blob: 259005b163b328418572aaf2e87ec1a5712e0b1a [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <err.h>
#include <lib/cmdline.h>
#include <lib/crashlog.h>
#include <lib/debuglog.h>
#include <lib/io.h>
#include <lib/version.h>
#include <platform.h>
#include <stdint.h>
#include <string.h>
#include <zircon/types.h>
#include <dev/udisplay.h>
#include <kernel/lockdep.h>
#include <kernel/mutex.h>
#include <kernel/spinlock.h>
#include <kernel/thread.h>
#include <ktl/atomic.h>
#include <lk/init.h>
#include <vm/vm.h>
#define DLOG_SIZE (128u * 1024u)
#define DLOG_MASK (DLOG_SIZE - 1u)
static_assert((DLOG_SIZE & DLOG_MASK) == 0u, "must be power of two");
static_assert(DLOG_MAX_RECORD <= DLOG_SIZE, "wat");
static_assert((DLOG_MAX_RECORD & 3) == 0, "E_DONT_DO_THAT");
static constexpr char kDlogNotifierThreadName[] = "debuglog-notifier";
static constexpr char kDlogDumperThreadName[] = "debuglog-dumper";
static uint8_t DLOG_DATA[DLOG_SIZE];
struct dlog {
constexpr dlog(uint8_t* data_ptr) : data(data_ptr) {}
spin_lock_t lock = SPIN_LOCK_INITIAL_VALUE;
size_t head = 0;
size_t tail = 0;
uint8_t* const data;
bool panic = false;
AutounsignalEvent event;
DECLARE_LOCK(dlog, Mutex) readers_lock;
struct list_node readers = LIST_INITIAL_VALUE(this->readers);
};
static dlog_t DLOG(DLOG_DATA);
static Thread* notifier_thread;
static Thread* dumper_thread;
// Used to request that notifier and dumper threads terminate.
static ktl::atomic<bool> notifier_shutdown_requested;
static ktl::atomic<bool> dumper_shutdown_requested;
// dlog_bypass_ will directly write to console. It also has the side effect of
// disabling uart Tx interrupts. So all serial console writes are polling.
static bool dlog_bypass_ = false;
// We need to preserve the compile time switch (ENABLE_KERNEL_LL_DEBUG), even
// though we add a kernel cmdline (kernel.bypass-debuglog), to bypass the debuglog.
// This is to allow very early prints in the kernel to go to the serial console.
// Called first thing in init, so very early printfs can go to serial console.
void dlog_bypass_init_early(void) {
#ifdef ENABLE_KERNEL_LL_DEBUG
dlog_bypass_ = true;
#endif
}
// Called after kernel cmdline options are parsed (in platform_early_init()).
// The compile switch (if enabled) overrides the kernel cmdline switch.
void dlog_bypass_init(void) {
if (dlog_bypass_ == false)
dlog_bypass_ = gCmdline.GetBool("kernel.bypass-debuglog", false);
}
bool dlog_bypass(void) { return dlog_bypass_; }
// The debug log maintains a circular buffer of debug log records,
// consisting of a common header (dlog_header_t) followed by up
// to 224 bytes of textual log message. Records are aligned on
// uint32_t boundaries, so the header word which indicates the
// true size of the record and the space it takes in the fifo
// can always be read with a single uint32_t* read (the header
// or body may wrap but the initial header word never does).
//
// The ring buffer position is maintained by continuously incrementing
// head and tail pointers (type size_t, so uint64_t on 64bit systems),
//
// This allows readers to trivial compute if their local tail
// pointer has "fallen out" of the fifo (an entire fifo's worth
// of messages were written since they last tried to read) and then
// they can snap their tail to the global tail and restart
//
//
// Tail indicates the oldest message in the debug log to read
// from, Head indicates the next space in the debug log to write
// a new message to. They are clipped to the actual buffer by
// DLOG_MASK.
