blob: a40b1fe7faea5b592746771d7ac9478350ebefad [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
package targets
import (
"bytes"
"context"
"encoding/hex"
"fmt"
"io"
"io/ioutil"
"math/rand"
"net"
"os"
"os/exec"
"path/filepath"
"strconv"
"strings"
"syscall"
"time"
"go.fuchsia.dev/fuchsia/tools/bootserver"
"go.fuchsia.dev/fuchsia/tools/botanist"
"go.fuchsia.dev/fuchsia/tools/botanist/constants"
"go.fuchsia.dev/fuchsia/tools/build"
"go.fuchsia.dev/fuchsia/tools/lib/logger"
"go.fuchsia.dev/fuchsia/tools/lib/osmisc"
"go.fuchsia.dev/fuchsia/tools/net/sshutil"
"go.fuchsia.dev/fuchsia/tools/qemu"
"github.com/creack/pty"
)
const (
// qemuSystemPrefix is the prefix of the QEMU binary name, which is of the
// form qemu-system-<QEMU arch suffix>.
qemuSystemPrefix = "qemu-system"
// DefaultInterfaceName is the name given to the emulated tap interface.
defaultInterfaceName = "qemu"
// DefaultQEMUNodename is the default nodename given to a QEMU target.
DefaultQEMUNodename = "botanist-target-qemu"
// The size in bytes of minimimum desired size for the storage-full image.
// The image should be large enough to hold all downloaded test packages
// for a given test shard.
//
// No host-side disk blocks are allocated on extension (by use of the `fvm`
// host tool), so the operation is cheap regardless of the size we extend to.
storageFullMinSize int64 = 10000000000 // 10Gb
// Minimum number of bytes of entropy bits required for the kernel's PRNG.
minEntropyBytes uint = 32 // 256 bits
)
// qemuTargetMapping maps the Fuchsia target name to the name recognized by QEMU.
var qemuTargetMapping = map[string]qemu.Target{
"x64": qemu.TargetEnum.X86_64,
"arm64": qemu.TargetEnum.AArch64,
}
// MinFS is the configuration for the MinFS filesystem image.
type MinFS struct {
// Image is the path to the filesystem image.
Image string `json:"image"`
// PCIAddress is the PCI address to map the device at.
PCIAddress string `json:"pci_address"`
}
// QEMUConfig is a QEMU configuration.
type QEMUConfig struct {
// Path is a path to a directory that contains QEMU system binary.
Path string `json:"path"`
// Target is the QEMU target to emulate.
Target string `json:"target"`
// CPU is the number of processors to emulate.
CPU int `json:"cpu"`
// Memory is the amount of memory (in MB) to provide.
Memory int `json:"memory"`
// KVM specifies whether to enable hardware virtualization acceleration.
KVM bool `json:"kvm"`
// Serial gives whether to create a 'serial device' for the QEMU instance.
// This option should be used judiciously, as it can slow the process down.
Serial bool `json:"serial"`
// Logfile saves emulator standard output to a file if set.
Logfile string `json:"logfile"`
// Whether User networking is enabled; if false, a Tap interface will be used.
UserNetworking bool `json:"user_networking"`
// MinFS is the filesystem to mount as a device.
MinFS *MinFS `json:"minfs,omitempty"`
// Path to the fvm host tool.
FVMTool string `json:"fvm_tool"`
}
// QEMUTarget is a QEMU target.
type QEMUTarget struct {
*target
binary string
builder EMUCommandBuilder
config QEMUConfig
opts Options
c chan error
process *os.Process
mac [6]byte
serial io.ReadWriteCloser
ptm *os.File
}
// EMUCommandBuilder defines the common set of functions used to build up an
// EMU command-line.
type EMUCommandBuilder interface {
SetFlag(...string)
SetBinary(string)
SetKernel(string)
SetInitrd(string)
SetTarget(qemu.Target, bool)
SetMemory(int)
SetCPUCount(int)
AddVirtioBlkPciDrive(qemu.Drive)
AddSerial(qemu.Chardev)
AddNetwork(qemu.Netdev)
AddKernelArg(string)
Build() ([]string, error)
}
// NewQEMUTarget returns a new QEMU target with a given configuration.
