blob: 381f5ecf1211fa7ba9e7a0259514c80a9c2144ed [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include "src/iwlwifi/iwl-nvm-parse.h"
#include <stdint.h>
#include "src/iwlwifi/fw/acpi.h"
#include "src/iwlwifi/fw/api/cmdhdr.h"
#include "src/iwlwifi/fw/api/commands.h"
#include "src/iwlwifi/fw/api/nvm-reg.h"
#include "src/iwlwifi/fw/img.h"
#include "src/iwlwifi/iwl-csr.h"
#include "src/iwlwifi/iwl-drv.h"
#include "src/iwlwifi/iwl-io.h"
#include "src/iwlwifi/iwl-modparams.h"
#include "src/iwlwifi/iwl-prph.h"
#include "src/iwlwifi/platform/ieee80211.h"
/* NVM offsets (in words) definitions */
enum nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
SUBSYSTEM_ID = 0x0A,
HW_ADDR = 0x15,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION = 0x1C0,
NVM_VERSION = 0,
RADIO_CFG = 1,
SKU = 2,
N_HW_ADDRS = 3,
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_SDP = 0,
};
enum ext_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
/* NVM SW-Section offset (in words) definitions */
NVM_VERSION_EXT_NVM = 0,
RADIO_CFG_FAMILY_EXT_NVM = 0,
SKU_FAMILY_8000 = 2,
N_HW_ADDRS_FAMILY_8000 = 3,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_EXTENDED = 0,
NVM_LAR_OFFSET_OLD = 0x4C7,
NVM_LAR_OFFSET = 0x507,
NVM_LAR_ENABLED = 0x7,
};
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
NVM_SKU_CAP_11N_ENABLE = BIT(2),
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
};
/*
* These are the channel numbers in the order that they are stored in the NVM
*/
static const uint8_t iwl_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149,
153, 157, 161, 165};
static const uint8_t iwl_ext_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120,
124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181};
#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
#define NUM_2GHZ_CHANNELS 14
#define NUM_2GHZ_CHANNELS_EXT 14
#define FIRST_2GHZ_HT_MINUS 5
#define LAST_2GHZ_HT_PLUS 9
#define LAST_5GHZ_HT 165
#define LAST_5GHZ_HT_FAMILY_8000 181
#define N_HW_ADDR_MASK 0xF
/* rate data (static) */
uint16_t iwl_cfg80211_rates[] = {
1 * 10, // 1 Mbps
2 * 10, // 2 Mbps
(uint16_t)(5.5 * 10), // 5.5 Mbps
11 * 10, // 11 Mbps
6 * 10, // 6 Mbps
9 * 10, // 9 Mbps
12 * 10, // 12 Mbps
18 * 10, // 18 Mbps
24 * 10, // 24 Mbps
36 * 10, // 36 Mbps
48 * 10, // 48 Mbps
54 * 10, // 54 Mbps
};
#define RATES_24_OFFS 0
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS 4 // 5GHz band doesn't support legacy rates (1/2/5.5/11Mbps).
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
// Get the index of the 'rate' in the iwl_cfg80211_rates[].
//
// Note that it is the 'hw_index' field in the original code and was removed in fxr/338189.
//
size_t iwl_get_rate_index(uint16_t rate) {
for (size_t i = 0; i < ARRAY_SIZE(iwl_cfg80211_rates); i++) {
if (iwl_cfg80211_rates[i] == rate) {
return i;
}
}
IWL_WARN(nullptr, "Unexpected rate value (%u)\n", rate);
return 0;
}
/**
* enum iwl_nvm_channel_flags - channel flags in NVM
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
* @NVM_CHANNEL_ACTIVE: active scanning allowed
* @NVM_CHANNEL_RADAR: radar detection required
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
* on same channel on 2.4 or same UNII band on 5.2
* @NVM_CHANNEL_UNIFORM: uniform spreading required
* @NVM_CHANNEL_20MHZ: 20 MHz channel okay
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay
* @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
*/
enum iwl_nvm_channel_flags {
NVM_CHANNEL_VALID = BIT(0),
NVM_CHANNEL_IBSS = BIT(1),
NVM_CHANNEL_ACTIVE = BIT(3),
NVM_CHANNEL_RADAR = BIT(4),
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
NVM_CHANNEL_UNIFORM = BIT(7),
NVM_CHANNEL_20MHZ = BIT(8),
NVM_CHANNEL_40MHZ = BIT(9),
NVM_CHANNEL_80MHZ = BIT(10),
NVM_CHANNEL_160MHZ = BIT(11),
NVM_CHANNEL_DC_HIGH = BIT(12),
};
