blob: 5ee34f6d6ef4cdf46c7f9a01480fdaa3c17424be [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include "third_party/iwlwifi/iwl-trans.h"
#include "third_party/iwlwifi/mvm/fw-api.h"
#include "third_party/iwlwifi/mvm/mvm.h"
#include "third_party/iwlwifi/platform/ieee80211_include.h"
#include "third_party/iwlwifi/platform/rcu.h"
static bool is_multicast_ether_addr(uint8_t addr[6]) { return (addr[0] & 0x1) != 0; }
static inline zx_status_t iwl_mvm_check_pn(struct iwl_mvm* mvm, struct ieee80211_frame_header* hdr,
struct ieee80211_rx_status* stats, int queue,
struct iwl_mvm_sta* mvmsta) {
struct iwl_mvm_key_pn* ptk_pn;
int res;
uint8_t tid, keyidx;
uint8_t pn[fuchsia_wlan_ieee80211_CCMP_PN_LEN];
/* do PN checking */
/* multicast and non-data only arrives on default queue */
if (!ieee80211_is_data(hdr) || is_multicast_ether_addr(hdr->addr1)) {
return ZX_OK;
}
/* do not check PN for open AP */
if (!(stats->flag & RX_FLAG_DECRYPTED)) {
return ZX_OK;
}
/*
* avoid checking for default queue - we don't want to replicate
* all the logic that's necessary for checking the PN on fragmented
* frames, leave that to mac80211
*/
if (queue == 0) {
return ZX_OK;
}
/* if we are here - this for sure is either CCMP or GCMP */
if (mvmsta == NULL) {
IWL_ERR(mvm, "expected hw-decrypted unicast frame for station\n");
return ZX_ERR_BAD_STATE;
}
keyidx = stats->extiv[3] >> 6;
ptk_pn = iwl_rcu_load(mvmsta->ptk_pn[keyidx]);
if (!ptk_pn) {
return ZX_ERR_BAD_STATE;
}
if (ieee80211_is_data_qos(hdr)) {
tid = ieee80211_get_tid(hdr);
} else {
tid = 0;
}
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
if (tid >= IWL_MAX_TID_COUNT) {
return ZX_ERR_NOT_SUPPORTED;
}
/* load pn */
pn[0] = stats->extiv[0];
pn[1] = stats->extiv[1];
pn[2] = stats->extiv[4];
pn[3] = stats->extiv[5];
pn[4] = stats->extiv[6];
pn[5] = stats->extiv[7];
res = memcmp(pn, ptk_pn->q[queue].pn[tid], fuchsia_wlan_ieee80211_CCMP_PN_LEN);
if (res < 0) {
return ZX_ERR_INVALID_ARGS;
}
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) {
return ZX_ERR_INVALID_ARGS;
}
memcpy(ptk_pn->q[queue].pn[tid], pn, fuchsia_wlan_ieee80211_CCMP_PN_LEN);
stats->flag |= RX_FLAG_PN_VALIDATED;
return ZX_OK;
}
// iwl_mvm_create_packet formats the packets for passing to mac80211.
// Note: this is derived from iwl_mvm_create_skb(), but the Fuchsia version formats the packet
// in-place.
static size_t iwl_mvm_create_packet(struct ieee80211_frame_header* hdr, size_t len,
size_t crypt_len, struct ieee80211_rx_status* status,
struct iwl_rx_cmd_buffer* rxb) {
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_rx_mpdu_desc* desc = (void*)pkt->data;
size_t hdrlen = ieee80211_get_header_len(hdr);
size_t datalen = len - hdrlen;
size_t padlen = 0;
/* The firmware may align the packet to DWORD.
* The padding is inserted after the IV.
* After copying the header + IV skip the padding if
* present before copying packet data.
*/
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
padlen += 2;
}
// Fuchsia requires that the crypto header is stripped out.
padlen += crypt_len;
#if 0 // NEEDS_PORTING
/* If frame is small enough to fit in skb->head, pull it completely.
* If not, only pull ieee80211_hdr (including crypto if present, and
* an additional 8 bytes for SNAP/ethertype, see below) so that
* splice() or TCP coalesce are more efficient.
*
* Since, in addition, ieee80211_data_to_8023() always pull in at
* least 8 bytes (possibly more for mesh) we can do the same here
* to save the cost of doing it later. That still doesn't pull in
* the actual IP header since the typical case has a SNAP header.
* If the latter changes (there are efforts in the standards group
* to do so) we should revisit this and ieee80211_data_to_8023().
*/
headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
hdrlen += crypt_len;
skb_put_data(skb, hdr, hdrlen);
skb_put_data(skb, (uint8_t*)hdr + hdrlen + padlen, headlen - hdrlen);
#endif // NEEDS_PORTING
// For Fuchsia, we take out padlen, which includes any crypt header if present.
if (padlen > 0) {
if (padlen < 4 && ((hdrlen + padlen) % 4) == 0) {
// There is padding equivalent to padding for 4-byte alignment, so we we indicate this to SME
// using a flag instead of manually copying the packet contents.