//
// T T
// [....XXXX....] [XX........XX]
// H H
#define ALIGN4(n) (((n) + 3) & (~3))
zx_status_t dlog_write(uint32_t flags, const void* data_ptr, size_t len) {
const uint8_t* ptr = static_cast<const uint8_t*>(data_ptr);
dlog_t* log = &DLOG;
len = len > DLOG_MAX_DATA ? DLOG_MAX_DATA : len;
if (log->panic) {
return ZX_ERR_BAD_STATE;
}
// Our size "on the wire" must be a multiple of 4, so we know
// that worst case there will be room for a header skipping
// the last n bytes when the fifo wraps
size_t wiresize = DLOG_MIN_RECORD + ALIGN4(len);
// Prepare the record header before taking the lock
dlog_header_t hdr;
hdr.header = static_cast<uint32_t>(DLOG_HDR_SET(wiresize, DLOG_MIN_RECORD + len));
hdr.datalen = static_cast<uint16_t>(len);
hdr.flags = static_cast<uint16_t>(flags);
hdr.timestamp = current_time();
Thread* t = Thread::Current::Get();
if (t) {
hdr.pid = t->user_pid_;
hdr.tid = t->user_tid_;
} else {
hdr.pid = 0;
hdr.tid = 0;
}
spin_lock_saved_state_t state;
spin_lock_irqsave(&log->lock, state);
// Discard records at tail until there is enough
// space for the new record.
while ((log->head - log->tail) > (DLOG_SIZE - wiresize)) {
uint32_t header = *reinterpret_cast<uint32_t*>(log->data + (log->tail & DLOG_MASK));
log->tail += DLOG_HDR_GET_FIFOLEN(header);
}
size_t offset = (log->head & DLOG_MASK);
size_t fifospace = DLOG_SIZE - offset;
if (fifospace >= wiresize) {
// everything fits in one write, simple case!
memcpy(log->data + offset, &hdr, sizeof(hdr));
memcpy(log->data + offset + sizeof(hdr), ptr, len);
} else if (fifospace < sizeof(hdr)) {
// the wrap happens in the header
memcpy(log->data + offset, &hdr, fifospace);
memcpy(log->data, reinterpret_cast<uint8_t*>(&hdr) + fifospace, sizeof(hdr) - fifospace);
memcpy(log->data + (sizeof(hdr) - fifospace), ptr, len);
} else {
// the wrap happens in the data
memcpy(log->data + offset, &hdr, sizeof(hdr));
offset += sizeof(hdr);
fifospace -= sizeof(hdr);
memcpy(log->data + offset, ptr, fifospace);
memcpy(log->data, ptr + fifospace, len - fifospace);
}
log->head += wiresize;
// Need to check this before re-releasing the log lock, since we may
// re-enable interrupts while doing that. If interrupts are enabled when we
// make this check, we could see the following sequence of events between
// two CPUs and incorrectly conclude we are holding the thread lock:
// C2: Acquire thread_lock
// C1: Running this thread, evaluate spin_lock_holder_cpu(&thread_lock) -> C2
// C1: Context switch away
// C2: Release thread_lock
// C2: Context switch to this thread
// C2: Running this thread, evaluate arch_curr_cpu_num() -> C2
bool holding_thread_lock = spin_lock_holder_cpu(&thread_lock) == arch_curr_cpu_num();
spin_unlock_irqrestore(&log->lock, state);
[log, holding_thread_lock]() TA_NO_THREAD_SAFETY_ANALYSIS {
// if we happen to be called from within the global thread lock, use a
// special version of event signal
if (holding_thread_lock) {
log->event.SignalThreadLocked();
} else {
log->event.SignalNoResched();
}
}();
return ZX_OK;
}
// TODO: support reading multiple messages at a time
// TODO: filter with flags
zx_status_t dlog_read(dlog_reader_t* rdr, uint32_t flags, void* data_ptr, size_t len,
size_t* _actual) {
uint8_t* ptr = static_cast<uint8_t*>(data_ptr);
// must be room for worst-case read
if (len < DLOG_MAX_RECORD) {
return ZX_ERR_BUFFER_TOO_SMALL;
}
dlog_t* log = rdr->log;
zx_status_t status = ZX_ERR_SHOULD_WAIT;
spin_lock_saved_state_t state;
spin_lock_irqsave(&log->lock, state);
size_t rtail = rdr->tail;
// If the read-tail is not within the range of log-tail..log-head
// this reader has been lapped by a writer and we reset our read-tail
// to the current log-tail.