static inline void iwl_nvm_print_channel_flags(struct device* dev, uint32_t level, int chan,
uint16_t flags) {
#define CHECK_AND_PRINT_I(x) ((flags & NVM_CHANNEL_##x) ? " " #x : "")
if (!(flags & NVM_CHANNEL_VALID)) {
IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", chan, flags);
return;
}
/* Note: already can print up to 101 characters, 110 is the limit! */
IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", chan, flags,
CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(INDOOR_ONLY),
CHECK_AND_PRINT_I(GO_CONCURRENT), CHECK_AND_PRINT_I(UNIFORM),
CHECK_AND_PRINT_I(20MHZ), CHECK_AND_PRINT_I(40MHZ), CHECK_AND_PRINT_I(80MHZ),
CHECK_AND_PRINT_I(160MHZ), CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
static uint32_t iwl_get_channel_flags(uint8_t ch_num, int ch_idx, bool is_5ghz, uint16_t nvm_flags,
const struct iwl_cfg* cfg) {
return 0;
#if 0 // NEEDS_PORTING
uint32_t flags = IEEE80211_CHAN_NO_HT40;
uint32_t last_5ghz_ht = LAST_5GHZ_HT;
if (cfg->nvm_type == IWL_NVM_EXT) {
last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
}
if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
if (ch_num <= LAST_2GHZ_HT_PLUS) {
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
}
if (ch_num >= FIRST_2GHZ_HT_MINUS) {
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
}
} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) {
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
} else {
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
}
}
if (!(nvm_flags & NVM_CHANNEL_80MHZ)) {
flags |= IEEE80211_CHAN_NO_80MHZ;
}
if (!(nvm_flags & NVM_CHANNEL_160MHZ)) {
flags |= IEEE80211_CHAN_NO_160MHZ;
}
if (!(nvm_flags & NVM_CHANNEL_IBSS)) {
flags |= IEEE80211_CHAN_NO_IR;
}
if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) {
flags |= IEEE80211_CHAN_NO_IR;
}
if (nvm_flags & NVM_CHANNEL_RADAR) {
flags |= IEEE80211_CHAN_RADAR;
}
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) {
flags |= IEEE80211_CHAN_INDOOR_ONLY;
}
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && (flags & IEEE80211_CHAN_NO_IR)) {
flags |= IEEE80211_CHAN_IR_CONCURRENT;
}
return flags;
#endif // NEEDS_PORTING
}
// Initializes the channel list in the NVM data structure according to:
//
// + Channel flags info in NVM blob,
// + Channel list in this driver,
// + Band flags
//
static int iwl_init_channel_map(struct device* dev, const struct iwl_cfg* cfg,
struct iwl_nvm_data* data, const __le16* const nvm_ch_flags,
uint32_t sbands_flags) {
int ch_idx;
int n_channels = 0;
struct ieee80211_channel* channel;
uint16_t ch_flags;
int num_of_ch, num_2ghz_channels;
const uint8_t* nvm_chan;
if (cfg->nvm_type != IWL_NVM_EXT) {
num_of_ch = IWL_NVM_NUM_CHANNELS;
nvm_chan = &iwl_nvm_channels[0];
num_2ghz_channels = NUM_2GHZ_CHANNELS;
} else {
num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
nvm_chan = &iwl_ext_nvm_channels[0];
num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
}
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
bool is_5ghz = (ch_idx >= num_2ghz_channels);
ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
if (is_5ghz && !data->sku_cap_band_52ghz_enable) {
continue;
}
/* workaround to disable wide channels in 5GHz */
if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && is_5ghz) {
ch_flags &= ~(NVM_CHANNEL_40MHZ | NVM_CHANNEL_80MHZ | NVM_CHANNEL_160MHZ);
}
if (ch_flags & NVM_CHANNEL_160MHZ) {
data->vht160_supported = true;
}
// TODO(fxbug.dev/69717): Remove this workaround for IWL_NVM_EXT.
if (!ieee80211_is_valid_chan(nvm_chan[ch_idx])) {
IWL_WARN(channel, "Ignored invalid channel %d from NVM\n", nvm_chan[ch_idx]);
continue;
}
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && !(ch_flags & NVM_CHANNEL_VALID)) {
/*
* Channels might become valid later if lar is
* supported, hence we still want to add them to
* the list of supported channels to cfg80211.
