blob: 722196fa4f1dfd060c76177a4721d62f39d043c1 [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use {
crate::{
device::Device,
object_store::{
allocator::Allocator,
constants::INVALID_OBJECT_ID,
journal::{Journal, JournalCheckpoint},
transaction::{
AssociatedObject, LockKey, LockManager, Mutation, ReadGuard, Transaction,
TransactionHandler, TxnMutation,
},
ObjectStore,
},
},
anyhow::Error,
async_trait::async_trait,
std::{
collections::HashMap,
sync::{Arc, RwLock},
},
};
#[async_trait]
pub trait Filesystem: TransactionHandler {
/// Informs the journaling system that a new store has been created so that when a transaction
/// is committed or replayed, mutations can be routed to the correct store.
fn register_store(&self, store: &Arc<ObjectStore>);
/// Informs the journaling system that the given object ID is about to flush in-memory data. If
/// successful, all mutations pertinent to this object can be discarded, but any mutations that
/// follow will still be kept.
fn begin_object_sync(&self, object_id: u64) -> ObjectSync;
/// Returns access to the undeyling device.
fn device(&self) -> Arc<dyn Device>;
/// Returns the root store or panics if it is not available.
fn root_store(&self) -> Arc<ObjectStore>;
/// Returns the allocator or panics if it is not available.
fn allocator(&self) -> Arc<dyn Allocator>;
}
pub struct ObjectManager {
objects: RwLock<Objects>,
}
// We currently maintain strong references to all stores that have been opened, but there's no
// currently no mechanism for releasing stores that aren't being used.
struct Objects {
stores: HashMap<u64, Arc<ObjectStore>>,
root_parent_store_object_id: u64,
root_store_object_id: u64,
allocator_object_id: u64,
allocator: Option<Arc<dyn Allocator>>,
// Records dependencies on the journal for objects i.e. an entry for object ID 1, would mean it
// has a dependency on journal records from that offset.
journal_file_checkpoints: HashMap<u64, JournalCheckpoint>,
}
impl ObjectManager {
pub fn new() -> ObjectManager {
ObjectManager {
objects: RwLock::new(Objects {
stores: HashMap::new(),
root_parent_store_object_id: INVALID_OBJECT_ID,
root_store_object_id: INVALID_OBJECT_ID,
allocator_object_id: INVALID_OBJECT_ID,
allocator: None,
journal_file_checkpoints: HashMap::new(),
}),
}
}
pub fn root_parent_store(&self) -> Arc<ObjectStore> {
let objects = self.objects.read().unwrap();
objects.stores.get(&objects.root_parent_store_object_id).unwrap().clone()
}
pub fn set_root_parent_store_object_id(&self, object_id: u64) {
let mut objects = self.objects.write().unwrap();
assert!(objects.stores.contains_key(&object_id));
objects.root_parent_store_object_id = object_id;
}
pub fn register_store(&self, store: &Arc<ObjectStore>) {
let mut objects = self.objects.write().unwrap();
assert_ne!(store.store_object_id(), objects.allocator_object_id);
assert!(objects.stores.insert(store.store_object_id(), store.clone()).is_none());
}
pub fn store(&self, store_object_id: u64) -> Option<Arc<ObjectStore>> {
self.objects.read().unwrap().stores.get(&store_object_id).cloned()
}
pub fn set_root_store_object_id(&self, object_id: u64) {
let mut objects = self.objects.write().unwrap();
assert!(objects.stores.contains_key(&object_id));
objects.root_store_object_id = object_id;
}
pub fn root_store(&self) -> Arc<ObjectStore> {
let objects = self.objects.read().unwrap();
objects.stores.get(&objects.root_store_object_id).unwrap().clone()
}
pub fn set_allocator(&self, allocator: Arc<dyn Allocator>) {
let mut objects = self.objects.write().unwrap();
assert!(!objects.stores.contains_key(&allocator.object_id()));
objects.allocator_object_id = allocator.object_id();
objects.allocator = Some(allocator.clone());
}
pub fn allocator(&self) -> Arc<dyn Allocator> {
self.objects.read().unwrap().allocator.clone().unwrap()
}
/// The journaling system should call this when a mutation needs to be applied. |replay|
/// indicates whether this is for replay. |checkpoint| indicates the location in the journal
/// file for this mutation and is used to keep track of each object's dependencies on the
/// journal.