status->rx_info.rx_flags |= WLAN_RX_INFO_FLAGS_FRAME_BODY_PADDING_4;
} else {
datalen -= padlen;
memmove((char*)hdr + hdrlen, (char*)hdr + hdrlen + padlen, datalen);
}
}
#if 0 // NEEDS_PORTING
fraglen = len - headlen;
if (fraglen) {
int offset = (void*)hdr + headlen + padlen - rxb_addr(rxb) + rxb_offset(rxb);
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, fraglen, rxb->truesize);
}
#endif // NEEDS_PORTING
return hdrlen + datalen;
}
/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm* mvm,
struct ieee80211_frame_header* frame, size_t frame_len,
struct ieee80211_rx_status* rx_status, int queue,
struct iwl_mvm_sta* sta) {
#if 0 // NEEDS_PORTING
struct ieee80211_rx_status* rx_status = IEEE80211_SKB_RXCB(skb);
#endif // NEEDS_PORTING
if (iwl_mvm_check_pn(mvm, frame, rx_status, queue, sta) != ZX_OK) {
return;
}
#if 0 // NEEDS_PORTING
unsigned int radiotap_len = 0;
if (rx_status->flag & RX_FLAG_RADIOTAP_HE) {
radiotap_len += sizeof(struct ieee80211_radiotap_he);
}
if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) {
radiotap_len += sizeof(struct ieee80211_radiotap_he_mu);
}
__skb_push(skb, radiotap_len);
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
#endif // NEEDS_PORTING
// Send to MLME
// TODO(fxbug.dev/43218) Need to revisit to handle multiple IFs
wlan_rx_packet_t rx_packet = {
.mac_frame_buffer = (uint8_t*)frame,
.mac_frame_size = frame_len,
.info = rx_status->rx_info,
};
wlan_softmac_ifc_recv(&mvm->mvmvif[0]->ifc, &rx_packet);
}
static int iwl_mvm_get_signal_strength(struct iwl_mvm* mvm, int energy_a, int energy_b) {
int max_energy;
energy_a = energy_a ? -energy_a : S8_MIN;
energy_b = energy_b ? -energy_b : S8_MIN;
max_energy = MAX(energy_a, energy_b);
IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", energy_a, energy_b, max_energy);
return max_energy;
}
static zx_status_t iwl_mvm_rx_crypto(struct iwl_mvm* mvm, struct ieee80211_frame_header* hdr,
struct ieee80211_rx_status* stats, uint16_t phy_info,
struct iwl_rx_mpdu_desc* desc, uint32_t pkt_flags,
size_t* crypt_len) {
uint16_t status = le16_to_cpu(desc->status);
/*
* Drop UNKNOWN frames in aggregation, unless in monitor mode
* (where we don't have the keys).
* We limit this to aggregation because in TKIP this is a valid
* scenario, since we may not have the (correct) TTAK (phase 1
* key) in the firmware.
*/
if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
(status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_UNKNOWN &&
!mvm->monitor_on) {
return ZX_ERR_BAD_STATE;
}
if (!ieee80211_has_protected(hdr) ||
(status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) {
return ZX_OK;
}
/* TODO: handle packets encrypted with unknown alg */
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
case IWL_RX_MPDU_STATUS_SEC_CCM:
case IWL_RX_MPDU_STATUS_SEC_GCM:
#if 0 // NEEDS_PORTING
BUILD_BUG_ON(fuchsia_wlan_ieee80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
#endif // NEEDS_PORTING
/* alg is CCM: check MIC only */
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
return ZX_ERR_BAD_STATE;
}
stats->flag |= RX_FLAG_DECRYPTED;
#if 0 // NEEDS_PORTING
if (pkt_flags & FH_RSCSR_RADA_EN) { stats->flag |= RX_FLAG_MIC_STRIPPED; }
#endif // NEEDS_PORTING
// Fuchsia needs the extiv copied, since it will remove the crypt header from the packet.
memcpy(stats->extiv, (char*)hdr + ieee80211_get_header_len(hdr), 8);
*crypt_len = fuchsia_wlan_ieee80211_CCMP_HDR_LEN;
return ZX_OK;
#if 0 // NEEDS_PORTING
case IWL_RX_MPDU_STATUS_SEC_TKIP:
/* Don't drop the frame and decrypt it in SW */
if (!fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
!(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) {
return 0;
}
if (mvm->trans->cfg->gen2 && !(status & RX_MPDU_RES_STATUS_MIC_OK)) {
stats->flag |= RX_FLAG_MMIC_ERROR;
}
*crypt_len = IEEE80211_TKIP_IV_LEN;
/* fall through if TTAK OK */
case IWL_RX_MPDU_STATUS_SEC_WEP:
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) { return -1; }
stats->flag |= RX_FLAG_DECRYPTED;
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_WEP) {
*crypt_len = IEEE80211_WEP_IV_LEN;
}
if (pkt_flags & FH_RSCSR_RADA_EN) {
stats->flag |= RX_FLAG_ICV_STRIPPED;
if (mvm->trans->cfg->gen2) { stats->flag |= RX_FLAG_MMIC_STRIPPED; }
}
return 0;
case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { return -1; }
stats->flag |= RX_FLAG_DECRYPTED;
return 0;
#endif // NEEDS_PORTING
default:
/* Expected in monitor (not having the keys) */
if (!mvm->monitor_on) {
IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
}
}
return 0;
}
#if 0 // NEEDS_PORTING
static void iwl_mvm_rx_csum(struct ieee80211_sta* sta, struct sk_buff* skb,
struct iwl_rx_mpdu_desc* desc) {
struct iwl_mvm_sta* mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct iwl_mvm_vif* mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
uint16_t flags = le16_to_cpu(desc->l3l4_flags);
uint8_t l3_prot = (uint8_t)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> IWL_RX_L3_PROTO_POS);
if (mvmvif->features & NETIF_F_RXCSUM && flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
(flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || l3_prot == IWL_RX_L3_TYPE_IPV6 ||
l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
/*
* returns true if a packet is a duplicate and should be dropped.