*/
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, nvm_chan[ch_idx], ch_flags);
continue;
}
channel = &data->channels[n_channels];
n_channels++;
channel->ch_num = nvm_chan[ch_idx];
channel->band = is_5ghz ? WLAN_INFO_BAND_5GHZ : WLAN_INFO_BAND_2GHZ;
channel->center_freq = ieee80211_get_center_freq((uint8_t)channel->ch_num);
/* Initialize regulatory-based run-time data */
/*
* Default value - highest tx power value. max_power
* is not used in mvm, and is used for backwards compatibility
*/
channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
/* don't put limitations in case we're using LAR */
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], ch_idx, is_5ghz, ch_flags, cfg);
else {
channel->flags = 0;
}
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, channel->ch_num, ch_flags);
IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", channel->ch_num, channel->max_power);
}
return n_channels;
}
#if 0 // NEEDS_PORTING
static void iwl_init_vht_hw_capab(struct iwl_trans* trans, struct iwl_nvm_data* data,
struct ieee80211_sta_vht_cap* vht_cap, uint8_t tx_chains,
uint8_t rx_chains) {
const struct iwl_cfg* cfg = trans->cfg;
int num_rx_ants = num_of_ant(rx_chains);
int num_tx_ants = num_of_ant(tx_chains);
unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: IEEE80211_VHT_MAX_AMPDU_1024K);
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
max_ampdu_exponent << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
if (data->vht160_supported) {
vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | IEEE80211_VHT_CAP_SHORT_GI_160;
}
if (cfg->vht_mu_mimo_supported) {
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
}
if (cfg->ht_params->ldpc) {
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
}
if (data->sku_cap_mimo_disabled) {
num_rx_ants = 1;
num_tx_ants = 1;
}
if (num_tx_ants > 1) {
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
} else {
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
}
switch (iwlwifi_mod_params.amsdu_size) {
case IWL_AMSDU_DEF:
if (cfg->mq_rx_supported) {
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
} else {
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
}
break;
case IWL_AMSDU_2K:
if (cfg->mq_rx_supported) {
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
} else {
WARN(1, "RB size of 2K is not supported by this device\n");
}
break;
case IWL_AMSDU_4K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
break;
case IWL_AMSDU_8K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
break;
case IWL_AMSDU_12K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
break;
default:
break;
}
vht_cap->vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
/* this works because NOT_SUPPORTED == 3 */
vht_cap->vht_mcs.rx_mcs_map |= cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
}
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
vht_cap->cap ^= trans->dbg_cfg.vht_cap_flip;
#endif
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}
static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
{
.types_mask = BIT(NL80211_IFTYPE_STATION),
.he_cap =
{
.has_he = true,
.he_cap_elem =
{
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE | IEEE80211_HE_MAC_CAP0_TWT_REQ,
.mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
.mac_cap_info[5] = IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
.phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
.phy_cap_info[3] = IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
.phy_cap_info[4] = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
.phy_cap_info[5] =
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 |
IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK |
IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK,
.phy_cap_info[6] = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMER_FB |
IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMER_FB |
IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO |
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
.phy_cap_info[7] = IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP7_MAX_NC_1,
.phy_cap_info[8] = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_DCM_MAX_BW_160_OR_80P80_MHZ,
.phy_cap_info[9] =
IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
},
/*
* Set default Tx/Rx HE MCS NSS Support field.
* Indicate support for up to 2 spatial streams and all
* MCS, without any special cases
*/
.he_mcs_nss_supp =
{
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
/*
* Set default PPE thresholds, with PPET16 set to 0,
* PPET8 set to 7
*/
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
},
},
{
.types_mask = BIT(NL80211_IFTYPE_AP),
.he_cap =
{
.has_he = true,
.he_cap_elem =
{
.mac_cap_info[0] =
#ifdef CPTCFG_IWLMVM_AX_SOFTAP_TESTMODE
IEEE80211_HE_MAC_CAP0_TWT_RES |
#endif
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
.phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
.phy_cap_info[3] = IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
.phy_cap_info[4] = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
.phy_cap_info[5] =
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 |
IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK |
IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK,
.phy_cap_info[6] = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
.phy_cap_info[7] = IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP7_MAX_NC_1,
.phy_cap_info[8] = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_DCM_MAX_BW_160_OR_80P80_MHZ,
.phy_cap_info[9] =
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
},
/*
