arch_mmu_flags, spot);
} else {
return NonCompactRandomizedRegionAllocatorLocked(size, align_pow2, arch_mmu_flags,
spot);
}
}
return LinearRegionAllocatorLocked(size, align_pow2, arch_mmu_flags, spot);
}
bool VmAddressRegion::EnumerateChildrenLocked(VmEnumerator* ve, uint depth) {
canary_.Assert();
DEBUG_ASSERT(ve != nullptr);
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
const uint min_depth = depth;
for (auto itr = subregions_.begin(), end = subregions_.end(); itr != end;) {
DEBUG_ASSERT(itr->IsAliveLocked());
auto curr = itr++;
VmAddressRegion* up = curr->parent_;
if (curr->is_mapping()) {
VmMapping* mapping = curr->as_vm_mapping().get();
DEBUG_ASSERT(mapping != nullptr);
if (!ve->OnVmMapping(mapping, this, depth)) {
return false;
}
} else {
VmAddressRegion* vmar = curr->as_vm_address_region().get();
DEBUG_ASSERT(vmar != nullptr);
if (!ve->OnVmAddressRegion(vmar, depth)) {
return false;
}
if (!vmar->subregions_.is_empty()) {
// If the sub-VMAR is not empty, iterate through its children.
itr = vmar->subregions_.begin();
end = vmar->subregions_.end();
depth++;
continue;
}
}
if (depth > min_depth && itr == end) {
// If we are at a depth greater than the minimum, and have reached
// the end of a sub-VMAR range, we ascend and continue iteration.
do {
itr = up->subregions_.upper_bound(curr->base());
if (itr.IsValid()) {
break;
}
up = up->parent_;
} while (depth-- != min_depth);
if (!itr.IsValid()) {
// If we have reached the end after ascending all the way up,
// break out of the loop.
break;
}
end = up->subregions_.end();
}
}
return true;
}
bool VmAddressRegion::has_parent() const {
Guard<fbl::Mutex> guard{aspace_->lock()};
return parent_ != nullptr;
}
void VmAddressRegion::Dump(uint depth, bool verbose) const {
canary_.Assert();
for (uint i = 0; i < depth; ++i) {
printf(" ");
}
printf("vmar %p [%#" PRIxPTR " %#" PRIxPTR "] sz %#zx ref %d '%s'\n", this,
base_, base_ + size_ - 1, size_, ref_count_debug(), name_);
for (const auto& child : subregions_) {
child.Dump(depth + 1, verbose);
}
}
void VmAddressRegion::Activate() {
DEBUG_ASSERT(state_ == LifeCycleState::NOT_READY);
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
state_ = LifeCycleState::ALIVE;
parent_->subregions_.insert(fbl::RefPtr<VmAddressRegionOrMapping>(this));
}
zx_status_t VmAddressRegion::Unmap(vaddr_t base, size_t size) {
canary_.Assert();
size = ROUNDUP(size, PAGE_SIZE);
if (size == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
Guard<fbl::Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
return UnmapInternalLocked(base, size, true /* can_destroy_regions */,
false /* allow_partial_vmar */);
}
zx_status_t VmAddressRegion::UnmapAllowPartial(vaddr_t base, size_t size) {
canary_.Assert();
size = ROUNDUP(size, PAGE_SIZE);
if (size == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
Guard<fbl::Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
return UnmapInternalLocked(base, size, true /* can_destroy_regions */,
true /* allow_partial_vmar */);
}
VmAddressRegion::ChildList::iterator VmAddressRegion::UpperBoundInternalLocked(vaddr_t base) {
// Find the first region with a base greater than *base*. If a region
// exists for *base*, it will be immediately before it.
auto itr = --subregions_.upper_bound(base);
if (!itr.IsValid()) {
itr = subregions_.begin();
} else if (base >= itr->base() + itr->size()) {
// If *base* isn't in this region, ignore it.
