blob: b0148f55b2f78b4c4d698fb142da042dbaed3658 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef SRC_CONNECTIVITY_WLAN_DRIVERS_THIRD_PARTY_INTEL_IWLWIFI_IWL_TRANS_H_
#define SRC_CONNECTIVITY_WLAN_DRIVERS_THIRD_PARTY_INTEL_IWLWIFI_IWL_TRANS_H_
#include <threads.h>
#include <lib/sync/completion.h>
#include "third_party/iwlwifi/fw/img.h"
#include "third_party/iwlwifi/iwl-config.h"
#include "third_party/iwlwifi/iwl-debug.h"
#include "third_party/iwlwifi/iwl-op-mode.h"
#include "zircon/compiler.h"
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
#include "third_party/iwlwifi/iwl-dbg-cfg.h"
#endif
#include "third_party/iwlwifi/fw/api/cmdhdr.h"
#include "third_party/iwlwifi/fw/api/txq.h"
#ifdef CPTCFG_IWLWIFI_DEVICE_TESTMODE
#include "third_party/iwlwifi/fw/testmode.h"
#endif
#include "third_party/iwlwifi/fw/api/dbg-tlv.h"
#include "third_party/iwlwifi/iwl-dbg-tlv.h"
#include "third_party/iwlwifi/platform/align.h"
#include "third_party/iwlwifi/platform/ieee80211.h"
#include "third_party/iwlwifi/platform/memory.h"
__BEGIN_CDECLS
/**
* DOC: Transport layer - what is it ?
*
* The transport layer is the layer that deals with the HW directly. It provides
* an abstraction of the underlying HW to the upper layer. The transport layer
* doesn't provide any policy, algorithm or anything of this kind, but only
* mechanisms to make the HW do something. It is not completely stateless but
* close to it.
* We will have an implementation for each different supported bus.
*/
/**
* DOC: Life cycle of the transport layer
*
* The transport layer has a very precise life cycle.
*
* 1) A helper function is called during the module initialization and
* registers the bus driver's ops with the transport's alloc function.
* 2) Bus's probe calls to the transport layer's allocation functions.
* Of course this function is bus specific.
* 3) This allocation functions will spawn the upper layer which will
* register mac80211.
*
* 4) At some point (i.e. mac80211's start call), the op_mode will call
* the following sequence:
* start_hw
* start_fw
*
* 5) Then when finished (or reset):
* stop_device
*
* 6) Eventually, the free function will be called.
*/
#define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */
#define FH_RSCSR_FRAME_INVALID 0x55550000
#define FH_RSCSR_FRAME_ALIGN 0x40
#define FH_RSCSR_RPA_EN BIT(25)
#define FH_RSCSR_RADA_EN BIT(26)
#define FH_RSCSR_RXQ_POS 16
#define FH_RSCSR_RXQ_MASK 0x3F0000
struct iwl_rx_packet {
/*
* The first 4 bytes of the RX frame header contain both the RX frame
* size and some flags.
* Bit fields:
* 31: flag flush RB request
* 30: flag ignore TC (terminal counter) request
* 29: flag fast IRQ request
* 28-27: Reserved
* 26: RADA enabled
* 25: Offload enabled
* 24: RPF enabled
* 23: RSS enabled
* 22: Checksum enabled
* 21-16: RX queue
* 15-14: Reserved
* 13-00: RX frame size (not including the first 4 bytes)
*/
__le32 len_n_flags;
struct iwl_cmd_header hdr;
uint8_t data[0];
} __packed;
// The length including pkt->hdr and pkt->data[] (but not including len_n_flags).
static inline uint32_t iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
{
return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
}
// The length of pkt->data[].
static inline uint32_t
iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
{
return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
}
/**
* enum CMD_MODE - how to send the host commands ?
*
* @CMD_ASYNC: Return right away and don't wait for the response
* @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
* the response. The caller needs to call iwl_free_resp when done.
* @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the
* command queue, but after other high priority commands. Valid only
* with CMD_ASYNC.
* @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle.
* @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle.
* @CMD_WAKE_UP_TRANS: The command response should wake up the trans
* (i.e. mark it as non-idle).
* @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
* called after this command completes. Valid only with CMD_ASYNC.
* @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
* SUSPEND and RESUME commands. We are in D3 mode when we set
* trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
*/
enum CMD_MODE {
CMD_ASYNC = BIT(0),
CMD_WANT_SKB = BIT(1),
CMD_SEND_IN_RFKILL = BIT(2),
CMD_SEND_IN_D3 = BIT(4),
CMD_HIGH_PRIO = BIT(3),
CMD_SEND_IN_IDLE = BIT(4),
CMD_MAKE_TRANS_IDLE = BIT(5),
CMD_WAKE_UP_TRANS = BIT(6),
CMD_WANT_ASYNC_CALLBACK = BIT(7),
};
#define DEF_CMD_PAYLOAD_SIZE 320
// This value is returned when iwl_trans_read_mem32() is called but the hardware is busy.
#define HW_IS_BUSY 0xa5a5a5a5
/**
* struct iwl_device_cmd
*
* For allocation of the command and tx queues, this establishes the overall
* size of the largest command we send to uCode, except for commands that
* aren't fully copied and use other TFD space.
*/
struct iwl_device_cmd {
union {
struct {
struct iwl_cmd_header hdr; /* uCode API */
uint8_t payload[DEF_CMD_PAYLOAD_SIZE];
};
struct {
struct iwl_cmd_header_wide hdr_wide;
uint8_t payload_wide[DEF_CMD_PAYLOAD_SIZE -
sizeof(struct iwl_cmd_header_wide) +
sizeof(struct iwl_cmd_header)];
};
};
} __packed;
/**
* struct iwl_device_tx_cmd - buffer for TX command
* @hdr: the header
* @payload: the payload placeholder
*
* The actual structure is sized dynamically according to need.