* Updates AMSDU PN tracking info
*/
static bool iwl_mvm_is_dup(struct ieee80211_sta* sta, int queue,
struct ieee80211_rx_status* rx_status, struct ieee80211_hdr* hdr,
struct iwl_rx_mpdu_desc* desc) {
struct iwl_mvm_sta* mvm_sta;
struct iwl_mvm_rxq_dup_data* dup_data;
uint8_t tid, sub_frame_idx;
if (WARN_ON(IS_ERR_OR_NULL(sta))) { return false; }
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
dup_data = &mvm_sta->dup_data[queue];
/*
* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
*/
if (ieee80211_is_ctl(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1)) {
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
return false;
}
if (ieee80211_is_data_qos(hdr->frame_control)) { /* frame has qos control */
tid = ieee80211_get_tid(hdr);
} else {
tid = IWL_MAX_TID_COUNT;
}
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
sub_frame_idx = desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
dup_data->last_seq[tid] == hdr->seq_ctrl &&
dup_data->last_sub_frame[tid] >= sub_frame_idx)) {
return true;
}
/* Allow same PN as the first subframe for following sub frames */
if (dup_data->last_seq[tid] == hdr->seq_ctrl && sub_frame_idx > dup_data->last_sub_frame[tid] &&
desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) {
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
}
dup_data->last_seq[tid] = hdr->seq_ctrl;
dup_data->last_sub_frame[tid] = sub_frame_idx;
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
return false;
}
int iwl_mvm_notify_rx_queue(struct iwl_mvm* mvm, uint32_t rxq_mask, const uint8_t* data,
uint32_t count) {
struct iwl_rxq_sync_cmd* cmd;
uint32_t data_size = sizeof(*cmd) + count;
int ret;
/* should be DWORD aligned */
if (WARN_ON(count & 3 || count > IWL_MULTI_QUEUE_SYNC_MSG_MAX_SIZE)) { return -EINVAL; }
cmd = kzalloc(data_size, GFP_KERNEL);
if (!cmd) { return -ENOMEM; }
cmd->rxq_mask = cpu_to_le32(rxq_mask);
cmd->count = cpu_to_le32(count);
cmd->flags = 0;
memcpy(cmd->payload, data, count);
ret = iwl_mvm_send_cmd_pdu(mvm, WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD), 0,
data_size, cmd);
kfree(cmd);
return ret;
}
/*
* Returns true if sn2 - buffer_size < sn1 < sn2.
* To be used only in order to compare reorder buffer head with NSSN.
* We fully trust NSSN unless it is behind us due to reorder timeout.
* Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
*/
static bool iwl_mvm_is_sn_less(uint16_t sn1, uint16_t sn2, uint16_t buffer_size) {
return ieee80211_sn_less(sn1, sn2) && !ieee80211_sn_less(sn1, sn2 - buffer_size);
}
#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
static void iwl_mvm_release_frames(struct iwl_mvm* mvm, struct ieee80211_sta* sta,
struct napi_struct* napi, struct iwl_mvm_baid_data* baid_data,
struct iwl_mvm_reorder_buffer* reorder_buf, uint16_t nssn) {
struct iwl_mvm_reorder_buf_entry* entries =
&baid_data->entries[reorder_buf->queue * baid_data->entries_per_queue];
uint16_t ssn = reorder_buf->head_sn;
iwl_assert_lock_held(&reorder_buf->lock);
/* ignore nssn smaller than head sn - this can happen due to timeout */
if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) { goto set_timer; }
while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
int index = ssn % reorder_buf->buf_size;
struct sk_buff_head* skb_list = &entries[index].e.frames;
struct sk_buff* skb;
ssn = ieee80211_sn_inc(ssn);
/*
* Empty the list. Will have more than one frame for A-MSDU.
* Empty list is valid as well since nssn indicates frames were
* received.
*/
while ((skb = __skb_dequeue(skb_list))) {
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, reorder_buf->queue, sta);
reorder_buf->num_stored--;
}
}
reorder_buf->head_sn = nssn;
set_timer:
if (reorder_buf->num_stored && !reorder_buf->removed) {
uint16_t index = reorder_buf->head_sn % reorder_buf->buf_size;
while (skb_queue_empty(&entries[index].e.frames)) {
index = (index + 1) % reorder_buf->buf_size;
}
/* modify timer to match next frame's expiration time */
mod_timer(&reorder_buf->reorder_timer,
entries[index].e.reorder_time + 1 + RX_REORDER_BUF_TIMEOUT_MQ);
} else {
del_timer(&reorder_buf->reorder_timer);
}
}
void iwl_mvm_reorder_timer_expired(struct timer_list* t) {
struct iwl_mvm_reorder_buffer* buf = from_timer(buf, t, reorder_timer);
struct iwl_mvm_baid_data* baid_data = iwl_mvm_baid_data_from_reorder_buf(buf);
struct iwl_mvm_reorder_buf_entry* entries =
&baid_data->entries[buf->queue * baid_data->entries_per_queue];
int i;
uint16_t sn = 0, index = 0;
bool expired = false;
bool cont = false;
spin_lock(&buf->lock);
if (!buf->num_stored || buf->removed) {
spin_unlock(&buf->lock);
return;
}
for (i = 0; i < buf->buf_size; i++) {
index = (buf->head_sn + i) % buf->buf_size;
if (skb_queue_empty(&entries[index].e.frames)) {
/*
* If there is a hole and the next frame didn't expire
* we want to break and not advance SN
*/
cont = false;
continue;
}
if (!cont &&
!time_after(jiffies, entries[index].e.reorder_time + RX_REORDER_BUF_TIMEOUT_MQ)) {
break;
}
expired = true;
/* continue until next hole after this expired frames */
cont = true;
sn = ieee80211_sn_add(buf->head_sn, i + 1);
}
if (expired) {
struct ieee80211_sta* sta;
struct iwl_mvm_sta* mvmsta;
uint8_t sta_id = baid_data->sta_id;
rcu_read_lock();
sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
mvmsta = iwl_mvm_sta_from_mac80211(sta);
/* SN is set to the last expired frame + 1 */
IWL_DEBUG_HT(buf->mvm, "Releasing expired frames for sta %u, sn %d\n", sta_id, sn);
iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, sta, baid_data->tid);
iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, buf, sn);
rcu_read_unlock();
} else {
/*
* If no frame expired and there are stored frames, index is now
* pointing to the first unexpired frame - modify timer
* accordingly to this frame.