++itr;
}
return itr;
}
zx_status_t VmAddressRegion::UnmapInternalLocked(vaddr_t base, size_t size,
bool can_destroy_regions,
bool allow_partial_vmar) {
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
if (!is_in_range(base, size)) {
return ZX_ERR_INVALID_ARGS;
}
if (subregions_.is_empty()) {
return ZX_OK;
}
// Any unmap spanning the vDSO code mapping is verboten.
if (aspace_->vdso_code_mapping_ &&
aspace_->vdso_code_mapping_->base() >= base &&
aspace_->vdso_code_mapping_->base() - base < size) {
return ZX_ERR_ACCESS_DENIED;
}
const vaddr_t end_addr = base + size;
auto end = subregions_.lower_bound(end_addr);
auto begin = UpperBoundInternalLocked(base);
if (!allow_partial_vmar) {
// Check if we're partially spanning a subregion, or aren't allowed to
// destroy regions and are spanning a region, and bail if we are.
for (auto itr = begin; itr != end; ++itr) {
const vaddr_t itr_end = itr->base() + itr->size();
if (!itr->is_mapping() && (!can_destroy_regions ||
itr->base() < base || itr_end > end_addr)) {
return ZX_ERR_INVALID_ARGS;
}
}
}
bool at_top = true;
for (auto itr = begin; itr != end;) {
// Create a copy of the iterator, in case we destroy this element
auto curr = itr++;
VmAddressRegion* up = curr->parent_;
if (curr->is_mapping()) {
const vaddr_t curr_end = curr->base() + curr->size();
const vaddr_t unmap_base = fbl::max(curr->base(), base);
const vaddr_t unmap_end = fbl::min(curr_end, end_addr);
const size_t unmap_size = unmap_end - unmap_base;
if (unmap_base == curr->base() && unmap_size == curr->size()) {
// If we're unmapping the entire region, just call Destroy
__UNUSED zx_status_t status = curr->DestroyLocked();
DEBUG_ASSERT(status == ZX_OK);
} else {
// VmMapping::Unmap should only fail if it needs to allocate,
// which only happens if it is unmapping from the middle of a
// region. That can only happen if there is only one region
// being operated on here, so we can just forward along the
// error without having to rollback.
//
// TODO(teisenbe): Technically arch_mmu_unmap() itself can also
// fail. We need to rework the system so that is no longer
// possible.
zx_status_t status = curr->as_vm_mapping()->UnmapLocked(unmap_base, unmap_size);
DEBUG_ASSERT(status == ZX_OK || curr == begin);
if (status != ZX_OK) {
return status;
}
}
} else {
vaddr_t unmap_base = 0;
size_t unmap_size = 0;
__UNUSED bool intersects = GetIntersect(base, size, curr->base(), curr->size(),
&unmap_base, &unmap_size);
DEBUG_ASSERT(intersects);
if (allow_partial_vmar) {
// If partial VMARs are allowed, we descend into sub-VMARs.
fbl::RefPtr<VmAddressRegion> vmar = curr->as_vm_address_region();
if (!vmar->subregions_.is_empty()) {
begin = vmar->UpperBoundInternalLocked(base);
end = vmar->subregions_.lower_bound(end_addr);
itr = begin;
at_top = false;
}
} else if (unmap_base == curr->base() && unmap_size == curr->size()) {
__UNUSED zx_status_t status = curr->DestroyLocked();
DEBUG_ASSERT(status == ZX_OK);
}
}
if (allow_partial_vmar && !at_top && itr == end) {
// If partial VMARs are allowed, and we have reached the end of a
// sub-VMAR range, we ascend and continue iteration.
do {
begin = up->subregions_.upper_bound(curr->base());
if (begin.IsValid()) {
break;
}
at_top = up == this;
up = up->parent_;
} while (!at_top);
if (!begin.IsValid()) {
// If we have reached the end after ascending all the way up,
// break out of the loop.
break;
}
end = up->subregions_.lower_bound(end_addr);
itr = begin;
}
}
return ZX_OK;
}
zx_status_t VmAddressRegion::Protect(vaddr_t base, size_t size, uint new_arch_mmu_flags) {
canary_.Assert();
size = ROUNDUP(size, PAGE_SIZE);
if (size == 0 || !IS_PAGE_ALIGNED(base)) {
return ZX_ERR_INVALID_ARGS;
}
Guard<fbl::Mutex> guard{aspace_->lock()};
if (state_ != LifeCycleState::ALIVE) {
return ZX_ERR_BAD_STATE;
}
if (!is_in_range(base, size)) {
return ZX_ERR_INVALID_ARGS;
}
if (subregions_.is_empty()) {
return ZX_ERR_NOT_FOUND;
}
const vaddr_t end_addr = base + size;
const auto end = subregions_.lower_bound(end_addr);
// Find the first region with a base greater than *base*. If a region
// exists for *base*, it will be immediately before it. If *base* isn't in
// that entry, bail since it's unmapped.