*/
struct iwl_device_tx_cmd {
struct iwl_cmd_header hdr;
u8 payload[];
} __packed;
#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
/*
* number of transfer buffers (fragments) per transmit frame descriptor;
* this is just the driver's idea, the hardware supports 20
*/
#define IWL_MAX_CMD_TBS_PER_TFD 2
/* We need 2 entries for the TX command and header, and another one might
* be needed for potential data in the SKB's head. The remaining ones can
* be used for frags.
*/
#define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
/**
* enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
*
* @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
* ring. The transport layer doesn't map the command's buffer to DMA, but
* rather copies it to a previously allocated DMA buffer. This flag tells
* the transport layer not to copy the command, but to map the existing
* buffer (that is passed in) instead. This saves the memcpy and allows
* commands that are bigger than the fixed buffer to be submitted.
* Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
* @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
* chunk internally and free it again after the command completes. This
* can (currently) be used only once per command.
* Note that a TFD entry after a DUP one cannot be a normal copied one.
*/
enum iwl_hcmd_dataflag {
IWL_HCMD_DFL_NOCOPY = BIT(0),
IWL_HCMD_DFL_DUP = BIT(1),
};
/**
* struct iwl_host_cmd - Host command to the uCode
*
* @data: array of chunks that composes the data of the host command
* @resp_pkt: response packet, if %CMD_WANT_SKB was set.
* This variable is used by a Tx command (if the CMD_WANT_SKB bit is requested) and
* is assigned (to meta->source->resp_pkt) when the response is received from the
* firmware. See pcie/tx.c:iwl_pcie_hcmd_complete() for more details.
* @flags: can be CMD_*
* @len: array of the lengths of the chunks in data
* @dataflags: IWL_HCMD_DFL_*
* @id: command id of the host command, for wide commands encoding the
* version and group as well
*/
struct iwl_host_cmd {
const void *data[IWL_MAX_CMD_TBS_PER_TFD];
struct iwl_rx_packet *resp_pkt;
uint32_t flags;
uint32_t id;
uint16_t len[IWL_MAX_CMD_TBS_PER_TFD];
uint8_t dataflags[IWL_MAX_CMD_TBS_PER_TFD];
};
// Originally used by Linux to release the page mapping (says _rx_page_addr). But we don't need this
// in Fuchsia because the mapping info is maintained in io_buf.
//
// However, we keep the function (even it is empty) because calling function has semantic meaning in
// the code, which means the code will no longer accesses the resources after calling this function.
//
static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
{
}
struct iwl_rx_cmd_buffer {
struct iwl_iobuf *_iobuf;
int _offset;
uint8_t status;
};
static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
{
return (char *)iwl_iobuf_virtual(r->_iobuf) + r->_offset;
}
static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
{
return r->_offset;
}
static inline struct iwl_iobuf *rxb_steal_iobuf(struct iwl_rx_cmd_buffer *r)
{
// The Linux driver passes buffers up the stack by increasing the refcount on and returning the
// page using get_page(). For Fuchsia, we take the simpler approach of copying data from the VMO
// directly, and no refcount increment is needed.
return r->_iobuf;
}
// Originally used by Linux to release the page mapping (says _rx_page_addr). But we don't need this
// in Fuchsia because the mapping info is maintained in io_buf.
//
// However, we keep the function (even it is empty) because calling function has semantic meaning in
// the code, which means the code will no longer accesses the resources after calling this function.
//
static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
{
}
#define MAX_NO_RECLAIM_CMDS 6
#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
/*
* Maximum number of HW queues the transport layer
* currently supports
*/
#define IWL_MAX_HW_QUEUES 32
#define IWL_MAX_TVQM_QUEUES 512
#define IWL_MAX_TID_COUNT 8
#define IWL_MGMT_TID 15
#define IWL_FRAME_LIMIT 64
#define IWL_MAX_RX_HW_QUEUES 16
/**
* enum iwl_wowlan_status - WoWLAN image/device status
* @IWL_D3_STATUS_ALIVE: firmware is still running after resume
* @IWL_D3_STATUS_RESET: device was reset while suspended
*/
enum iwl_d3_status {
IWL_D3_STATUS_ALIVE,
IWL_D3_STATUS_RESET,
};
/**
* enum iwl_trans_status: transport status flags
* @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
* @STATUS_DEVICE_ENABLED: APM is enabled
* @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
* @STATUS_INT_ENABLED: interrupts are enabled
* @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
* @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
* @STATUS_FW_ERROR: the fw is in error state
* @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
* are sent
* @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
* @STATUS_TA_ACTIVE: target access is in progress
* @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
*/
enum iwl_trans_status {
STATUS_SYNC_HCMD_ACTIVE,
STATUS_DEVICE_ENABLED,
STATUS_TPOWER_PMI,
STATUS_INT_ENABLED,
STATUS_RFKILL_HW,
STATUS_RFKILL_OPMODE,
STATUS_FW_ERROR,
STATUS_TRANS_GOING_IDLE,
STATUS_TRANS_IDLE,
STATUS_TRANS_DEAD,
STATUS_SUPPRESS_CMD_ERROR_ONCE,
};
static inline size_t iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
{
// Returns the equivalent of get_order(SIZE).
switch (rb_size) {
case IWL_AMSDU_2K:
return 0;
case IWL_AMSDU_4K:
return 0;
case IWL_AMSDU_8K:
return 1;
case IWL_AMSDU_12K:
return 2;
default:
WARN_ON(1);
return 0;
}
}
static inline size_t iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
{
switch (rb_size) {
case IWL_AMSDU_2K:
return 2 * 1024;
case IWL_AMSDU_4K:
return 4 * 1024;
case IWL_AMSDU_8K:
return 8 * 1024;
case IWL_AMSDU_12K:
return 16 * 1024;
default:
WARN_ON(1);
return 0;
}
}
struct iwl_hcmd_names {
uint8_t cmd_id;
const char *const cmd_name;
};
#define HCMD_NAME(x) \
{ \
.cmd_id = x, .cmd_name = #x \
}
struct iwl_hcmd_arr {
const struct iwl_hcmd_names *arr;
int size;
};
#define HCMD_ARR(x) \
{ \
.arr = x, .size = ARRAY_SIZE(x) \
}
/**
* struct iwl_trans_config - transport configuration
*
* @op_mode: pointer to the upper layer.