func NewQEMUTarget(ctx context.Context, config QEMUConfig, opts Options) (*QEMUTarget, error) {
qemuTarget, ok := qemuTargetMapping[config.Target]
if !ok {
return nil, fmt.Errorf("invalid target %q", config.Target)
}
t := &QEMUTarget{
binary: fmt.Sprintf("%s-%s", qemuSystemPrefix, qemuTarget),
builder: &qemu.QEMUCommandBuilder{},
config: config,
opts: opts,
c: make(chan error),
}
r := rand.New(rand.NewSource(time.Now().UnixNano()))
if _, err := r.Read(t.mac[:]); err != nil {
return nil, fmt.Errorf("failed to generate random MAC: %w", err)
}
if config.Serial {
// We can run QEMU 'in a terminal' by creating a pseudoterminal slave and
// attaching it as the process' std(in|out|err) streams. Running it in a
// terminal - and redirecting serial to stdio - allows us to use the
// associated pseudoterminal master as the 'serial device' for the
// instance.
var err error
// TODO(joshuaseaton): Figure out how to manage ownership so that this may
// be closed.
t.ptm, t.serial, err = pty.Open()
if err != nil {
return nil, fmt.Errorf("failed to create ptm/pts pair: %w", err)
}
}
base, err := newTarget(ctx, DefaultQEMUNodename, "", []string{opts.SSHKey}, t.serial)
if err != nil {
return nil, err
}
t.target = base
return t, nil
}
// Nodename returns the name of the target node.
func (t *QEMUTarget) Nodename() string {
return DefaultQEMUNodename
}
// Serial returns the serial device associated with the target for serial i/o.
func (t *QEMUTarget) Serial() io.ReadWriteCloser {
return t.serial
}
// SSHKey returns the private SSH key path associated with a previously embedded authorized key.
func (t *QEMUTarget) SSHKey() string {
return t.opts.SSHKey
}
// SSHClient creates and returns an SSH client connected to the QEMU target.
func (t *QEMUTarget) SSHClient() (*sshutil.Client, error) {
addr, err := t.IPv6()
if err != nil {
return nil, err
}
return t.sshClient(addr)
}
// Start starts the QEMU target.
func (t *QEMUTarget) Start(ctx context.Context, images []bootserver.Image, args []string) (err error) {
if t.process != nil {
return fmt.Errorf("a process has already been started with PID %d", t.process.Pid)
}
qemuCmd := t.builder
qemuTarget, ok := qemuTargetMapping[t.config.Target]
if !ok {
return fmt.Errorf("invalid target %q", t.config.Target)
}
qemuCmd.SetTarget(qemuTarget, t.config.KVM)
if t.config.Path == "" {
return fmt.Errorf("directory must be set")
}
qemuSystem := filepath.Join(t.config.Path, t.binary)
absQEMUSystemPath, err := normalizeFile(qemuSystem)
if err != nil {
return fmt.Errorf("could not find qemu binary %q: %w", qemuSystem, err)
}
qemuCmd.SetBinary(absQEMUSystemPath)
var qemuKernel, zirconA, storageFull bootserver.Image
zbiImageName := "zbi_zircon-a"
qemuKernelName := "kernel_qemu-kernel"
qemuKernelLabel := ""
if t.imageOverrides != nil {
zbiImageName = fmt.Sprintf("zbi_%s", t.imageOverrides[build.ZbiImage].Name)
qemuKernelOverride := t.imageOverrides[build.QemuKernel]
if qemuKernelOverride.Name != "" {
qemuKernelName = fmt.Sprintf("kernel_%s", qemuKernelOverride.Name)
} else {
qemuKernelName = ""
qemuKernelLabel = qemuKernelOverride.Label
}
}
for _, img := range images {
switch img.Name {
case qemuKernelName:
qemuKernel = img
case zbiImageName:
zirconA = img
case "blk_storage-full":
storageFull = img
}
if qemuKernelLabel != "" && img.Label == qemuKernelLabel {
qemuKernel = img
}
}
if qemuKernel.Reader == nil {
return fmt.Errorf("could not find kernel_qemu-kernel")
}
if zirconA.Reader == nil {
return fmt.Errorf("could not find %s", zbiImageName)
}
// The QEMU command needs to be invoked within an empty directory, as QEMU
// will attempt to pick up files from its working directory, one notable
// culprit being multiboot.bin. This can result in strange behavior.