auto begin = --subregions_.upper_bound(base);
if (!begin.IsValid() || begin->base() + begin->size() <= base) {
return ZX_ERR_NOT_FOUND;
}
// Check if we're overlapping a subregion, or a part of the range is not
// mapped, or the new permissions are invalid for some mapping in the range.
vaddr_t last_mapped = begin->base();
for (auto itr = begin; itr != end; ++itr) {
if (!itr->is_mapping()) {
return ZX_ERR_INVALID_ARGS;
}
if (itr->base() != last_mapped) {
return ZX_ERR_NOT_FOUND;
}
if (!itr->is_valid_mapping_flags(new_arch_mmu_flags)) {
return ZX_ERR_ACCESS_DENIED;
}
if (itr->as_vm_mapping() == aspace_->vdso_code_mapping_) {
return ZX_ERR_ACCESS_DENIED;
}
last_mapped = itr->base() + itr->size();
}
if (last_mapped < base + size) {
return ZX_ERR_NOT_FOUND;
}
for (auto itr = begin; itr != end;) {
DEBUG_ASSERT(itr->is_mapping());
auto next = itr;
++next;
const vaddr_t curr_end = itr->base() + itr->size();
const vaddr_t protect_base = fbl::max(itr->base(), base);
const vaddr_t protect_end = fbl::min(curr_end, end_addr);
const size_t protect_size = protect_end - protect_base;
zx_status_t status = itr->as_vm_mapping()->ProtectLocked(protect_base, protect_size,
new_arch_mmu_flags);
if (status != ZX_OK) {
// TODO(teisenbe): Try to work out a way to guarantee success, or
// provide a full unwind?
return status;
}
itr = ktl::move(next);
}
return ZX_OK;
}
zx_status_t VmAddressRegion::LinearRegionAllocatorLocked(size_t size, uint8_t align_pow2,
uint arch_mmu_flags, vaddr_t* spot) {
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
const vaddr_t base = 0;
if (align_pow2 < PAGE_SIZE_SHIFT) {
align_pow2 = PAGE_SIZE_SHIFT;
}
const vaddr_t align = 1UL << align_pow2;
// Find the first gap in the address space which can contain a region of the
// requested size.
auto before_iter = subregions_.end();
auto after_iter = subregions_.begin();
do {
if (CheckGapLocked(before_iter, after_iter, spot, base, align, size, 0, arch_mmu_flags)) {
if (*spot != static_cast<vaddr_t>(-1)) {
return ZX_OK;
} else {
return ZX_ERR_NO_MEMORY;
}
}
before_iter = after_iter++;
} while (before_iter.IsValid());
// couldn't find anything
return ZX_ERR_NO_MEMORY;
}
template <typename F>
void VmAddressRegion::ForEachGap(F func, uint8_t align_pow2) {
const vaddr_t align = 1UL << align_pow2;
// Scan the regions list to find the gap to the left of each region. We
// round up the end of the previous region to the requested alignment, so
// all gaps reported will be for aligned ranges.
vaddr_t prev_region_end = ROUNDUP(base_, align);
for (const auto& region : subregions_) {
if (region.base() > prev_region_end) {
const size_t gap = region.base() - prev_region_end;
if (!func(prev_region_end, gap)) {
return;
}
}
prev_region_end = ROUNDUP(region.base() + region.size(), align);
}
// Grab the gap to the right of the last region (note that if there are no
// regions, this handles reporting the VMAR's whole span as a gap).
const vaddr_t end = base_ + size_;
if (end > prev_region_end) {
const size_t gap = end - prev_region_end;
func(prev_region_end, gap);
}
}
namespace {
// Compute the number of allocation spots that satisfy the alignment within the
// given range size, for a range that has a base that satisfies the alignment.
constexpr size_t AllocationSpotsInRange(size_t range_size, size_t alloc_size, uint8_t align_pow2) {
return ((range_size - alloc_size) >> align_pow2) + 1;
}
} // namespace {}
// Perform allocations for VMARs that aren't using the COMPACT policy. This
// allocator works by choosing uniformly at random from the set of positions
// that could satisfy the allocation.
zx_status_t VmAddressRegion::NonCompactRandomizedRegionAllocatorLocked(size_t size, uint8_t align_pow2,
uint arch_mmu_flags,
vaddr_t* spot) {
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
DEBUG_ASSERT(spot);
align_pow2 = fbl::max(align_pow2, static_cast<uint8_t>(PAGE_SIZE_SHIFT));
const vaddr_t align = 1UL << align_pow2;
// Calculate the number of spaces that we can fit this allocation in.