* @cmd_queue: the index of the command queue.
* Must be set before start_fw.
* @cmd_fifo: the fifo for host commands
* @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
* @no_reclaim_cmds: Some devices erroneously don't set the
* SEQ_RX_FRAME bit on some notifications, this is the
* list of such notifications to filter. Max length is
* %MAX_NO_RECLAIM_CMDS.
* @n_no_reclaim_cmds: # of commands in list
* @rx_buf_size: RX buffer size needed for A-MSDUs
* if unset 4k will be the RX buffer size
* @bc_table_dword: set to true if the BC table expects the byte count to be
* in DWORD (as opposed to bytes)
* @scd_set_active: should the transport configure the SCD for HCMD queue
* @command_groups: array of command groups, each member is an array of the
* commands in the group; for debugging only
* @command_groups_size: number of command groups, to avoid illegal access
* @cb_data_offs: offset inside skb->cb to store transport data at, must have
* space for at least two pointers
* @fw_reset_handshake: firmware supports reset flow handshake
* @queue_alloc_cmd_ver: queue allocation command version, set to 0
* for using the older SCD_QUEUE_CFG, set to the version of
* SCD_QUEUE_CONFIG_CMD otherwise.
*/
struct iwl_trans_config {
struct iwl_op_mode *op_mode;
u8 cmd_queue;
u8 cmd_fifo;
unsigned int cmd_q_wdg_timeout;
const u8 *no_reclaim_cmds;
unsigned int n_no_reclaim_cmds;
enum iwl_amsdu_size rx_buf_size;
bool bc_table_dword;
bool scd_set_active;
const struct iwl_hcmd_arr *command_groups;
int command_groups_size;
u8 cb_data_offs;
bool fw_reset_handshake;
u8 queue_alloc_cmd_ver;
};
struct iwl_trans_dump_data {
uint32_t len;
uint8_t data[];
};
struct iwl_trans;
struct iwl_trans_txq_scd_cfg {
uint8_t fifo;
uint8_t sta_id;
uint8_t tid;
bool aggregate;
int frame_limit;
};
/**
* struct iwl_trans_rxq_dma_data - RX queue DMA data
* @fr_bd_cb: DMA address of free BD cyclic buffer
* @fr_bd_wid: Initial write index of the free BD cyclic buffer
* @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
* @ur_bd_cb: DMA address of used BD cyclic buffer
*/
struct iwl_trans_rxq_dma_data {
uint64_t fr_bd_cb;
uint32_t fr_bd_wid;
uint64_t urbd_stts_wrptr;
uint64_t ur_bd_cb;
};
/**
* struct iwl_trans_ops - transport specific operations
*
* All the handlers MUST be implemented
*
* @start_hw: starts the HW. If low_power is true, the NIC needs to be taken
* out of a low power state. From that point on, the HW can send
* interrupts. May sleep.
* @op_mode_leave: Turn off the HW RF kill indication if on
* May sleep
* @start_fw: allocates and inits all the resources for the transport
* layer. Also kick a fw image.
* May sleep
* @fw_alive: called when the fw sends alive notification. If the fw provides
* the SCD base address in SRAM, then provide it here, or 0 otherwise.
* May sleep
* @stop_device: stops the whole device (embedded CPU put to reset) and stops
* the HW. If low_power is true, the NIC will be put in low power state.
* From that point on, the HW will be stopped but will still issue an
* interrupt if the HW RF kill switch is triggered.
* This callback must do the right thing and not crash even if %start_hw()
* was called but not &start_fw(). May sleep.
* @d3_suspend: put the device into the correct mode for WoWLAN during
* suspend. This is optional, if not implemented WoWLAN will not be
* supported. This callback may sleep.
* @d3_resume: resume the device after WoWLAN, enabling the opmode to
* talk to the WoWLAN image to get its status. This is optional, if not
* implemented WoWLAN will not be supported. This callback may sleep.
* @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
* If RFkill is asserted in the middle of a SYNC host command, it must
* return -ERFKILL straight away.
* May sleep only if CMD_ASYNC is not set
* @tx: send an skb. The transport relies on the op_mode to zero the
* the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
* the CSUM will be taken care of (TCP CSUM and IP header in case of
* IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
* header if it is IPv4.
* Must be atomic
* @reclaim: free packet until ssn. Returns a list of freed packets.
* Must be atomic
* @txq_enable: setup a queue. To setup an AC queue, use the
* iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
* this one. The op_mode must not configure the HCMD queue. The scheduler
* configuration may be %NULL, in which case the hardware will not be
* configured. If true is returned, the operation mode needs to increment
* the sequence number of the packets routed to this queue because of a
* hardware scheduler bug. May sleep.
* @txq_disable: de-configure a Tx queue to send AMPDUs
* Must be atomic
* @txq_set_shared_mode: change Tx queue shared/unshared marking
* @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
* @wait_txq_empty: wait until specific tx queue is empty. May sleep.
* @freeze_txq_timer: prevents the timer of the queue from firing until the
* queue is set to awake. Must be atomic.
* @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
* that the transport needs to refcount the calls since this function
* will be called several times with block = true, and then the queues
* need to be unblocked only after the same number of calls with
* block = false.
* @write8: write a uint8_t to a register at offset ofs from the BAR
* @write32: write a uint32_t to a register at offset ofs from the BAR
* @read32: read a uint32_t register at offset ofs from the BAR
* @read_prph: read a DWORD from a periphery register
* @write_prph: write a DWORD to a periphery register
* @read_mem: read device's SRAM in DWORD
* @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
* will be zeroed.