workdir, err := ioutil.TempDir("", "qemu-working-dir")
if err != nil {
return err
}
defer func() {
if err != nil {
os.RemoveAll(workdir)
}
}()
if err := copyImagesToDir(ctx, workdir, false, &qemuKernel, &zirconA, &storageFull); err != nil {
return err
}
// Now that the images hav successfully been copied to the working
// directory, Path points to their path on disk.
qemuCmd.SetKernel(qemuKernel.Path)
qemuCmd.SetInitrd(zirconA.Path)
if storageFull.Path != "" {
if t.config.FVMTool != "" {
if err := extendStorageFull(ctx, &storageFull, t.config.FVMTool, storageFullMinSize); err != nil {
return fmt.Errorf("%s to %d bytes: %w", constants.FailedToExtendFVMMsg, storageFullMinSize, err)
}
}
qemuCmd.AddVirtioBlkPciDrive(qemu.Drive{
ID: "maindisk",
File: storageFull.Path,
})
}
if t.config.MinFS != nil {
absMinFsPath, err := normalizeFile(t.config.MinFS.Image)
if err != nil {
return fmt.Errorf("could not find minfs image %q: %w", t.config.MinFS.Image, err)
}
// Swarming hard-links Isolate downloads with a cache and the very same
// cached minfs image will be used across multiple tasks. To ensure
// that it remains blank, we must break its link.
if err := overwriteFileWithCopy(absMinFsPath); err != nil {
return err
}
qemuCmd.AddVirtioBlkPciDrive(qemu.Drive{
ID: "testdisk",
File: absMinFsPath,
Addr: t.config.MinFS.PCIAddress,
})
}
netdev := qemu.Netdev{
ID: "net0",
Device: qemu.Device{Model: qemu.DeviceModelVirtioNetPCI},
}
netdev.Device.AddOption("mac", net.HardwareAddr(t.mac[:]).String())
netdev.Device.AddOption("vectors", "8")
if t.config.UserNetworking {
netdev.User = &qemu.NetdevUser{}
} else {
netdev.Tap = &qemu.NetdevTap{Name: defaultInterfaceName}
}
qemuCmd.AddNetwork(netdev)
chardev := qemu.Chardev{
ID: "char0",
Signal: false,
}
if t.config.Logfile != "" {
logfile, err := filepath.Abs(t.config.Logfile)
if err != nil {
return fmt.Errorf("cannot get absolute path for %q: %w", t.config.Logfile, err)
}
if err := os.MkdirAll(filepath.Dir(logfile), os.ModePerm); err != nil {
return fmt.Errorf("failed to make parent dirs of %q: %w", logfile, err)
}
chardev.Logfile = logfile
}
qemuCmd.AddSerial(chardev)
// Manually set nodename, since MAC is randomly generated.
qemuCmd.AddKernelArg("zircon.nodename=" + DefaultQEMUNodename)
// Disable the virtcon.
qemuCmd.AddKernelArg("virtcon.disable=true")
// The system will halt on a kernel panic instead of rebooting.
qemuCmd.AddKernelArg("kernel.halt-on-panic=true")
// Print a message if `dm poweroff` times out.
qemuCmd.AddKernelArg("devmgr.suspend-timeout-debug=true")
// Disable kernel lockup detector in emulated environments to prevent false alarms from
// potentially oversubscribed hosts.
qemuCmd.AddKernelArg("kernel.lockup-detector.critical-section-threshold-ms=0")
qemuCmd.AddKernelArg("kernel.lockup-detector.critical-section-fatal-threshold-ms=0")
qemuCmd.AddKernelArg("kernel.lockup-detector.heartbeat-period-ms=0")
qemuCmd.AddKernelArg("kernel.lockup-detector.heartbeat-age-threshold-ms=0")
qemuCmd.AddKernelArg("kernel.lockup-detector.heartbeat-age-fatal-threshold-ms=0")
// Add entropy to simulate bootloader entropy.