* Set default Tx/Rx HE MCS NSS Support field.
* Indicate support for up to 2 spatial streams and all
* MCS, without any special cases
*/
.he_mcs_nss_supp =
{
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
/*
* Set default PPE thresholds, with PPET16 set to 0,
* PPET8 set to 7
*/
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
},
},
};
static void iwl_init_he_hw_capab(struct ieee80211_supported_band* sband, uint8_t tx_chains,
uint8_t rx_chains) {
if (sband->band == NL80211_BAND_2GHZ || sband->band == NL80211_BAND_5GHZ) {
sband->iftype_data = iwl_he_capa;
} else {
return;
}
sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
if ((tx_chains & rx_chains) != ANT_AB) {
int i;
for (i = 0; i < sband->n_iftype_data; i++) {
iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
}
}
}
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
/* returns true iff there exists one spatial stream where MCS of a > b */
static bool iwl_he_mcs_greater(uint16_t a, uint16_t b) {
int i;
for (i = 0; i < 16; i += 2) {
if ((((a >> i) + 1) & 3) > (((b >> i) + 1) & 3)) {
return true;
}
}
return false;
}
static void iwl_init_he_override(struct iwl_trans* trans, struct ieee80211_supported_band* sband) {
struct ieee80211_sband_iftype_data* iftype_data;
int i;
if (sband->band != NL80211_BAND_2GHZ && sband->band != NL80211_BAND_5GHZ) {
return;
}
for (i = 0; i < ARRAY_SIZE(iwl_he_capa); i++) {
iftype_data = &iwl_he_capa[i];
if (trans->dbg_cfg.rx_mcs_80) {
if (iwl_he_mcs_greater(trans->dbg_cfg.rx_mcs_80,
le16_to_cpu(iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_80)))
IWL_ERR(trans, "Cannot set dbg rx_mcs_80 = 0x%x (too big)\n", trans->dbg_cfg.rx_mcs_80);
else
iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_80 = cpu_to_le16(trans->dbg_cfg.rx_mcs_80);
}
if (trans->dbg_cfg.tx_mcs_80) {
if (iwl_he_mcs_greater(trans->dbg_cfg.tx_mcs_80,
le16_to_cpu(iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_80)))
IWL_ERR(trans, "Cannot set dbg tx_mcs_80 = 0x%x (too big)\n", trans->dbg_cfg.tx_mcs_80);
else
iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_80 = cpu_to_le16(trans->dbg_cfg.tx_mcs_80);
}
if (trans->dbg_cfg.rx_mcs_160) {
if (iwl_he_mcs_greater(trans->dbg_cfg.rx_mcs_160,
le16_to_cpu(iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_160)))
IWL_ERR(trans, "Cannot set dbg rx_mcs_160 = 0x%x (too big)\n", trans->dbg_cfg.rx_mcs_160);
else
iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_160 = cpu_to_le16(trans->dbg_cfg.rx_mcs_160);
}
if (trans->dbg_cfg.tx_mcs_160) {
if (iwl_he_mcs_greater(trans->dbg_cfg.tx_mcs_160,
le16_to_cpu(iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_160)))
IWL_ERR(trans, "Cannot set dbg tx_mcs_160 = 0x%x (too big)\n", trans->dbg_cfg.tx_mcs_160);
else
iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_160 = cpu_to_le16(trans->dbg_cfg.tx_mcs_160);
}
/*
* If antennas were forced - make sure not declaring MIMO when
* we actually are SISO
* Recall that there are 2 bits per stream in the "HE Tx/Rx HE
* MCS NSS Support Field", so if some antenna is forced on but
* not both A and B - we should work in SISO mode, so mark the
* 2nd SS as not supported
*/
if (trans->dbg_cfg.valid_ants && (trans->dbg_cfg.valid_ants & ANT_AB) != ANT_AB) {
iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_80 |=
cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_80 |=
cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_160 |=
cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_160 |=
cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
iftype_data->he_cap.he_mcs_nss_supp.rx_mcs_80p80 |=
cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
iftype_data->he_cap.he_mcs_nss_supp.tx_mcs_80p80 |=
cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
}
if (trans->dbg_cfg.no_ack_en & 0x1) {
iftype_data->he_cap.he_cap_elem.mac_cap_info[2] &= ~IEEE80211_HE_MAC_CAP2_ACK_EN;
}
if (trans->dbg_cfg.no_ldpc)
iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
~IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
/* Check if any HE capabilities need to be set for debug */
if (trans->dbg_cfg.he_ppe_thres.len) {
uint8_t len = trans->dbg_cfg.he_ppe_thres.len;
if (len > sizeof(iftype_data->he_cap.ppe_thres)) {
len = sizeof(iftype_data->he_cap.ppe_thres);
}
memcpy(iftype_data->he_cap.ppe_thres, trans->dbg_cfg.he_ppe_thres.data, len);
}
if (trans->dbg_cfg.he_chan_width_dis)
iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &= ~(trans->dbg_cfg.he_chan_width_dis << 1);
}
}
#endif
#endif // NEEDS_PORTING
static void iwl_init_sbands(struct iwl_trans* trans, struct iwl_nvm_data* data,
const __le16* nvm_ch_flags, uint8_t tx_chains, uint8_t rx_chains,
uint32_t sbands_flags) {
struct device* dev = trans->dev;
const struct iwl_cfg* cfg = trans->cfg;
int n_channels;
int n_used = 0;
struct ieee80211_supported_band* sband;
n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, sbands_flags);
sband = &data->bands[WLAN_INFO_BAND_2GHZ];
sband->band = WLAN_INFO_BAND_2GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
sband->n_bitrates = N_RATES_24;
n_used += iwl_init_sband_channels(data, sband, n_channels, WLAN_INFO_BAND_2GHZ);
#if 0 // NEEDS_PORTING
// TODO(36683): HT support.
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, tx_chains, rx_chains);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) {
iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
}
#endif // NEEDS_PORTING
sband = &data->bands[WLAN_INFO_BAND_5GHZ];
sband->band = WLAN_INFO_BAND_5GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels, WLAN_INFO_BAND_5GHZ);
#if 0 // NEEDS_PORTING
// TODO(36683): HT support.