//
if ((log->head - log->tail) < (log->head - rtail)) {
rtail = log->tail;
}
if (rtail != log->head) {
size_t offset = (rtail & DLOG_MASK);
uint32_t header = *reinterpret_cast<uint32_t*>(log->data + offset);
size_t actual = DLOG_HDR_GET_READLEN(header);
size_t fifospace = DLOG_SIZE - offset;
if (fifospace >= actual) {
memcpy(ptr, log->data + offset, actual);
} else {
memcpy(ptr, log->data + offset, fifospace);
memcpy(ptr + fifospace, log->data, actual - fifospace);
}
*_actual = actual;
status = ZX_OK;
rtail += DLOG_HDR_GET_FIFOLEN(header);
}
rdr->tail = rtail;
spin_unlock_irqrestore(&log->lock, state);
return status;
}
void dlog_reader_init(dlog_reader_t* rdr, void (*notify)(void*), void* cookie) {
dlog_t* log = &DLOG;
rdr->log = log;
rdr->notify = notify;
rdr->cookie = cookie;
Guard<Mutex> guard(&log->readers_lock);
list_add_tail(&log->readers, &rdr->node);
bool do_notify = false;
spin_lock_saved_state_t state;
spin_lock_irqsave(&log->lock, state);
rdr->tail = log->tail;
do_notify = (log->tail != log->head);
spin_unlock_irqrestore(&log->lock, state);
// simulate notify callback for events that arrived
// before we were initialized
if (do_notify && notify) {
notify(cookie);
}
}
void dlog_reader_destroy(dlog_reader_t* rdr) {
dlog_t* log = rdr->log;
{
Guard<Mutex> guard(&log->readers_lock);
list_delete(&rdr->node);
}
}
// The debuglog notifier thread observes when the debuglog is
// written and calls the notify callback on any readers that
// have one so they can process new log messages.
static int debuglog_notifier(void* arg) {
dlog_t* log = &DLOG;
for (;;) {
if (notifier_shutdown_requested.load()) {
break;
}
log->event.Wait();
// notify readers that new log items were posted
{
Guard<Mutex> guard(&log->readers_lock);
dlog_reader_t* rdr;
list_for_every_entry (&log->readers, rdr, dlog_reader_t, node) {
if (rdr->notify) {
rdr->notify(rdr->cookie);
}
}
}
}
return ZX_OK;
}
// Common bottleneck between sys_debug_write() and debuglog_dumper()
// to reduce interleaved messages between the serial console and the
// debuglog drainer.
namespace {
DECLARE_SINGLETON_MUTEX(DlogSerialWriteLock);
} // namespace
void dlog_serial_write(const char* data, size_t len) {
if (dlog_bypass_ == true) {
// If LL DEBUG is enabled we take this path which uses a spinlock
// and prevents the direct writes from the kernel from interleaving
// with our output
__kernel_serial_write(data, len);
} else {
// Otherwise we can use a mutex and avoid time under spinlock
Guard<Mutex> guard{DlogSerialWriteLock::Get()};
platform_dputs_thread(data, len);
}
}
// The debuglog dumper thread creates a reader to observe
// debuglog writes and dump them to the kernel consoles
// and kernel serial console.
static void debuglog_dumper_notify(void* cookie) {
Event* event = reinterpret_cast<Event*>(cookie);
event->SignalNoResched();
}
static AutounsignalEvent dumper_event;
static int debuglog_dumper(void* arg) {
// assembly buffer with room for log text plus header text
char tmp[DLOG_MAX_DATA + 128];
struct {
dlog_header_t hdr;
char data[DLOG_MAX_DATA + 1];
} rec;
dlog_reader_t reader;
dlog_reader_init(&reader, debuglog_dumper_notify, &dumper_event);
bool done = false;
while (!done) {
dumper_event.Wait();
// If shutdown has been requested, this will be our last loop iteration.