*/
mod_timer(&buf->reorder_timer,
entries[index].e.reorder_time + 1 + RX_REORDER_BUF_TIMEOUT_MQ);
}
spin_unlock(&buf->lock);
}
static void iwl_mvm_del_ba(struct iwl_mvm* mvm, int queue, struct iwl_mvm_delba_data* data) {
struct iwl_mvm_baid_data* ba_data;
struct ieee80211_sta* sta;
struct iwl_mvm_reorder_buffer* reorder_buf;
uint8_t baid = data->baid;
if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) { return; }
rcu_read_lock();
ba_data = rcu_dereference(mvm->baid_map[baid]);
if (WARN_ON_ONCE(!ba_data)) { goto out; }
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { goto out; }
reorder_buf = &ba_data->reorder_buf[queue];
/* release all frames that are in the reorder buffer to the stack */
spin_lock_bh(&reorder_buf->lock);
iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
ieee80211_sn_add(reorder_buf->head_sn, reorder_buf->buf_size));
spin_unlock_bh(&reorder_buf->lock);
del_timer_sync(&reorder_buf->reorder_timer);
out:
rcu_read_unlock();
}
#endif // NEEDS_PORTING
void iwl_mvm_rx_queue_notif(struct iwl_mvm* mvm, struct iwl_rx_cmd_buffer* rxb, int queue) {
#if 0 // NEEDS_PORTING
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_rxq_sync_notification* notif;
struct iwl_mvm_internal_rxq_notif* internal_notif;
notif = (void*)pkt->data;
internal_notif = (void*)notif->payload;
if (internal_notif->sync && mvm->queue_sync_cookie != internal_notif->cookie) {
WARN_ONCE(1, "Received expired RX queue sync message\n");
return;
}
switch (internal_notif->type) {
case IWL_MVM_RXQ_EMPTY:
break;
case IWL_MVM_RXQ_NOTIF_DEL_BA:
iwl_mvm_del_ba(mvm, queue, (void*)internal_notif->data);
break;
default:
WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
}
if (internal_notif->sync && !atomic_dec_return(&mvm->queue_sync_counter)) {
wake_up(&mvm->rx_sync_waitq);
}
#endif // NEEDS_PORTING
}
/*
* Returns true if the MPDU was buffered\dropped, false if it should be passed
* to upper layer.
*/
static bool iwl_mvm_reorder(struct iwl_mvm* mvm, int queue, struct iwl_rx_mpdu_desc* desc) {
// TODO(fxbug.dev/79993) (fxbug.dev/51295)
#if 0 // NEEDS_PORTING
struct ieee80211_hdr* hdr = (struct ieee80211_hdr*)skb->data;
struct iwl_mvm_sta* mvm_sta;
struct iwl_mvm_baid_data* baid_data;
struct iwl_mvm_reorder_buffer* buffer;
struct sk_buff* tail;
uint32_t reorder = le32_to_cpu(desc->reorder_data);
bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
bool last_subframe = desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
uint8_t tid = ieee80211_get_tid(hdr);
uint8_t sub_frame_idx = desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
struct iwl_mvm_reorder_buf_entry* entries;
int index;
uint16_t nssn, sn;
uint8_t baid;
baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> IWL_RX_MPDU_REORDER_BAID_SHIFT;
/*
* This also covers the case of receiving a Block Ack Request
* outside a BA session; we'll pass it to mac80211 and that
* then sends a delBA action frame.
*/
if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) { return false; }
/* no sta yet */
if (WARN_ONCE(IS_ERR_OR_NULL(sta), "Got valid BAID without a valid station assigned\n")) {
return false;
}
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
/* not a data packet or a bar */
if (!ieee80211_is_back_req(hdr->frame_control) &&
(!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1))) {
return false;
}
if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) { return false; }
baid_data = rcu_dereference(mvm->baid_map[baid]);
if (!baid_data) {
IWL_DEBUG_RX(mvm,
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d "
"reorder 0x%x\n",
baid, reorder);
return false;
}
if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
"baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", baid,
baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, tid)) {
return false;
}
nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> IWL_RX_MPDU_REORDER_SN_SHIFT;
buffer = &baid_data->reorder_buf[queue];
entries = &baid_data->entries[queue * baid_data->entries_per_queue];
spin_lock_bh(&buffer->lock);
if (!buffer->valid) {
if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
spin_unlock_bh(&buffer->lock);
return false;
}
buffer->valid = true;
}
if (ieee80211_is_back_req(hdr->frame_control)) {
iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn);
goto drop;
}
/*
* If there was a significant jump in the nssn - adjust.
* If the SN is smaller than the NSSN it might need to first go into
* the reorder buffer, in which case we just release up to it and the
* rest of the function will take care of storing it and releasing up to
* the nssn
*/
if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, buffer->buf_size) ||
!ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
uint16_t min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, min_sn);
}
/* drop any oudated packets */
if (ieee80211_sn_less(sn, buffer->head_sn)) { goto drop; }
/* release immediately if allowed by nssn and no stored frames */
if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, buffer->buf_size) &&
(!amsdu || last_subframe)) {
buffer->head_sn = nssn;
}
/* No need to update AMSDU last SN - we are moving the head */
spin_unlock_bh(&buffer->lock);
return false;
}
/*
* release immediately if there are no stored frames, and the sn is
* equal to the head.
* This can happen due to reorder timer, where NSSN is behind head_sn.
* When we released everything, and we got the next frame in the
* sequence, according to the NSSN we can't release immediately,
* while technically there is no hole and we can move forward.
*/
if (!buffer->num_stored && sn == buffer->head_sn) {
if (!amsdu || last_subframe) { buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); }
/* No need to update AMSDU last SN - we are moving the head */
spin_unlock_bh(&buffer->lock);
return false;
}
index = sn % buffer->buf_size;
/*
* Check if we already stored this frame
* As AMSDU is either received or not as whole, logic is simple:
* If we have frames in that position in the buffer and the last frame
* originated from AMSDU had a different SN then it is a retransmission.
* If it is the same SN then if the subframe index is incrementing it
* is the same AMSDU - otherwise it is a retransmission.