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, tx_chains, rx_chains);
if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) {
iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, tx_chains, rx_chains);
}
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) {
iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
}
#endif // NEEDS_PORTING
if (n_channels != n_used) {
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", n_used, n_channels);
}
}
static int iwl_get_sku(const struct iwl_cfg* cfg, const __le16* nvm_sw, const __le16* phy_sku) {
if (cfg->nvm_type != IWL_NVM_EXT) {
return le16_to_cpup(nvm_sw + SKU);
}
return le32_to_cpup((__le32*)(phy_sku + SKU_FAMILY_8000));
}
static int iwl_get_nvm_version(const struct iwl_cfg* cfg, const __le16* nvm_sw) {
if (cfg->nvm_type != IWL_NVM_EXT) {
return le16_to_cpup(nvm_sw + NVM_VERSION);
} else {
return le32_to_cpup((__le32*)(nvm_sw + NVM_VERSION_EXT_NVM));
}
}
static int iwl_get_radio_cfg(const struct iwl_cfg* cfg, const __le16* nvm_sw,
const __le16* phy_sku) {
if (cfg->nvm_type != IWL_NVM_EXT) {
return le16_to_cpup(nvm_sw + RADIO_CFG);
}
return le32_to_cpup((__le32*)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
}
static int iwl_get_n_hw_addrs(const struct iwl_cfg* cfg, const __le16* nvm_sw) {
int n_hw_addr;
if (cfg->nvm_type != IWL_NVM_EXT) {
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
}
n_hw_addr = le32_to_cpup((__le32*)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
return n_hw_addr & N_HW_ADDR_MASK;
}
static void iwl_set_radio_cfg(const struct iwl_cfg* cfg, struct iwl_nvm_data* data,
uint32_t radio_cfg) {
if (cfg->nvm_type != IWL_NVM_EXT) {
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
return;
}
/* set the radio configuration for family 8000 */
data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
}
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, uint8_t* dest) {
const uint8_t* hw_addr;
hw_addr = (const uint8_t*)&mac_addr0;
dest[0] = hw_addr[3];
dest[1] = hw_addr[2];
dest[2] = hw_addr[1];
dest[3] = hw_addr[0];
hw_addr = (const uint8_t*)&mac_addr1;
dest[4] = hw_addr[1];
dest[5] = hw_addr[0];
}
static void iwl_set_hw_address_from_csr(struct iwl_trans* trans, struct iwl_nvm_data* data) {
__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, trans->cfg->csr->mac_addr0_strap));
__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, trans->cfg->csr->mac_addr1_strap));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
/*
* If the OEM fused a valid address, use it instead of the one in the
* OTP
*/
if (is_valid_ether_addr(data->hw_addr)) {
return;
}
mac_addr0 = cpu_to_le32(iwl_read32(trans, trans->cfg->csr->mac_addr0_otp));
mac_addr1 = cpu_to_le32(iwl_read32(trans, trans->cfg->csr->mac_addr1_otp));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
static void iwl_set_hw_address_family_8000(struct iwl_trans* trans, const struct iwl_cfg* cfg,
struct iwl_nvm_data* data, const __le16* mac_override,
const __be16* nvm_hw) {
const uint8_t* hw_addr;
if (mac_override) {
static const uint8_t reserved_mac[] = {0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00};
hw_addr = (const uint8_t*)(mac_override + MAC_ADDRESS_OVERRIDE_EXT_NVM);
/*
* Store the MAC address from MAO section.
* No byte swapping is required in MAO section
*/
memcpy(data->hw_addr, hw_addr, ETH_ALEN);
/*
* Force the use of the OTP MAC address in case of reserved MAC
* address in the NVM, or if address is given but invalid.
*/
if (is_valid_ether_addr(data->hw_addr) && memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) {
return;
}
IWL_ERR(trans, "mac address from nvm override section is not valid\n");
}
if (nvm_hw) {
/* read the mac address from WFMP registers */
__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, WFMP_MAC_ADDR_0));
__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, WFMP_MAC_ADDR_1));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
return;
}
IWL_ERR(trans, "mac address is not found\n");
}
static zx_status_t iwl_set_hw_address(struct iwl_trans* trans, const struct iwl_cfg* cfg,
struct iwl_nvm_data* data, const __be16* nvm_hw,
const __le16* mac_override) {
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
struct iwl_dbg_cfg* dbg_cfg = &trans->dbg_cfg;
if (dbg_cfg->hw_address.len) {
if (dbg_cfg->hw_address.len == ETH_ALEN && is_valid_ether_addr(dbg_cfg->hw_address.data)) {
memcpy(data->hw_addr, dbg_cfg->hw_address.data, ETH_ALEN);
return 0;
}
IWL_ERR(trans, "mac address from config file is invalid\n");
}
#endif
if (cfg->mac_addr_from_csr) {
iwl_set_hw_address_from_csr(trans, data);
} else if (cfg->nvm_type != IWL_NVM_EXT) {
const uint8_t* hw_addr = (const uint8_t*)(nvm_hw + HW_ADDR);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
} else {
iwl_set_hw_address_family_8000(trans, cfg, data, mac_override, nvm_hw);
}
if (!is_valid_ether_addr(data->hw_addr)) {
IWL_ERR(trans, "no valid mac address was found\n");
return ZX_ERR_INVALID_ARGS;
}
IWL_INFO(trans, "base HW address: %02x:%02x:%02x:%02x:%02x:%02x\n", data->hw_addr[0],
data->hw_addr[1], data->hw_addr[2], data->hw_addr[3], data->hw_addr[4],
data->hw_addr[5]);
return ZX_OK;
}
static bool iwl_nvm_no_wide_in_5ghz(struct device* dev, const struct iwl_cfg* cfg,
const __be16* nvm_hw) {
/*
* Workaround a bug in Indonesia SKUs where the regulatory in
* some 7000-family OTPs erroneously allow wide channels in
* 5GHz. To check for Indonesia, we take the SKU value from
* bits 1-4 in the subsystem ID and check if it is either 5 or
* 9. In those cases, we need to force-disable wide channels
* in 5GHz otherwise the FW will throw a sysassert when we try
* to use them.