* @configure: configure parameters required by the transport layer from
* the op_mode. May be called several times before start_fw, can't be
* called after that.
* @set_pmi: set the power pmi state
* @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
* Sleeping is not allowed between grab_nic_access and
* release_nic_access.
* @release_nic_access: let the NIC go to sleep. The "flags" parameter
* must be the same one that was sent before to the grab_nic_access.
* @set_bits_mask - set SRAM register according to value and mask.
* @ref: grab a reference to the transport/FW layers, disallowing
* certain low power states
* @unref: release a reference previously taken with @ref. Note that
* initially the reference count is 1, making an initial @unref
* necessary to allow low power states.
* @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
* TX'ed commands and similar. The buffer will be vfree'd by the caller.
* Note that the transport must fill in the proper file headers.
* @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
* of the trans debugfs
*/
struct iwl_trans_ops {
zx_status_t (*start_hw)(struct iwl_trans *iwl_trans, bool low_power);
void (*op_mode_leave)(struct iwl_trans *iwl_trans);
#if IS_ENABLED(CPTCFG_IWLXVT)
int (*start_fw_dbg)(struct iwl_trans *trans, const struct fw_img *fw,
bool run_in_rfkill, uint32_t fw_dbg_flags);
int (*test_mode_cmd)(struct iwl_trans *trans, bool enable);
#endif
zx_status_t (*start_fw)(struct iwl_trans *trans,
const struct fw_img *fw, bool run_in_rfkill);
void (*fw_alive)(struct iwl_trans *trans, uint32_t scd_addr);
void (*stop_device)(struct iwl_trans *trans);
void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
zx_status_t (*d3_resume)(struct iwl_trans *trans,
enum iwl_d3_status *status, bool test,
bool reset);
zx_status_t (*send_cmd)(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
zx_status_t (*tx)(struct iwl_trans *trans,
struct ieee80211_mac_packet *pkt,
struct iwl_device_tx_cmd *dev_cmd, int queue);
void (*reclaim)(struct iwl_trans *trans, int queue, int ssn);
bool (*txq_enable)(struct iwl_trans *trans, int queue, uint16_t ssn,
const struct iwl_trans_txq_scd_cfg *cfg,
zx_duration_t queue_wdg_timeout);
void (*txq_disable)(struct iwl_trans *trans, int queue,
bool configure_scd);
/* 22000 functions */
zx_status_t (*txq_alloc)(struct iwl_trans *trans, u32 flags,
u32 sta_mask, u8 tid, int size,
zx_duration_t queue_wdg_timeout,
size_t *out_qid);
void (*txq_free)(struct iwl_trans *trans, int queue);
zx_status_t (*rxq_dma_data)(struct iwl_trans *trans, int queue,
struct iwl_trans_rxq_dma_data *data);
void (*txq_set_shared_mode)(struct iwl_trans *trans, uint32_t txq_id,
bool shared);
zx_status_t (*wait_tx_queues_empty)(struct iwl_trans *trans,
uint32_t txq_bm);
zx_status_t (*wait_txq_empty)(struct iwl_trans *trans, int queue);
void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
bool freeze);
void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
void (*write8)(struct iwl_trans *trans, uint32_t ofs, uint8_t val);
void (*write32)(struct iwl_trans *trans, uint32_t ofs, uint32_t val);
uint32_t (*read32)(struct iwl_trans *trans, uint32_t ofs);
uint32_t (*read_prph)(struct iwl_trans *trans, uint32_t ofs);
void (*write_prph)(struct iwl_trans *trans, uint32_t ofs, uint32_t val);
zx_status_t (*read_mem)(struct iwl_trans *trans, uint32_t addr,
void *buf, size_t dwords);
zx_status_t (*write_mem)(struct iwl_trans *trans, uint32_t addr,
const void *buf, size_t dwords);
void (*configure)(struct iwl_trans *trans,
const struct iwl_trans_config *trans_cfg);
void (*set_pmi)(struct iwl_trans *trans, bool state);
zx_status_t (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
bool (*grab_nic_access)(struct iwl_trans *trans);
void (*release_nic_access)(struct iwl_trans *trans,
unsigned long *flags);
void (*set_bits_mask)(struct iwl_trans *trans, uint32_t reg,
uint32_t mask, uint32_t value);
void (*ref)(struct iwl_trans *trans);
void (*unref)(struct iwl_trans *trans);
zx_status_t (*suspend)(struct iwl_trans *trans);
void (*resume)(struct iwl_trans *trans);
struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
uint32_t dump_mask);
void (*debugfs_cleanup)(struct iwl_trans *trans);
void (*sync_nmi)(struct iwl_trans *trans);
int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
int (*set_reduce_power)(struct iwl_trans *trans, const void *data,
u32 len);
void (*interrupts)(struct iwl_trans *trans, bool enable);
int (*imr_dma_data)(struct iwl_trans *trans, u32 dst_addr, u64 src_addr,
u32 byte_cnt);
};
/**
* enum iwl_trans_state - state of the transport layer
*
* @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
* @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
* @IWL_TRANS_FW_ALIVE: FW has sent an alive response
*/
enum iwl_trans_state {
IWL_TRANS_NO_FW,
IWL_TRANS_FW_STARTED,
IWL_TRANS_FW_ALIVE,
};
/**
* DOC: Platform power management
*
* There are two types of platform power management: system-wide
* (WoWLAN) and runtime.
*
* In system-wide power management the entire platform goes into a low
* power state (e.g. idle or suspend to RAM) at the same time and the
* device is configured as a wakeup source for the entire platform.
* This is usually triggered by userspace activity (e.g. the user
* presses the suspend button or a power management daemon decides to
* put the platform in low power mode). The device's behavior in this
* mode is dictated by the wake-on-WLAN configuration.