*/
tail = skb_peek_tail(&entries[index].e.frames);
if (tail && !amsdu) {
goto drop;
} else if (tail && (sn != buffer->last_amsdu || buffer->last_sub_index >= sub_frame_idx)) {
goto drop;
}
/* put in reorder buffer */
__skb_queue_tail(&entries[index].e.frames, skb);
buffer->num_stored++;
entries[index].e.reorder_time = jiffies;
if (amsdu) {
buffer->last_amsdu = sn;
buffer->last_sub_index = sub_frame_idx;
}
/*
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
* The reason is that NSSN advances on the first sub-frame, and may
* cause the reorder buffer to advance before all the sub-frames arrive.
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
* SN 1. NSSN for first sub frame will be 3 with the result of driver
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
* already ahead and it will be dropped.
* If the last sub-frame is not on this queue - we will get frame
* release notification with up to date NSSN.
*/
if (!amsdu || last_subframe) {
iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn);
}
spin_unlock_bh(&buffer->lock);
return true;
drop:
kfree_skb(skb);
spin_unlock_bh(&buffer->lock);
return true;
#endif // NEEDS_PORTING
return false;
}
#if 0 // NEEDS_PORTING
static void iwl_mvm_agg_rx_received(struct iwl_mvm* mvm, uint32_t reorder_data, uint8_t baid) {
unsigned long now = jiffies;
unsigned long timeout;
struct iwl_mvm_baid_data* data;
rcu_read_lock();
data = rcu_dereference(mvm->baid_map[baid]);
if (!data) {
IWL_DEBUG_RX(mvm,
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d "
"reorder 0x%x\n",
baid, reorder_data);
goto out;
}
if (!data->timeout) { goto out; }
timeout = data->timeout;
/*
* Do not update last rx all the time to avoid cache bouncing
* between the rx queues.
* Update it every timeout. Worst case is the session will
* expire after ~ 2 * timeout, which doesn't matter that much.
*/
if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) { /* Update is atomic */
data->last_rx = now;
}
out:
rcu_read_unlock();
}
static void iwl_mvm_flip_address(uint8_t* addr) {
int i;
uint8_t mac_addr[ETH_ALEN];
for (i = 0; i < ETH_ALEN; i++) {
mac_addr[i] = addr[ETH_ALEN - i - 1];
}
ether_addr_copy(addr, mac_addr);
}
struct iwl_mvm_rx_phy_data {
enum iwl_rx_phy_info_type info_type;
__le32 d0, d1, d2, d3;
__le16 d4;
};
static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm* mvm, struct iwl_mvm_rx_phy_data* phy_data,
uint32_t rate_n_flags,
struct ieee80211_radiotap_he_mu* he_mu) {
uint32_t phy_data2 = le32_to_cpu(phy_data->d2);
uint32_t phy_data3 = le32_to_cpu(phy_data->d3);
uint16_t phy_data4 = le16_to_cpu(phy_data->d4);
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
he_mu->flags1 |=
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, phy_data4),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, phy_data2);
he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, phy_data3);
he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, phy_data2);
he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, phy_data3);
}
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
he_mu->flags2 |=
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, phy_data4),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, phy_data2);
he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, phy_data3);
he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, phy_data2);
he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, phy_data3);
}
}
static void iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data* phy_data,
uint32_t rate_n_flags, struct ieee80211_radiotap_he* he,
struct ieee80211_radiotap_he_mu* he_mu,
struct ieee80211_rx_status* rx_status) {
/*
* Unfortunately, we have to leave the mac80211 data
* incorrect for the case that we receive an HE-MU
* transmission and *don't* have the HE phy data (due
* to the bits being used for TSF). This shouldn't
* happen though as management frames where we need
* the TSF/timers are not be transmitted in HE-MU.
*/
uint8_t ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
uint8_t offs = 0;
rx_status->bw = RATE_INFO_BW_HE_RU;
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
switch (ru) {
case 0 ... 36:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
offs = ru;
break;
case 37 ... 52:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
offs = ru - 37;
break;
case 53 ... 60:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
offs = ru - 53;
break;
case 61 ... 64:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
offs = ru - 61;
break;
case 65 ... 66:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
offs = ru - 65;
break;
case 67:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
break;
case 68:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
break;
}
he->data2 |= le16_encode_bits(offs, IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) {
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
}
if (he_mu) {
#define CHECK_BW(bw) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_##bw##MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
CHECK_BW(20);
CHECK_BW(40);
CHECK_BW(80);
CHECK_BW(160);
he_mu->flags2 |= le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
}
}
static void iwl_mvm_decode_he_phy_data(struct iwl_mvm* mvm, struct iwl_mvm_rx_phy_data* phy_data,
struct ieee80211_radiotap_he* he,
struct ieee80211_radiotap_he_mu* he_mu,
struct ieee80211_rx_status* rx_status, uint32_t rate_n_flags,
int queue) {
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_NONE:
case IWL_RX_PHY_INFO_TYPE_CCK:
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
return;
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
he->data4 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
he->data4 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
he->data4 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
he->data4 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
/* fall through */
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
/* HE common */
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
he->data3 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_UPLINK),
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
}
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
he->data4 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
he->data5 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
he->data6 |=
le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_DOPPLER),
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->d4, IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->d4, IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
he_mu->flags2 |= le16_encode_bits(
le16_get_bits(phy_data->d4, IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
/* fall through */
case IWL_RX_PHY_INFO_TYPE_HE_MU:
he_mu->flags2 |= le16_encode_bits(
le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
/* fall through */
case IWL_RX_PHY_INFO_TYPE_HE_TB:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, he, he_mu, rx_status);
break;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