pub async fn apply_mutation(
&self,
object_id: u64,
mutation: Mutation,
replay: bool,
checkpoint: &JournalCheckpoint,
object: Option<AssociatedObject<'_>>,
) {
{
let mut objects = self.objects.write().unwrap();
objects.journal_file_checkpoints.entry(object_id).or_insert_with(|| checkpoint.clone());
if object_id == objects.allocator_object_id {
Some(objects.allocator.clone().unwrap().as_mutations())
} else {
objects.stores.get(&object_id).map(|x| x.clone() as Arc<dyn Mutations>)
}
}
.unwrap_or_else(|| self.root_store().lazy_open_store(object_id))
.apply_mutation(mutation, replay, object)
.await;
}
// Drops a transaction. This is called automatically when a transaction is dropped. If the
// transaction has been committed, it should contain no mutations and so nothing will get rolled
// back. For each mutation, drop_mutation is called to allow for roll back (e.g. the allocator
// will unreserve allocations).
pub fn drop_transaction(&self, transaction: &mut Transaction<'_>) {
for TxnMutation { object_id, mutation, .. } in std::mem::take(&mut transaction.mutations) {
{
let objects = self.objects.read().unwrap();
if object_id == objects.allocator_object_id {
Some(objects.allocator.clone().unwrap().as_mutations())
} else {
objects.stores.get(&object_id).map(|x| x.clone() as Arc<dyn Mutations>)
}
}
.map(|o| o.drop_mutation(mutation));
}
}
/// Returns the journal file offsets that each object depends on and the checkpoint for the
/// minimum offset.
pub fn journal_file_offsets(&self) -> (HashMap<u64, u64>, Option<JournalCheckpoint>) {
let objects = self.objects.read().unwrap();
let mut min_checkpoint = None;
let mut offsets = HashMap::new();
for (&object_id, checkpoint) in &objects.journal_file_checkpoints {
match &mut min_checkpoint {
None => min_checkpoint = Some(checkpoint),
Some(ref mut min_checkpoint) => {
if checkpoint.file_offset < min_checkpoint.file_offset {
*min_checkpoint = checkpoint;
}
}
}
offsets.insert(object_id, checkpoint.file_offset);
}
(offsets, min_checkpoint.cloned())
}
pub fn begin_object_sync(self: &Arc<Self>, object_id: u64) -> ObjectSync {
let old_journal_file_checkpoint =
self.objects.write().unwrap().journal_file_checkpoints.remove(&object_id);
ObjectSync { object_manager: self.clone(), object_id, old_journal_file_checkpoint }
}
}
/// ObjectSync is used by objects to indicate some kind of event such that if successful, existing
/// mutation records are no longer required from the journal. For example, for object stores, it is
/// used when the in-memory layer is persisted since once that is done the records in the journal
/// are no longer required. Clients must make sure to call the commit function upon success; the
/// default is to roll back.
#[must_use]
pub struct ObjectSync {
object_manager: Arc<ObjectManager>,
object_id: u64,
old_journal_file_checkpoint: Option<JournalCheckpoint>,
}
impl ObjectSync {
pub fn needs_sync(&self) -> bool {
self.old_journal_file_checkpoint.is_some()
}
pub fn commit(mut self) {
self.old_journal_file_checkpoint = None;
}
}
impl Drop for ObjectSync {
fn drop(&mut self) {
if let Some(checkpoint) = self.old_journal_file_checkpoint.take() {
self.object_manager
.objects
.write()
.unwrap()
.journal_file_checkpoints
.insert(self.object_id, checkpoint);
}
}
}
#[async_trait]
pub trait Mutations: Send + Sync {
/// Objects that use the journaling system to track mutations should implement this trait. This
/// method will get called when the transaction commits, which can either be during live
/// operation or during journal replay, in which case |replay| will be true. Also see
/// ObjectManager's apply_mutation method.