*
* In runtime power management, only the devices which are themselves
* idle enter a low power state. This is done at runtime, which means
* that the entire system is still running normally. This mode is
* usually triggered automatically by the device driver and requires
* the ability to enter and exit the low power modes in a very short
* time, so there is not much impact in usability.
*
* The terms used for the device's behavior are as follows:
*
* - D0: the device is fully powered and the host is awake;
* - D3: the device is in low power mode and only reacts to
* specific events (e.g. magic-packet received or scan
* results found);
* - D0I3: the device is in low power mode and reacts to any
* activity (e.g. RX);
*
* These terms reflect the power modes in the firmware and are not to
* be confused with the physical device power state. The NIC can be
* in D0I3 mode even if, for instance, the PCI device is in D3 state.
*/
/**
* enum iwl_plat_pm_mode - platform power management mode
*
* This enumeration describes the device's platform power management
* behavior when in idle mode (i.e. runtime power management) or when
* in system-wide suspend (i.e WoWLAN).
*
* @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
* device. At runtime, this means that nothing happens and the
* device always remains in active. In system-wide suspend mode,
* it means that the all connections will be closed automatically
* by mac80211 before the platform is suspended.
* @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
* For runtime power management, this mode is not officially
* supported.
* @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode.
*/
enum iwl_plat_pm_mode {
IWL_PLAT_PM_MODE_DISABLED,
IWL_PLAT_PM_MODE_D3,
IWL_PLAT_PM_MODE_D0I3,
};
/* Max time to wait for trans to become idle/non-idle on d0i3
* enter/exit (in msecs).
*/
#define IWL_TRANS_IDLE_TIMEOUT (CPTCFG_IWL_TIMEOUT_FACTOR * 2000)
/**
* struct iwl_dram_data
* @physical: page phy pointer
* @block: pointer to the allocated block/page
* @size: size of the block/page
*/
struct iwl_dram_data {
dma_addr_t physical;
struct iwl_iobuf *block;
int size;
};
/**
* struct iwl_self_init_dram - dram data used by self init process
* @fw: lmac and umac dram data
* @fw_cnt: total number of items in array
* @paging: paging dram data
* @paging_cnt: total number of items in array
*/
struct iwl_self_init_dram {
struct iwl_dram_data *fw;
int fw_cnt;
struct iwl_dram_data *paging;
int paging_cnt;
};
struct iwl_dma_ptr {
struct iwl_iobuf *io_buf;
dma_addr_t dma;
void *addr;
size_t size;
};
struct iwl_cmd_meta {
/* only for SYNC commands, iff the reply skb is wanted */
struct iwl_host_cmd *source;
u32 flags;
u32 tbs;
};
/*
* The FH will write back to the first TB only, so we need to copy some data
* into the buffer regardless of whether it should be mapped or not.
* This indicates how big the first TB must be to include the scratch buffer
* and the assigned PN.
* Since PN location is 8 bytes at offset 12, it's 20 now.
* If we make it bigger then allocations will be bigger and copy slower, so
* that's probably not useful.
*/
#define IWL_FIRST_TB_SIZE 20
#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
struct iwl_pcie_txq_entry {
struct iwl_iobuf *cmd; // Used to store the command
struct iwl_iobuf *dup_io_buf;
struct iwl_cmd_meta meta;
};
struct iwl_pcie_first_tb_buf {
u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
};
/**
* struct iwl_txq - Tx Queue for DMA
* @q: generic Rx/Tx queue descriptor
* @tfds: transmit frame descriptors (DMA memory)
* @first_tb_bufs: start of command headers, including scratch buffers, for
* the writeback -- this is DMA memory and an array holding one buffer
* for each command on the queue
* @first_tb_dma: DMA address for the first_tb_bufs start
* @entries: transmit entries (driver state)
* @lock: queue lock
* @stuck_timer: timer that fires if queue gets stuck
* @trans: pointer back to transport (for timer)
* @need_update: indicates need to update read/write index
* @ampdu: true if this queue is an ampdu queue for an specific RA/TID
* @wd_timeout: queue watchdog timeout (jiffies) - per queue
* @frozen: tx stuck queue timer is frozen
* @frozen_expiry_remainder: remember how long until the timer fires
* @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
* @write_ptr: 1-st empty entry (index) host_w
* @read_ptr: last used entry (index) host_r
* @dma_addr: physical addr for BD's
* @n_window: safe queue window
* @id: queue id
* @low_mark: low watermark, resume queue if free space more than this
* @high_mark: high watermark, stop queue if free space less than this
*
* A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
* descriptors) and required locking structures.
*
* Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
* always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
* there might be HW changes in the future). For the normal TX
* queues, n_window, which is the size of the software queue data
* is also 256; however, for the command queue, n_window is only
* 32 since we don't need so many commands pending. Since the HW
* still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
* This means that we end up with the following:
* HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
* SW entries: | 0 | ... | 31 |
* where N is a number between 0 and 7. This means that the SW
* data is a window overlayed over the HW queue.