*/
if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
/*
* Unlike the other sections in the NVM, the hw
* section uses big-endian.
*/
uint16_t subsystem_id = (uint16_t)be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
uint8_t sku = (subsystem_id & 0x1e) >> 1;
if (sku == 5 || sku == 9) {
IWL_DEBUG_EEPROM(dev, "disabling wide channels in 5GHz (0x%0x %d)\n", subsystem_id, sku);
return true;
}
}
return false;
}
struct iwl_nvm_data* iwl_parse_nvm_data(struct iwl_trans* trans, const struct iwl_cfg* cfg,
const __be16* nvm_hw, const __le16* nvm_sw,
const __le16* nvm_calib, const __le16* regulatory,
const __le16* mac_override, const __le16* phy_sku,
uint8_t tx_chains, uint8_t rx_chains,
bool lar_fw_supported) {
struct device* dev = trans->dev;
struct iwl_nvm_data* data;
bool lar_enabled;
uint32_t sku, radio_cfg;
uint32_t sbands_flags = 0;
uint16_t lar_config;
const __le16* ch_section;
if (cfg->nvm_type != IWL_NVM_EXT) {
data = calloc(1, sizeof(*data) + sizeof(struct ieee80211_channel) * IWL_NVM_NUM_CHANNELS);
} else {
data = calloc(1, sizeof(*data) + sizeof(struct ieee80211_channel) * IWL_NVM_NUM_CHANNELS_EXT);
}
if (!data) {
return NULL;
}
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
iwl_set_radio_cfg(cfg, data, radio_cfg);
if (data->valid_tx_ant) {
tx_chains &= data->valid_tx_ant;
}
if (data->valid_rx_ant) {
rx_chains &= data->valid_rx_ant;
}
sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
if (trans->dbg_cfg.disable_52GHz) { /* remove support for 5.2 */
sku &= ~NVM_SKU_CAP_BAND_52GHZ;
}
if (trans->dbg_cfg.disable_24GHz) { /* remove support for 2.4 */
sku &= ~NVM_SKU_CAP_BAND_24GHZ;
}
#endif
data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) {
data->sku_cap_11n_enable = false;
}
data->sku_cap_11ac_enable = data->sku_cap_11n_enable && (sku & NVM_SKU_CAP_11AC_ENABLE);
data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
if (cfg->nvm_type != IWL_NVM_EXT) {
/* Checking for required sections */
if (!nvm_calib) {
IWL_ERR(trans, "Can't parse empty Calib NVM sections\n");
free(data);
return NULL;
}
ch_section =
cfg->nvm_type == IWL_NVM_SDP ? &regulatory[NVM_CHANNELS_SDP] : &nvm_sw[NVM_CHANNELS];
lar_enabled = true;
} else {
uint16_t lar_offset = data->nvm_version < 0xE39 ? NVM_LAR_OFFSET_OLD : NVM_LAR_OFFSET;
lar_config = le16_to_cpup(regulatory + lar_offset);
data->lar_enabled = !!(lar_config & NVM_LAR_ENABLED);
lar_enabled = data->lar_enabled;
ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
}
/* If no valid mac address was found - bail out */
if (ZX_OK != iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
free(data);
return NULL;
}
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
iwl_init_he_override(trans, &data->bands[WLAN_INFO_BAND_2GHZ]);
iwl_init_he_override(trans, &data->bands[WLAN_INFO_BAND_5GHZ]);
#endif
if (lar_fw_supported && lar_enabled) {
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
}
if (iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw)) {
sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
}
iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, sbands_flags);
data->calib_version = 255;
return data;
}
#if 0 // NEEDS_PORTING
static uint32_t iwl_nvm_get_regdom_bw_flags(const uint8_t* nvm_chan, int ch_idx, uint16_t nvm_flags,
const struct iwl_cfg* cfg) {
uint32_t flags = NL80211_RRF_NO_HT40;
uint32_t last_5ghz_ht = LAST_5GHZ_HT;
if (cfg->nvm_type == IWL_NVM_EXT) {
last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
}
if (ch_idx < NUM_2GHZ_CHANNELS && (nvm_flags & NVM_CHANNEL_40MHZ)) {
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) {
flags &= ~NL80211_RRF_NO_HT40PLUS;
}
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) {
flags &= ~NL80211_RRF_NO_HT40MINUS;
}