async fn apply_mutation(
&self,
mutation: Mutation,
replay: bool,
object: Option<AssociatedObject<'_>>,
);
/// Called when a transaction fails to commit.
fn drop_mutation(&self, mutation: Mutation);
}
#[derive(Default)]
pub struct SyncOptions {}
pub struct FxFilesystem {
device: Arc<dyn Device>,
objects: Arc<ObjectManager>,
journal: Journal,
lock_manager: LockManager,
}
impl FxFilesystem {
pub async fn new_empty(device: Arc<dyn Device>) -> Result<Arc<FxFilesystem>, Error> {
let objects = Arc::new(ObjectManager::new());
let journal = Journal::new(objects.clone());
let filesystem = Arc::new(FxFilesystem {
device: device.clone(),
objects: objects.clone(),
journal,
lock_manager: LockManager::new(),
});
filesystem.journal.init_empty(filesystem.clone()).await?;
Ok(filesystem)
}
pub async fn open(device: Arc<dyn Device>) -> Result<Arc<FxFilesystem>, Error> {
let objects = Arc::new(ObjectManager::new());
let journal = Journal::new(objects.clone());
let filesystem = Arc::new(FxFilesystem {
device: device.clone(),
objects: objects.clone(),
journal,
lock_manager: LockManager::new(),
});
filesystem.journal.replay(filesystem.clone()).await?;
Ok(filesystem)
}
pub fn root_parent_store(&self) -> Arc<ObjectStore> {
self.objects.root_parent_store()
}
pub fn root_store(&self) -> Arc<ObjectStore> {
self.objects.root_store()
}
pub fn store(&self, object_id: u64) -> Option<Arc<ObjectStore>> {
self.objects.store(object_id)
}
pub async fn sync(&self, options: SyncOptions) -> Result<(), Error> {
self.journal.sync(options).await
}
pub fn volume_info_object_id(&self) -> u64 {
self.journal.volume_info_object_id()
}
pub fn set_volume_info_object_id(&self, object_id: u64) {
self.journal.set_volume_info_object_id(object_id);
}
pub async fn close(&self) -> Result<(), Error> {
// Regardless of whether sync succeeds, we should close the device, since otherwise we will
// crash instead of exiting gracefully.
let sync_status = self.journal.sync(SyncOptions::default()).await;
if sync_status.is_err() {
log::error!("Failed to sync filesystem; data may be lost: {:?}", sync_status);
}
self.device.close().await.expect("Failed to close device");
sync_status
}
}
#[async_trait]
impl Filesystem for FxFilesystem {
fn register_store(&self, store: &Arc<ObjectStore>) {
self.objects.register_store(store);
}
fn begin_object_sync(&self, object_id: u64) -> ObjectSync {
self.objects.begin_object_sync(object_id)
}
fn device(&self) -> Arc<dyn Device> {
self.device.clone()
}
fn root_store(&self) -> Arc<ObjectStore> {
self.objects.root_store()
}
fn allocator(&self) -> Arc<dyn Allocator> {
self.objects.allocator()
}
}
#[async_trait]
impl TransactionHandler for FxFilesystem {
async fn new_transaction<'a>(
self: Arc<Self>,
locks: &[LockKey],
) -> Result<Transaction<'a>, Error> {
let mut locks: Vec<_> = locks.iter().cloned().collect();
locks.sort_unstable();
self.lock_manager.lock(&locks).await;
Ok(Transaction::new(self, locks))
}
async fn commit_transaction(&self, transaction: Transaction<'_>) {
self.lock_manager.commit_prepare(&transaction).await;
self.journal.commit(transaction).await;
}
fn drop_transaction(&self, transaction: &mut Transaction<'_>) {
self.objects.drop_transaction(transaction);
self.lock_manager.drop_transaction(transaction);
}
async fn read_lock<'a>(&'a self, lock_keys: &[LockKey]) -> ReadGuard<'a> {
self.lock_manager.read_lock(lock_keys).await
}
}
// TODO(csuter): How do we ensure sync prior to drop?