*/
struct iwl_txq {
struct iwl_iobuf *tfds;
struct iwl_iobuf *first_tb_bufs;
dma_addr_t first_tb_dma;
struct iwl_pcie_txq_entry *entries;
/* lock for syncing changes on the queue */
mtx_t lock;
unsigned long frozen_expiry_remainder;
struct iwl_irq_timer *stuck_timer;
struct iwl_trans_pcie *trans_pcie;
struct iwl_trans *trans;
bool need_update;
bool frozen;
bool ampdu;
int block;
zx_duration_t wd_timeout;
struct sk_buff_head overflow_q;
struct iwl_dma_ptr bc_tbl;
int write_ptr;
int read_ptr;
dma_addr_t dma_addr;
int n_window;
u32 id;
int low_mark;
int high_mark;
bool overflow_tx;
};
/**
* struct iwl_trans_txqs - transport tx queues data
*
* @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
* @page_offs: offset from skb->cb to mac header page pointer
* @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
* @queue_used - bit mask of used queues
* @queue_stopped - bit mask of stopped queues
* @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
* @queue_alloc_cmd_ver: queue allocation command version
*/
struct iwl_trans_txqs {
unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
struct dma_pool *bc_pool;
size_t bc_tbl_size;
bool bc_table_dword;
u8 page_offs;
u8 dev_cmd_offs;
struct {
u8 fifo;
u8 q_id;
unsigned int wdg_timeout;
} cmd;
struct {
u8 max_tbs;
u16 size;
u8 addr_size;
} tfd;
struct iwl_dma_ptr scd_bc_tbls;
u8 queue_alloc_cmd_ver;
};
/**
* struct iwl_trans - transport common data
*
* @initialized - indicates whether the hardware has been initialized
* @ops - pointer to iwl_trans_ops
* @op_mode - pointer to the op_mode
* @trans_cfg: the trans-specific configuration part
* @cfg - pointer to the configuration
* @drv - pointer to iwl_drv
* @status: a bit-mask of transport status flags
* @dev - pointer to struct device * that represents the device
* @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
* 0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
* @hw_rf_id a uint32_t with the device RF ID
* @hw_id: a uint32_t with the ID of the device / sub-device.
* Set during transport allocation.
* @hw_id_str: a string with info about HW ID. Set during transport allocation.
* @hw_rev_step: The mac step of the HW
* @pm_support: set to true in start_hw if link pm is supported
* @ltr_enabled: set to true if the LTR is enabled
* @wide_cmd_header: true when ucode supports wide command header format
* @wait_command_queue: wait queue for sync commands
* @num_rx_queues: number of RX queues allocated by the transport;
* the transport must set this before calling iwl_drv_start()
* @iml_len: the length of the image loader
* @iml: a pointer to the image loader itself
* @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
* The user should use iwl_trans_{alloc,free}_tx_cmd.
* @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
* starting the firmware, used for tracing
* @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
* start of the 802.11 header in the @rx_mpdu_cmd
* @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
* @dbg_dest_tlv: points to the destination TLV for debug
* @dbg_conf_tlv: array of pointers to configuration TLVs for debug
* @dbg_trigger_tlv: array of pointers to triggers TLVs for debug
* @dbg_n_dest_reg: num of reg_ops in %dbg_dest_tlv
* @num_blocks: number of blocks in fw_mon
* @fw_mon: address of the buffers for firmware monitor
* @system_pm_mode: the system-wide power management mode in use.
* This mode is set dynamically, depending on the WoWLAN values
* configured from the userspace at runtime.
* @iwl_trans_txqs: transport tx queues data.
*/
struct iwl_trans {
bool initialized; // TODO(b/295943326): Remove the workaround after fixing the issue.
struct iwl_trans_ops *ops; // removed 'const' for unit test.
struct iwl_op_mode *op_mode;
const struct iwl_cfg_trans_params *trans_cfg;
const struct iwl_cfg *cfg;
struct iwl_drv *drv;
struct iwl_tm_gnl_dev *tmdev;
enum iwl_trans_state state;
unsigned long status;
struct device *dev;
u32 max_skb_frags;
u32 hw_rev;
u32 hw_rev_step;
u32 hw_rf_id;
u32 hw_id;
char hw_id_str[52];
uint8_t rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
bool pm_support;
bool ltr_enabled;
const struct iwl_hcmd_arr *command_groups;
int command_groups_size;
bool wide_cmd_header;
sync_completion_t wait_command_queue;
uint8_t num_rx_queues;
size_t iml_len;
uint8_t *iml;
/* The following fields are internal only */
struct dentry *dbgfs_dir;
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
struct iwl_dbg_cfg dbg_cfg;
#endif
struct iwl_apply_point_data apply_points[IWL_FW_INI_APPLY_NUM];
struct iwl_apply_point_data apply_points_ext[IWL_FW_INI_APPLY_NUM];
bool external_ini_loaded;
bool ini_valid;
const struct iwl_fw_dbg_dest_tlv_v1 *dbg_dest_tlv;
const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX];
struct iwl_fw_dbg_trigger_tlv *const *dbg_trigger_tlv;
uint8_t dbg_n_dest_reg;
int num_blocks;
struct iwl_dram_data fw_mon[IWL_FW_INI_APPLY_NUM];
struct iwl_self_init_dram init_dram;
enum iwl_plat_pm_mode system_pm_mode;
const char *name;
struct iwl_trans_txqs txqs;
/* pointer to trans specific struct */
/*Ensure that this pointer will always be aligned to sizeof pointer */
char trans_specific[] __aligned(sizeof(void *));
};
const char *iwl_get_cmd_string(struct iwl_trans *trans, uint32_t id);
int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
static inline void iwl_trans_configure(struct iwl_trans *trans,
const struct iwl_trans_config *trans_cfg)
{
trans->op_mode = trans_cfg->op_mode;
trans->ops->configure(trans, trans_cfg);
WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
}
static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power)
{
return trans->ops->start_hw(trans, low_power);