} else if (nvm_chan[ch_idx] <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) {
flags &= ~NL80211_RRF_NO_HT40PLUS;
} else {
flags &= ~NL80211_RRF_NO_HT40MINUS;
}
}
if (!(nvm_flags & NVM_CHANNEL_80MHZ)) {
flags |= NL80211_RRF_NO_80MHZ;
}
if (!(nvm_flags & NVM_CHANNEL_160MHZ)) {
flags |= NL80211_RRF_NO_160MHZ;
}
if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) {
flags |= NL80211_RRF_NO_IR;
}
if (nvm_flags & NVM_CHANNEL_RADAR) {
flags |= NL80211_RRF_DFS;
}
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) {
flags |= NL80211_RRF_NO_OUTDOOR;
}
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && (flags & NL80211_RRF_NO_IR)) {
flags |= NL80211_RRF_GO_CONCURRENT;
}
return flags;
}
struct regdb_ptrs {
struct ieee80211_wmm_rule* rule;
uint32_t token;
};
struct ieee80211_regdomain* iwl_parse_nvm_mcc_info(struct device* dev, const struct iwl_cfg* cfg,
int num_of_ch, __le32* channels, uint16_t fw_mcc,
uint16_t geo_info) {
int ch_idx;
uint16_t ch_flags;
uint32_t reg_rule_flags, prev_reg_rule_flags = 0;
const uint8_t* nvm_chan = cfg->nvm_type == IWL_NVM_EXT ? iwl_ext_nvm_channels : iwl_nvm_channels;
struct ieee80211_regdomain *regd, *copy_rd;
int size_of_regd, regd_to_copy;
struct ieee80211_reg_rule* rule;
struct regdb_ptrs* regdb_ptrs;
enum nl80211_band band;
int center_freq, prev_center_freq = 0;
int valid_rules = 0;
bool new_rule;
int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ? IWL_NVM_NUM_CHANNELS_EXT : IWL_NVM_NUM_CHANNELS;
if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) {
return ERR_PTR(-EINVAL);
}
if (WARN_ON(num_of_ch > max_num_ch)) {
num_of_ch = max_num_ch;
}
IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", num_of_ch);
/* build a regdomain rule for every valid channel */
size_of_regd = sizeof(struct ieee80211_regdomain) + num_of_ch * sizeof(struct ieee80211_reg_rule);
regd = kzalloc(size_of_regd, GFP_KERNEL);
if (!regd) {
return ERR_PTR(-ENOMEM);
}
regdb_ptrs = kcalloc(num_of_ch, sizeof(*regdb_ptrs), GFP_KERNEL);
if (!regdb_ptrs) {
copy_rd = ERR_PTR(-ENOMEM);
goto out;
}
/* set alpha2 from FW. */
regd->alpha2[0] = fw_mcc >> 8;
regd->alpha2[1] = fw_mcc & 0xff;
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
ch_flags = (uint16_t)__le32_to_cpup(channels + ch_idx);
band = (ch_idx < NUM_2GHZ_CHANNELS) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], band);
new_rule = false;
if (!(ch_flags & NVM_CHANNEL_VALID)) {
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, nvm_chan[ch_idx], ch_flags);
continue;
}
reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, ch_flags, cfg);
/* we can't continue the same rule */
if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
center_freq - prev_center_freq > 20) {
valid_rules++;
new_rule = true;
}
rule = &regd->reg_rules[valid_rules - 1];
if (new_rule) {
rule->freq_range.start_freq_khz = MHZ_TO_KHZ(center_freq - 10);
}
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
/* this doesn't matter - not used by FW */
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
rule->power_rule.max_eirp = DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
rule->flags = reg_rule_flags;
/* rely on auto-calculation to merge BW of contiguous chans */
rule->flags |= NL80211_RRF_AUTO_BW;
rule->freq_range.max_bandwidth_khz = 0;
prev_center_freq = center_freq;
prev_reg_rule_flags = reg_rule_flags;
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, nvm_chan[ch_idx], ch_flags);
if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || band == NL80211_BAND_2GHZ) {
continue;
}
reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
}
regd->n_reg_rules = valid_rules;
/*
* Narrow down regdom for unused regulatory rules to prevent hole
* between reg rules to wmm rules.