entropy := make([]byte, minEntropyBytes)
if _, err := rand.Read(entropy); err == nil {
qemuCmd.AddKernelArg("kernel.entropy-mixin=" + hex.EncodeToString(entropy))
}
// Do not print colors.
qemuCmd.AddKernelArg("TERM=dumb")
if t.config.Target == "x64" {
// Necessary to redirect to stdout.
qemuCmd.AddKernelArg("kernel.serial=legacy")
}
for _, arg := range args {
qemuCmd.AddKernelArg(arg)
}
qemuCmd.SetCPUCount(t.config.CPU)
qemuCmd.SetMemory(t.config.Memory)
qemuCmd.SetFlag("-nographic")
qemuCmd.SetFlag("-monitor", "none")
invocation, err := qemuCmd.Build()
if err != nil {
return err
}
// TODO(fxbug.dev/43188): We temporarily capture the tail of all stdout and
// stderr to search for a particular error signature.
var outputSink bytes.Buffer
cmd := exec.Command(invocation[0], invocation[1:]...)
cmd.Dir = workdir
stdout, stderr, flush := botanist.NewStdioWriters(ctx)
if t.ptm != nil {
cmd.Stdin = t.ptm
cmd.Stdout = io.MultiWriter(t.ptm, &outputSink, stdout)
cmd.Stderr = io.MultiWriter(t.ptm, &outputSink, stderr)
cmd.SysProcAttr = &syscall.SysProcAttr{
Setctty: true,
Setsid: true,
}
} else {
cmd.Stdout = io.MultiWriter(&outputSink, stdout)
cmd.Stderr = io.MultiWriter(&outputSink, stderr)
}
logger.Debugf(ctx, "QEMU invocation:\n%s", strings.Join(invocation, " "))
if err := cmd.Start(); err != nil {
flush()
return fmt.Errorf("failed to start: %w", err)
}
t.process = cmd.Process
go func() {
err := cmd.Wait()
flush()
if err != nil {
err = fmt.Errorf("%s: %w", constants.QEMUInvocationErrorMsg, err)
}
t.c <- err
os.RemoveAll(workdir)
}()
return nil
}
// Stop stops the QEMU target.
func (t *QEMUTarget) Stop() error {
if t.process == nil {
return fmt.Errorf("QEMU target has not yet been started")
}
logger.Debugf(t.targetCtx, "Sending SIGKILL to %d", t.process.Pid)
err := t.process.Kill()
t.process = nil
t.target.Stop()
return err
}
// Wait waits for the QEMU target to stop.
func (t *QEMUTarget) Wait(ctx context.Context) error {
select {
case err := <-t.c:
return err
case <-ctx.Done():
return ctx.Err()
}
}
func normalizeFile(path string) (string, error) {
if _, err := os.Stat(path); err != nil {
return "", err
}
absPath, err := filepath.Abs(path)
if err != nil {
return "", err
}
return absPath, nil
}
func overwriteFileWithCopy(path string) error {
tmpfile, err := ioutil.TempFile(filepath.Dir(path), "botanist")
if err != nil {
return err
}
defer tmpfile.Close()
if err := osmisc.CopyFile(path, tmpfile.Name()); err != nil {
return err
}
return os.Rename(tmpfile.Name(), path)
}
func extendStorageFull(ctx context.Context, storageFull *bootserver.Image, fvmTool string, size int64) error {
if storageFull.Size >= size {
return nil
}
absToolPath, err := filepath.Abs(fvmTool)
if err != nil {
return err
}
logger.Debugf(ctx, "extending fvm.blk to %d bytes", size)
cmd := exec.CommandContext(ctx, absToolPath, storageFull.Path, "extend", "--length", strconv.Itoa(int(size)))
stdout, stderr, flush := botanist.NewStdioWriters(ctx)
defer flush()
cmd.Stdout = stdout
cmd.Stderr = stderr
if err := cmd.Run(); err != nil {
return err
}
storageFull.Size = size
return nil
}