break;
default:
/* nothing */
break;
}
}
static void iwl_mvm_rx_he(struct iwl_mvm* mvm, struct sk_buff* skb,
struct iwl_mvm_rx_phy_data* phy_data, uint32_t rate_n_flags,
uint16_t phy_info, int queue) {
struct ieee80211_rx_status* rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_he* he = NULL;
struct ieee80211_radiotap_he_mu* he_mu = NULL;
uint32_t he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
uint8_t stbc, ltf;
static const struct ieee80211_radiotap_he known = {
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
};
static const struct ieee80211_radiotap_he_mu mu_known = {
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
};
unsigned int radiotap_len = 0;
he = skb_put_data(skb, &known, sizeof(known));
radiotap_len += sizeof(known);
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
radiotap_len += sizeof(mu_known);
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
}
/* temporarily hide the radiotap data */
__skb_pull(skb, radiotap_len);
/* report the AMPDU-EOF bit on single frames */
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
}
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) {
iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, rate_n_flags, queue);
}
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
/* toggle is switched whenever new aggregation starts */
if (toggle_bit != mvm->ampdu_toggle) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
}
}
if (he_type == RATE_MCS_HE_TYPE_EXT_SU && rate_n_flags & RATE_MCS_HE_106T_MSK) {
rx_status->bw = RATE_INFO_BW_HE_RU;
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
}
/* actually data is filled in mac80211 */
if (he_type == RATE_MCS_HE_TYPE_SU || he_type == RATE_MCS_HE_TYPE_EXT_SU) {
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
}
stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->nss = ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1;
rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
rx_status->encoding = RX_ENC_HE;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
if (rate_n_flags & RATE_MCS_BF_MSK) { rx_status->enc_flags |= RX_ENC_FLAG_BF; }
rx_status->he_dcm = !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
#define CHECK_TYPE(F) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_##F != \
(RATE_MCS_HE_TYPE_##F >> RATE_MCS_HE_TYPE_POS))
CHECK_TYPE(SU);
CHECK_TYPE(EXT_SU);
CHECK_TYPE(MU);
CHECK_TYPE(TRIG);
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
if (rate_n_flags & RATE_MCS_BF_MSK) {
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
}
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> RATE_MCS_HE_GI_LTF_POS) {
case 0:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
}
if (he_type == RATE_MCS_HE_TYPE_MU) {
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
} else {
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
}
break;
case 1:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
}
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
break;
case 2:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
}
break;
case 3:
if ((he_type == RATE_MCS_HE_TYPE_SU || he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
rate_n_flags & RATE_MCS_SGI_MSK) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
}
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
}
he->data5 |= le16_encode_bits(ltf, IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
}
static void iwl_mvm_decode_lsig(struct sk_buff* skb, struct iwl_mvm_rx_phy_data* phy_data) {
struct ieee80211_rx_status* rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_lsig* lsig;
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
lsig = skb_put(skb, sizeof(*lsig));
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
break;
default:
break;
}
}
#endif // NEEDS_PORTING
void iwl_mvm_rx_mpdu_mq(struct iwl_mvm* mvm, struct napi_struct* napi,
struct iwl_rx_cmd_buffer* rxb, int queue) {
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_rx_mpdu_desc* desc = (void*)pkt->data;
struct ieee80211_frame_header* hdr;
uint32_t len = le16_to_cpu(desc->mpdu_len);
uint32_t rate_n_flags;
uint16_t phy_info = le16_to_cpu(desc->phy_info);
struct iwl_mvm_sta* sta = NULL;
uint8_t channel, energy_a, energy_b;
size_t crypt_len = 0, desc_size;
struct ieee80211_rx_status rx_status = {};
uint16_t sts_phy_info = le16_to_cpu(desc->phy_info);
uint8_t band;
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/84773)
struct iwl_mvm_rx_phy_data phy_data = {
.d4 = desc->phy_data4,
.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
};
#endif // NEEDS_PORTING
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) {
return;
}
if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
channel = desc->v3.channel;
// gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
energy_a = desc->v3.energy_a;
energy_b = desc->v3.energy_b;
desc_size = sizeof(*desc);
#if 0 // NEEDS_PORTING
phy_data.d0 = desc->v3.phy_data0;
phy_data.d1 = desc->v3.phy_data1;
phy_data.d2 = desc->v3.phy_data2;
phy_data.d3 = desc->v3.phy_data3;
#endif // NEEDS_PORTING
} else {
rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
channel = desc->v1.channel;
// gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
energy_a = desc->v1.energy_a;
energy_b = desc->v1.energy_b;
desc_size = IWL_RX_DESC_SIZE_V1;
#if 0 // NEEDS_PORTING
phy_data.d0 = desc->v1.phy_data0;
phy_data.d1 = desc->v1.phy_data1;
phy_data.d2 = desc->v1.phy_data2;
phy_data.d3 = desc->v1.phy_data3;
#endif // NEEDS_PORTING
}
#if 0 // NEEDS_PORTING
if (sts_phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) {
phy_data.info_type = le32_get_bits(phy_data.d1, IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
}
#endif // NEEDS_PORTING
hdr = (void*)(pkt->data + desc_size);
#if 0 // NEEDS_PORTING
/* Dont use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mvm, "alloc_skb failed\n");
return;
}
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
/*
* If the device inserted padding it means that (it thought)
* the 802.11 header wasn't a multiple of 4 bytes long. In
* this case, reserve two bytes at the start of the SKB to
* align the payload properly in case we end up copying it.
*/
skb_reserve(skb, 2);
}
#endif // NEEDS_PORTING
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW20;
break;
case RATE_MCS_CHAN_WIDTH_40:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW40;
break;
case RATE_MCS_CHAN_WIDTH_80:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW80;
break;
case RATE_MCS_CHAN_WIDTH_160:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW160;
break;
}
#if 0 // NEEDS_PORTING
if (rate_n_flags & RATE_MCS_HE_MSK) {
iwl_mvm_rx_he(mvm, rx_status, &phy_data, rate_n_flags, phy_info, queue);
}
iwl_mvm_decode_lsig(skb, &phy_data);
#endif // NEEDS_PORTING
if (iwl_mvm_rx_crypto(mvm, hdr, &rx_status, phy_info, desc, le32_to_cpu(pkt->len_n_flags),
&crypt_len) != ZX_OK) {
return;
}
/*
* Keep packets with CRC errors (and with overrun) for monitor mode
* (otherwise the firmware discards them) but mark them as bad.