size_t candidate_spaces = 0;
ForEachGap([align, align_pow2, size, &candidate_spaces](vaddr_t gap_base, size_t gap_len) -> bool {
DEBUG_ASSERT(IS_ALIGNED(gap_base, align));
if (gap_len >= size) {
candidate_spaces += AllocationSpotsInRange(gap_len, size, align_pow2);
}
return true;
},
align_pow2);
if (candidate_spaces == 0) {
return ZX_ERR_NO_MEMORY;
}
// Choose the index of the allocation to use.
size_t selected_index = aspace_->AslrPrng().RandInt(candidate_spaces);
DEBUG_ASSERT(selected_index < candidate_spaces);
// Find which allocation we picked.
vaddr_t alloc_spot = static_cast<vaddr_t>(-1);
ForEachGap([align_pow2, size, &alloc_spot, &selected_index](vaddr_t gap_base,
size_t gap_len) -> bool {
if (gap_len < size) {
return true;
}
const size_t spots = AllocationSpotsInRange(gap_len, size, align_pow2);
if (selected_index < spots) {
alloc_spot = gap_base + (selected_index << align_pow2);
return false;
}
selected_index -= spots;
return true;
},
align_pow2);
ASSERT(alloc_spot != static_cast<vaddr_t>(-1));
ASSERT(IS_ALIGNED(alloc_spot, align));
// Sanity check that the allocation fits.
auto after_iter = subregions_.upper_bound(alloc_spot + size - 1);
auto before_iter = after_iter;
if (after_iter == subregions_.begin() || subregions_.size() == 0) {
before_iter = subregions_.end();
} else {
--before_iter;
}
ASSERT(before_iter == subregions_.end() || before_iter.IsValid());
if (CheckGapLocked(before_iter, after_iter, spot, alloc_spot, align, size, 0,
arch_mmu_flags) &&
*spot != static_cast<vaddr_t>(-1)) {
return ZX_OK;
}
panic("Unexpected allocation failure\n");
}
// The COMPACT allocator begins by picking a random offset in the region to
// start allocations at, and then places new allocations to the left and right
// of the original region with small random-length gaps between.
zx_status_t VmAddressRegion::CompactRandomizedRegionAllocatorLocked(size_t size, uint8_t align_pow2,
uint arch_mmu_flags,
vaddr_t* spot) {
DEBUG_ASSERT(aspace_->lock()->lock().IsHeld());
align_pow2 = fbl::max(align_pow2, static_cast<uint8_t>(PAGE_SIZE_SHIFT));
const vaddr_t align = 1UL << align_pow2;
if (unlikely(subregions_.size() == 0)) {
return NonCompactRandomizedRegionAllocatorLocked(size, align_pow2, arch_mmu_flags, spot);
}
// Decide if we're allocating before or after the existing allocations, and
// how many gap pages to use.
bool alloc_before;
size_t num_gap_pages;
{
uint8_t entropy;
aspace_->AslrPrng().Draw(&entropy, sizeof(entropy));
alloc_before = entropy & 1;
num_gap_pages = (entropy >> 1) + 1;
}
// Try our first choice for *num_gap_pages*, but if that fails, try fewer
for (size_t gap_pages = num_gap_pages; gap_pages > 0; gap_pages >>= 1) {
// Try our first choice for *alloc_before*, but if that fails, try the other
for (size_t i = 0; i < 2; ++i, alloc_before = !alloc_before) {
ChildList::iterator before_iter;
ChildList::iterator after_iter;
vaddr_t chosen_base;
if (alloc_before) {
before_iter = subregions_.end();
after_iter = subregions_.begin();
vaddr_t base;
if (sub_overflow(after_iter->base(), size, &base) ||
sub_overflow(base, PAGE_SIZE * gap_pages, &base)) {
continue;
}
chosen_base = base;
} else {
before_iter = --subregions_.end();
after_iter = subregions_.end();
DEBUG_ASSERT(before_iter.IsValid());
vaddr_t base;
if (add_overflow(before_iter->base(), before_iter->size(), &base) ||
add_overflow(base, PAGE_SIZE * gap_pages, &base)) {
continue;
}
chosen_base = base;
}
if (CheckGapLocked(before_iter, after_iter, spot, chosen_base, align, size, 0,
arch_mmu_flags) &&
*spot != static_cast<vaddr_t>(-1)) {
return ZX_OK;
}
}
}
return ZX_ERR_NO_MEMORY;
}