}
static inline int iwl_trans_start_hw(struct iwl_trans *trans)
{
return trans->ops->start_hw(trans, true);
}
static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
{
if (trans->ops->op_mode_leave) {
trans->ops->op_mode_leave(trans);
}
trans->op_mode = NULL;
trans->state = IWL_TRANS_NO_FW;
}
static inline void iwl_trans_fw_alive(struct iwl_trans *trans,
uint32_t scd_addr)
{
trans->state = IWL_TRANS_FW_ALIVE;
trans->ops->fw_alive(trans, scd_addr);
}
static inline int iwl_trans_start_fw(struct iwl_trans *trans,
const struct fw_img *fw,
bool run_in_rfkill)
{
WARN_ON_ONCE(!trans->rx_mpdu_cmd);
clear_bit(STATUS_FW_ERROR, &trans->status);
return trans->ops->start_fw(trans, fw, run_in_rfkill);
}
#if IS_ENABLED(CPTCFG_IWLXVT)
enum iwl_xvt_dbg_flags {
IWL_XVT_DBG_ADC_SAMP_TEST = BIT(0),
IWL_XVT_DBG_ADC_SAMP_SYNC_RX = BIT(1),
};
static inline int iwl_trans_start_fw_dbg(struct iwl_trans *trans,
const struct fw_img *fw,
bool run_in_rfkill, uint32_t dbg_flags)
{
if (WARN_ON_ONCE(!trans->ops->start_fw_dbg && dbg_flags)) {
return -ENOTSUPP;
}
clear_bit(STATUS_FW_ERROR, &trans->status);
if (trans->ops->start_fw_dbg) {
return trans->ops->start_fw_dbg(trans, fw, run_in_rfkill,
dbg_flags);
}
return trans->ops->start_fw(trans, fw, run_in_rfkill);
}
#endif
static inline void _iwl_trans_stop_device(struct iwl_trans *trans,
bool low_power)
{
trans->ops->stop_device(trans);
trans->state = IWL_TRANS_NO_FW;
}
static inline void iwl_trans_stop_device(struct iwl_trans *trans)
{
_iwl_trans_stop_device(trans, true);
}
static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
bool reset)
{
if (trans->ops->d3_suspend) {
trans->ops->d3_suspend(trans, test, reset);
}
}
static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
enum iwl_d3_status *status, bool test,
bool reset)
{
if (!trans->ops->d3_resume) {
return 0;
}
return trans->ops->d3_resume(trans, status, test, reset);
}
static inline int iwl_trans_suspend(struct iwl_trans *trans)
{
if (!trans->ops->suspend) {
return 0;
}
return trans->ops->suspend(trans);
}
static inline void iwl_trans_resume(struct iwl_trans *trans)
{
if (trans->ops->resume) {
trans->ops->resume(trans);
}
}
static inline struct iwl_trans_dump_data *
iwl_trans_dump_data(struct iwl_trans *trans, uint32_t dump_mask)
{
if (!trans->ops->dump_data) {
return NULL;
}
return trans->ops->dump_data(trans, dump_mask);
}
static inline struct iwl_device_tx_cmd *
iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
{
// Allocate a maximum-length packet (`struct iwl_device_cmd`), but return it in the
// variable-length form of header (`struct iwl_device_tx_cmd`).
return (struct iwl_device_tx_cmd *)calloc(
1, sizeof(struct iwl_device_cmd));
}
// This function returns couple error codes. The ZX_ERR_BAD_STATE is the most special one.
// It is called ERFKILL originally. We remap it to ZX_ERR_BAD_STATE in Fuchsia.
zx_status_t iwl_trans_send_cmd(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
struct iwl_device_tx_cmd *dev_cmd)
{
free(dev_cmd);
}
static inline zx_status_t iwl_trans_tx(struct iwl_trans *trans,
struct ieee80211_mac_packet *pkt,
struct iwl_device_tx_cmd *dev_cmd,
int queue)
{
if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) {
IWL_ERR(trans, "%s() trans->status inidicates FW_ERROR\n",
__func__);
return ZX_ERR_INTERNAL;
}
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return ZX_ERR_BAD_STATE;
}
return trans->ops->tx(trans, pkt, dev_cmd, queue);
}
static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
int ssn)
{
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return;
}
trans->ops->reclaim(trans, queue, ssn);
}
static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
bool configure_scd)
{
trans->ops->txq_disable(trans, queue, configure_scd);
}
static inline bool
iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, uint16_t ssn,
const struct iwl_trans_txq_scd_cfg *cfg,
zx_duration_t queue_wdg_timeout)
{
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return false;
}
return trans->ops->txq_enable(trans, queue, ssn, cfg,
queue_wdg_timeout);
}
static inline int
iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
struct iwl_trans_rxq_dma_data *data)
{
if (!trans->ops->rxq_dma_data) {
IWL_WARN(trans,
"RxQ DMA data function pointer is not defined.");
return ZX_ERR_NOT_SUPPORTED;
}
return trans->ops->rxq_dma_data(trans, queue, data);
}
static inline void iwl_trans_txq_free(struct iwl_trans *trans, int queue)
{
if (WARN_ON_ONCE(!trans->ops->txq_free)) {
return;
}
trans->ops->txq_free(trans, queue);
}
static inline zx_status_t
iwl_trans_txq_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask, u8 tid,
int size, unsigned int wdg_timeout, size_t *out_qid)
{
if (WARN_ON_ONCE(!trans->ops->txq_alloc)) {
return ZX_ERR_NOT_SUPPORTED;
}
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return ZX_ERR_IO;
}
return trans->ops->txq_alloc(trans, flags, sta_mask, tid, size,
wdg_timeout, out_qid);
}
#if 0 // NEEDS_PORTING
static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans* trans,
int queue, bool shared_mode) {
if (trans->ops->txq_set_shared_mode) {
trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
}
}
static inline void iwl_trans_txq_enable(struct iwl_trans* trans, int queue,
int fifo, int sta_id, int tid,
int frame_limit, uint16_t ssn,
unsigned int queue_wdg_timeout) {
struct iwl_trans_txq_scd_cfg cfg = {
.fifo = fifo,
.sta_id = sta_id,
.tid = tid,
.frame_limit = frame_limit,
.aggregate = sta_id >= 0,
};
iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
}
#endif // NEEDS_PORTING
static inline void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue,
uint8_t fifo,
zx_duration_t queue_wdg_timeout)