*/
if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", le16_to_cpu(desc->status));
// rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
rx_status.rx_info.rx_flags |= WLAN_RX_INFO_FLAGS_FCS_INVALID;
}
#if 0 // NEEDS_PORTING
/* set the preamble flag if appropriate */
if (rate_n_flags & RATE_MCS_CCK_MSK && sts_phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) {
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
}
if (likely(!(sts_phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
uint64_t tsf_on_air_rise;
if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
} else {
tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
}
rx_status->mactime = tsf_on_air_rise;
/* TSF as indicated by the firmware is at INA time */
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
}
rx_status->device_timestamp = gp2_on_air_rise;
rx_status->freq = ieee80211_channel_to_frequency(channel, band);
#endif // NEEDS_PORTING
rx_status.rx_info.rssi_dbm = iwl_mvm_get_signal_strength(mvm, energy_a, energy_b);
rx_status.rx_info.valid_fields |= WLAN_RX_INFO_VALID_RSSI;
band = iwl_mvm_get_channel_band(channel);
rx_status.rx_info.channel.primary = channel;
/* update aggregation data for monitor sake on default queue */
if (!queue && (sts_phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
bool toggle_bit = sts_phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
#if 0 // NEEDS_PORTING
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->ampdu_reference = mvm->ampdu_ref;
#endif // NEEDS_PORTING
/* toggle is switched whenever new aggregation starts */
if (toggle_bit != mvm->ampdu_toggle) {
mvm->ampdu_ref++;
mvm->ampdu_toggle = toggle_bit;
}
}
iwl_rcu_read_lock(mvm->dev);
if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
uint8_t id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
sta = iwl_rcu_load(mvm->fw_id_to_mac_id[id]);
}
} else if (!is_multicast_ether_addr(hdr->addr2)) {
/*
* This is fine since we prevent two stations with the same
* address from being added.
*/
sta = iwl_mvm_find_sta_by_addr(mvm, hdr->addr2);
}
#if 0 // NEEDS_PORTING
if (sta) {
struct iwl_mvm_sta* mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct ieee80211_vif* tx_blocked_vif = rcu_dereference(mvm->csa_tx_blocked_vif);
uint8_t baid =
(uint8_t)((le32_to_cpu(desc->reorder_data) & IWL_RX_MPDU_REORDER_BAID_MASK) >>
IWL_RX_MPDU_REORDER_BAID_SHIFT);
struct iwl_fw_dbg_trigger_tlv* trig;
struct ieee80211_vif* vif = mvmsta->vif;
if (!mvm->tcm.paused && len >= sizeof(*hdr) && !is_multicast_ether_addr(hdr->addr1) &&
ieee80211_is_data(hdr->frame_control) &&
time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) {
schedule_delayed_work(&mvm->tcm.work, 0);
}
/*
* We have tx blocked stations (with CS bit). If we heard
* frames from a blocked station on a new channel we can
* TX to it again.
*/
if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
struct iwl_mvm_vif* mvmvif = iwl_mvm_vif_from_mac80211(tx_blocked_vif);
if (mvmvif->csa_target_freq == rx_status->freq) {
iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, false);
}
}
rs_update_last_rssi(mvm, mvmsta, rx_status);
trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), FW_DBG_TRIGGER_RSSI);
if (trig && ieee80211_is_beacon(hdr->frame_control)) {
struct iwl_fw_dbg_trigger_low_rssi* rssi_trig;
int32_t rssi;
rssi_trig = (void*)trig->data;
rssi = le32_to_cpu(rssi_trig->rssi);
if (rx_status->signal < rssi) { iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, NULL); }
}
if (ieee80211_is_data(hdr->frame_control)) { iwl_mvm_rx_csum(sta, skb, desc); }
#ifdef CPTCFG_IWLMVM_TDLS_PEER_CACHE
/*
* these packets are from the AP or the existing TDLS peer.
* In both cases an existing station.
*/
iwl_mvm_tdls_peer_cache_pkt(mvm, hdr, len, queue);
#endif /* CPTCFG_IWLMVM_TDLS_PEER_CACHE */
if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
kfree_skb(skb);
goto out;
}
/*
* Our hardware de-aggregates AMSDUs but copies the mac header
* as it to the de-aggregated MPDUs. We need to turn off the
* AMSDU bit in the QoS control ourselves.
* In addition, HW reverses addr3 and addr4 - reverse it back.