//
// We do not break early because we guarantee that any messages logged prior to the start of the
// shutdown sequence will be emitted.
done = dumper_shutdown_requested.load();
// Read out all the records and dump them to the kernel console.
size_t actual;
while (dlog_read(&reader, 0, &rec, DLOG_MAX_RECORD, &actual) == ZX_OK) {
if (rec.hdr.datalen && (rec.data[rec.hdr.datalen - 1] == '\n')) {
rec.data[rec.hdr.datalen - 1] = 0;
} else {
rec.data[rec.hdr.datalen] = 0;
}
int n;
n = snprintf(tmp, sizeof(tmp), "[%05d.%03d] %05" PRIu64 ":%05" PRIu64 "> %s\n",
(int)(rec.hdr.timestamp / ZX_SEC(1)),
(int)((rec.hdr.timestamp / ZX_MSEC(1)) % 1000ULL), rec.hdr.pid, rec.hdr.tid,
rec.data);
if (n > (int)sizeof(tmp)) {
n = sizeof(tmp);
}
__kernel_console_write(tmp, n);
dlog_serial_write(tmp, n);
}
}
return 0;
}
void dlog_bluescreen_init(void) {
// if we're panicing, stop processing log writes
// they'll fail over to kernel console and serial
DLOG.panic = true;
udisplay_bind_gfxconsole();
// replay debug log?
printf("\nZIRCON KERNEL PANIC\n\n");
printf("UPTIME: %" PRIi64 "ms\n", current_time() / ZX_MSEC(1));
print_backtrace_version_info();
crashlog.base_address = (uintptr_t)__code_start;
}
void dlog_force_panic(void) { dlog_bypass_ = true; }
static zx_status_t dlog_shutdown_thread(Thread* thread, const char* name,
ktl::atomic<bool>* shutdown_requested, Event* event,
zx_time_t deadline) {
shutdown_requested->store(true);
event->SignalNoResched();
if (thread != nullptr) {
zx_status_t status = thread->Join(nullptr, deadline);
if (status != ZX_OK) {
dprintf(INFO, "Failed to join %s thread: %d\n", name, status);
return status;
}
}
return ZX_OK;
}
zx_status_t dlog_shutdown(zx_time_t deadline) {
dprintf(INFO, "Shutting down debuglog\n");
// Shutdown the notifier thread first. Ordering is important because the notifier thread is
// responsible for passing log records to the dumper.
zx_status_t notifier_status =
dlog_shutdown_thread(notifier_thread, kDlogNotifierThreadName, &notifier_shutdown_requested,
&DLOG.event, deadline);
notifier_thread = nullptr;
zx_status_t dumper_status = dlog_shutdown_thread(
dumper_thread, kDlogDumperThreadName, &dumper_shutdown_requested, &dumper_event, deadline);
dumper_thread = nullptr;
// If one of them failed, return the status cooresponding to the first failure.
if (notifier_status != ZX_OK) {
return notifier_status;
}
return dumper_status;
}
static void dlog_init_hook(uint level) {
DEBUG_ASSERT(notifier_thread == nullptr);
DEBUG_ASSERT(dumper_thread == nullptr);
if ((notifier_thread = Thread::Create(kDlogNotifierThreadName, debuglog_notifier, NULL,
HIGH_PRIORITY - 1)) != NULL) {
notifier_thread->Resume();
}
if (platform_serial_enabled() || platform_early_console_enabled()) {
if ((dumper_thread = Thread::Create(kDlogDumperThreadName, debuglog_dumper, NULL,
HIGH_PRIORITY - 2)) != NULL) {
dumper_thread->Resume();
}
}
}
LK_INIT_HOOK(debuglog, dlog_init_hook, LK_INIT_LEVEL_TARGET)