{
struct iwl_trans_txq_scd_cfg cfg = {
.fifo = fifo,
.sta_id = UINT8_MAX,
.tid = IWL_MAX_TID_COUNT,
.aggregate = false,
.frame_limit = IWL_FRAME_LIMIT,
};
iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
}
#if 0 // NEEDS_PORTING
static inline void iwl_trans_freeze_txq_timer(struct iwl_trans* trans,
unsigned long txqs,
bool freeze) {
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return;
}
if (trans->ops->freeze_txq_timer) {
trans->ops->freeze_txq_timer(trans, txqs, freeze);
}
}
#endif // NEEDS_PORTING
static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, bool block)
{
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return;
}
if (trans->ops->block_txq_ptrs) {
trans->ops->block_txq_ptrs(trans, block);
}
}
static inline zx_status_t
iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, uint32_t txqs)
{
if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) {
return ZX_ERR_NOT_SUPPORTED;
}
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return ZX_ERR_BAD_STATE;
}
return trans->ops->wait_tx_queues_empty(trans, txqs);
}
static inline zx_status_t iwl_trans_wait_txq_empty(struct iwl_trans *trans,
int queue)
{
if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) {
return ZX_ERR_NOT_SUPPORTED;
}
if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
return ZX_ERR_BAD_STATE;
}
return trans->ops->wait_txq_empty(trans, queue);
}
#if IS_ENABLED(CPTCFG_IWLXVT)
static inline int iwl_trans_test_mode_cmd(struct iwl_trans *trans, bool enable)
{
if (trans->ops->test_mode_cmd) {
return trans->ops->test_mode_cmd(trans, enable);
}
return -ENOTSUPP;
}
#endif
static inline void iwl_trans_write8(struct iwl_trans *trans, uint32_t ofs,
uint8_t val)
{
trans->ops->write8(trans, ofs, val);
}
static inline void iwl_trans_write32(struct iwl_trans *trans, uint32_t ofs,
uint32_t val)
{
trans->ops->write32(trans, ofs, val);
}
static inline uint32_t iwl_trans_read32(struct iwl_trans *trans, uint32_t ofs)
{
return trans->ops->read32(trans, ofs);
}
static inline uint32_t iwl_trans_read_prph(struct iwl_trans *trans,
uint32_t ofs)
{
return trans->ops->read_prph(trans, ofs);
}
static inline void iwl_trans_write_prph(struct iwl_trans *trans, uint32_t ofs,
uint32_t val)
{
return trans->ops->write_prph(trans, ofs, val);
}
static inline zx_status_t iwl_trans_read_mem(struct iwl_trans *trans,
uint32_t addr, void *buf,
size_t dwords)
{
return trans->ops->read_mem(trans, addr, buf, dwords);
}
#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \
do { \
if (__builtin_constant_p(bufsize)) \
BUILD_BUG_ON((bufsize) % sizeof(uint32_t)); \
iwl_trans_read_mem(trans, addr, buf, \
(bufsize) / sizeof(uint32_t)); \
} while (0)
static inline uint32_t iwl_trans_read_mem32(struct iwl_trans *trans,
uint32_t addr)
{
uint32_t value;
if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) {
return HW_IS_BUSY;
}
return value;
}
static inline zx_status_t iwl_trans_write_mem(struct iwl_trans *trans,
uint32_t addr, const void *buf,
size_t dwords)
{
return trans->ops->write_mem(trans, addr, buf, dwords);
}
static inline uint32_t iwl_trans_write_mem32(struct iwl_trans *trans,
uint32_t addr, uint32_t val)
{
return iwl_trans_write_mem(trans, addr, &val, 1);
}
static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
{
if (trans->ops->set_pmi) {
trans->ops->set_pmi(trans, state);
}
}
static inline zx_status_t iwl_trans_sw_reset(struct iwl_trans *trans,
bool retake_ownership)
{
if (trans->ops->sw_reset) {
return trans->ops->sw_reset(trans, retake_ownership);
}
return ZX_OK;
}
static inline void iwl_trans_set_bits_mask(struct iwl_trans *trans,
uint32_t reg, uint32_t mask,
uint32_t value)
{
trans->ops->set_bits_mask(trans, reg, mask, value);
}
#define iwl_trans_grab_nic_access(trans, flags) \
((trans)->ops->grab_nic_access(trans))
static inline void iwl_trans_release_nic_access(struct iwl_trans *trans,
unsigned long *flags)
{
trans->ops->release_nic_access(trans, flags);
}
static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
{
if (WARN_ON_ONCE(!trans->op_mode))
return;
/* prevent double restarts due to the same erroneous FW */
if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
iwl_op_mode_nic_error(trans->op_mode, sync);
trans->state = IWL_TRANS_NO_FW;
}
}
static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
{
return trans->state == IWL_TRANS_FW_ALIVE;
}
static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
{
if (trans->ops->sync_nmi)
trans->ops->sync_nmi(trans);
}
void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
u32 sw_err_bit);
/*****************************************************
* transport helper functions
*****************************************************/
struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, struct device *dev,
struct iwl_trans_ops *ops,
const struct iwl_cfg_trans_params *cfg_trans);
int iwl_trans_init(struct iwl_trans *trans);
void iwl_trans_free(struct iwl_trans *trans);
void iwl_trans_ref(struct iwl_trans *trans);
void iwl_trans_unref(struct iwl_trans *trans);
/*****************************************************
* driver (transport) register/unregister functions
******************************************************/
/* PCI */
int __must_check iwl_pci_register_driver(void);
void iwl_pci_unregister_driver(void);
//
// These 2 functions will be called in queue/tx.c. In order to avoid the include loop,
// we move them from pcie/internal.h to here.
//
zx_status_t iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
struct iwl_dma_ptr *ptr, size_t size);
void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
__END_CDECLS
#endif // SRC_CONNECTIVITY_WLAN_DRIVERS_THIRD_PARTY_INTEL_IWLWIFI_IWL_TRANS_H_