*/
if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
!WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
uint8_t* qc = ieee80211_get_qos_ctl(hdr);
*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
if (mvm->trans->cfg->device_family == IWL_DEVICE_FAMILY_9000) {
iwl_mvm_flip_address(hdr->addr3);
if (ieee80211_has_a4(hdr->frame_control)) { iwl_mvm_flip_address(hdr->addr4); }
}
}
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
uint32_t reorder_data = le32_to_cpu(desc->reorder_data);
iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
}
}
if (!(rate_n_flags & RATE_MCS_CCK_MSK) && rate_n_flags & RATE_MCS_SGI_MSK) {
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
}
if (rate_n_flags & RATE_HT_MCS_GF_MSK) {
rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
}
if (rate_n_flags & RATE_MCS_LDPC_MSK) {
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
}
#endif // NEEDS_PORTING
if (rate_n_flags & RATE_MCS_HT_MSK) {
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/36683)
uint8_t stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
#endif // NEEDS_PORTING
rx_status.rx_info.phy = WLAN_PHY_TYPE_HT;
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/36684)
uint8_t stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->nss = ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1;
rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
rx_status->encoding = RX_ENC_VHT;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
if (rate_n_flags & RATE_MCS_BF_MSK) {
rx_status->enc_flags |= RX_ENC_FLAG_BF;
}
#endif // NEEDS_PORTING
rx_status.rx_info.phy = WLAN_PHY_TYPE_VHT;
} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
int rate;
if (ZX_OK != iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, band, &rate)) {
IWL_WARN(mvm, "Error converting rate to mac80211 idx");
goto out;
}
if (ZX_OK != mac80211_idx_to_data_rate(band, rate, &rx_status.rx_info.data_rate)) {
IWL_ERR(mvm, "Cannot convert mac80211 index (%d) to data rate for MLME (band=%d)", rate,
band);
goto out;
}
if (rate < 0 || rate > 0xFF) {
IWL_WARN(mvm, "Invalid rate flags 0x%x, band %d", rate_n_flags, band);
goto out;
}
// rx_status->rate_idx = rate;
rx_status.rx_info.phy =
phy_info & RX_RES_PHY_FLAGS_MOD_CCK ? WLAN_PHY_TYPE_HR : WLAN_PHY_TYPE_OFDM;
}
rx_status.rx_info.valid_fields |= WLAN_RX_INFO_VALID_DATA_RATE;
#if 0 // NEEDS_PORTING
/* management stuff on default queue */
if (!queue) {
if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)) &&
mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_ENABLED)) {
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
}
if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))) {
rx_status->boottime_ns = ktime_get_boot_ns();
}
}
#endif // NEEDS_PORTING
len = iwl_mvm_create_packet(hdr, len, crypt_len, &rx_status, rxb);
if (!iwl_mvm_reorder(mvm, queue, desc)) {
iwl_mvm_pass_packet_to_mac80211(mvm, hdr, len, &rx_status, queue, sta);
}
out:
iwl_rcu_read_unlock(mvm->dev);
}
void iwl_mvm_rx_monitor_ndp(struct iwl_mvm* mvm, struct napi_struct* napi,
struct iwl_rx_cmd_buffer* rxb, int queue) {
#if 0 // NEEDS_PORTING
struct ieee80211_rx_status* rx_status;
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_rx_no_data* desc = (void*)pkt->data;
uint32_t rate_n_flags = le32_to_cpu(desc->rate);
uint32_t gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
uint32_t rssi = le32_to_cpu(desc->rssi);
uint32_t info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
uint16_t phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
struct ieee80211_sta* sta = NULL;
struct sk_buff* skb;
uint8_t channel, energy_a, energy_b;
struct iwl_mvm_rx_phy_data phy_data = {
.d0 = desc->phy_info[0],
.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
};
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) { return; }
/* Currently only NDP type is supported */
if (info_type != RX_NO_DATA_INFO_TYPE_NDP) { return; }
energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
phy_data.info_type = le32_get_bits(desc->phy_info[1], IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
/* Dont use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mvm, "alloc_skb failed\n");
return;
}
rx_status = IEEE80211_SKB_RXCB(skb);
/* 0-length PSDU */
rx_status->flag |= RX_FLAG_NO_PSDU;
/* currently this is the only type for which we get this notif */
rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
break;
case RATE_MCS_CHAN_WIDTH_40:
rx_status->bw = RATE_INFO_BW_40;
break;
case RATE_MCS_CHAN_WIDTH_80:
rx_status->bw = RATE_INFO_BW_80;
break;
case RATE_MCS_CHAN_WIDTH_160:
rx_status->bw = RATE_INFO_BW_160;
break;
}
if (rate_n_flags & RATE_MCS_HE_MSK) {
iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, phy_info, queue);
}
iwl_mvm_decode_lsig(skb, &phy_data);
rx_status->device_timestamp = gp2_on_air_rise;
rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
rx_status->freq = ieee80211_channel_to_frequency(channel, rx_status->band);
iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, energy_b);
rcu_read_lock();
if (!(rate_n_flags & RATE_MCS_CCK_MSK) && rate_n_flags & RATE_MCS_SGI_MSK) {
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
}
if (rate_n_flags & RATE_HT_MCS_GF_MSK) { rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; }
if (rate_n_flags & RATE_MCS_LDPC_MSK) { rx_status->enc_flags |= RX_ENC_FLAG_LDPC; }
if (rate_n_flags & RATE_MCS_HT_MSK) {
uint8_t stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
uint8_t stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
rx_status->encoding = RX_ENC_VHT;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
if (rate_n_flags & RATE_MCS_BF_MSK) { rx_status->enc_flags |= RX_ENC_FLAG_BF; }
/*
* take the nss from the rx_vec since the rate_n_flags has
* only 2 bits for the nss which gives a max of 4 ss but
* there may be up to 8 spatial streams
*/
rx_status->nss = le32_get_bits(desc->rx_vec[0], RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
} else if (rate_n_flags & RATE_MCS_HE_MSK) {
rx_status->nss = le32_get_bits(desc->rx_vec[0], RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
} else {
int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, rx_status->band);
if (WARN(rate < 0 || rate > 0xFF, "Invalid rate flags 0x%x, band %d,\n", rate_n_flags,
rx_status->band)) {
kfree_skb(skb);
goto out;
}
rx_status->rate_idx = rate;
}
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
out:
rcu_read_unlock();
#endif // NEEDS_PORTING
}
void iwl_mvm_rx_frame_release(struct iwl_mvm* mvm, struct napi_struct* napi,
struct iwl_rx_cmd_buffer* rxb, int queue) {
#if 0 // NEEDS_PORTING
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_frame_release* release = (void*)pkt->data;
struct ieee80211_sta* sta;
struct iwl_mvm_reorder_buffer* reorder_buf;
struct iwl_mvm_baid_data* ba_data;
int baid = release->baid;
IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", release->baid,
le16_to_cpu(release->nssn));
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID)) { return; }
rcu_read_lock();
ba_data = rcu_dereference(mvm->baid_map[baid]);
if (WARN_ON_ONCE(!ba_data)) { goto out; }
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { goto out; }
reorder_buf = &ba_data->reorder_buf[queue];
spin_lock_bh(&reorder_buf->lock);
iwl_mvm_release_frames(mvm, sta, napi, ba_data, reorder_buf, le16_to_cpu(release->nssn));
spin_unlock_bh(&reorder_buf->lock);
out:
rcu_read_unlock();
#endif // NEEDS_PORTING
}