*/
regd_to_copy =
sizeof(struct ieee80211_regdomain) + valid_rules * sizeof(struct ieee80211_reg_rule);
copy_rd = kmemdup(regd, regd_to_copy, GFP_KERNEL);
if (!copy_rd) {
copy_rd = ERR_PTR(-ENOMEM);
goto out;
}
out:
kfree(regdb_ptrs);
kfree(regd);
return copy_rd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
#define MAX_NVM_FILE_LEN 16384
#endif // NEEDS_PORTING
void iwl_nvm_fixups(uint32_t hw_id, unsigned int section, uint8_t* data, unsigned int len) {
#define IWL_4165_DEVICE_ID 0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
if (section == NVM_SECTION_TYPE_PHY_SKU && hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
(data[4] & NVM_SKU_CAP_MIMO_DISABLE))
/* OTP 0x52 bug work around: it's a 1x1 device */
{
data[3] = ANT_B | (ANT_B << 4);
}
}
#if 0 // NEEDS_PORTING
/*
* Reads external NVM from a file into mvm->nvm_sections
*
* HOW TO CREATE THE NVM FILE FORMAT:
* ------------------------------
* 1. create hex file, format:
* 3800 -> header
* 0000 -> header
* 5a40 -> data
*
* rev - 6 bit (word1)
* len - 10 bit (word1)
* id - 4 bit (word2)
* rsv - 12 bit (word2)
*
* 2. flip 8bits with 8 bits per line to get the right NVM file format
*
* 3. create binary file from the hex file
*
* 4. save as "iNVM_xxx.bin" under /lib/firmware
*/
int iwl_read_external_nvm(struct iwl_trans* trans, const char* nvm_file_name,
struct iwl_nvm_section* nvm_sections) {
int ret, section_size;
uint16_t section_id;
const struct firmware* fw_entry;
const struct {
__le16 word1;
__le16 word2;
uint8_t data[];
} * file_sec;
const uint8_t* eof;
uint8_t* temp;
int max_section_size;
const __le32* dword_buff;
#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x)&0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0 (0x2A504C54)
#define NVM_HEADER_1 (0x4E564D2A)
#define NVM_HEADER_SIZE (4 * sizeof(uint32_t))
IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
/* Maximal size depends on NVM version */
if (trans->cfg->nvm_type != IWL_NVM_EXT) {
max_section_size = IWL_MAX_NVM_SECTION_SIZE;
} else {
max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
}
/*
* Obtain NVM image via request_firmware. Since we already used
* request_firmware_nowait() for the firmware binary load and only
* get here after that we assume the NVM request can be satisfied
* synchronously.
*/
ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
if (ret) {
IWL_ERR(trans, "ERROR: %s isn't available %d\n", nvm_file_name, ret);
return ret;
}
IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", nvm_file_name, fw_entry->size);
if (fw_entry->size > MAX_NVM_FILE_LEN) {
IWL_ERR(trans, "NVM file too large\n");
ret = -EINVAL;
goto out;
}
eof = fw_entry->data + fw_entry->size;
dword_buff = (__le32*)fw_entry->data;
/* some NVM file will contain a header.
* The header is identified by 2 dwords header as follow:
* dword[0] = 0x2A504C54
* dword[1] = 0x4E564D2A
*
* This header must be skipped when providing the NVM data to the FW.
*/
if (fw_entry->size > NVM_HEADER_SIZE && dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
file_sec = (void*)(fw_entry->data + NVM_HEADER_SIZE);
IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
IWL_INFO(trans, "NVM Manufacturing date %08X\n", le32_to_cpu(dword_buff[3]));
/* nvm file validation, dword_buff[2] holds the file version */
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP && le32_to_cpu(dword_buff[2]) < 0xE4A) {
ret = -EFAULT;
goto out;
}
} else {
file_sec = (void*)fw_entry->data;
}
while (true) {
if (file_sec->data > eof) {
IWL_ERR(trans, "ERROR - NVM file too short for section header\n");
ret = -EINVAL;
break;
}
/* check for EOF marker */
if (!file_sec->word1 && !file_sec->word2) {
ret = 0;
break;
}
if (trans->cfg->nvm_type != IWL_NVM_EXT) {
section_size = 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
} else {
section_size = 2 * EXT_NVM_WORD2_LEN(le16_to_cpu(file_sec->word2));
section_id = EXT_NVM_WORD1_ID(le16_to_cpu(file_sec->word1));
}
if (section_size > max_section_size) {
IWL_ERR(trans, "ERROR - section too large (%d)\n", section_size);
ret = -EINVAL;
break;
}
if (!section_size) {
IWL_ERR(trans, "ERROR - section empty\n");
ret = -EINVAL;
break;
}
if (file_sec->data + section_size > eof) {
IWL_ERR(trans, "ERROR - NVM file too short for section (%d bytes)\n", section_size);
ret = -EINVAL;
break;
}
if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, "Invalid NVM section ID %d\n", section_id)) {
ret = -EINVAL;
break;
}
temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
if (!temp) {
ret = -ENOMEM;
break;
}
iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
kfree(nvm_sections[section_id].data);
nvm_sections[section_id].data = temp;
nvm_sections[section_id].length = section_size;
/* advance to the next section */
file_sec = (void*)(file_sec->data + section_size);
}
out:
release_firmware(fw_entry);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
struct iwl_nvm_data* iwl_get_nvm(struct iwl_trans* trans, const struct iwl_fw* fw) {
struct iwl_nvm_get_info cmd = {};
struct iwl_nvm_get_info_rsp* rsp;
struct iwl_nvm_data* nvm;
struct iwl_host_cmd hcmd = {.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
.data =
{
&cmd,
},
.len = {sizeof(cmd)},
.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)};
int ret;
bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
bool empty_otp;
uint32_t mac_flags;
uint32_t sbands_flags = 0;
ret = iwl_trans_send_cmd(trans, &hcmd);
if (ret) {
return ERR_PTR(ret);
}
if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != sizeof(*rsp),
"Invalid payload len in NVM response from FW %d",
iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
ret = -EINVAL;
goto out;
}
rsp = (void*)hcmd.resp_pkt->data;
empty_otp = !!(le32_to_cpu(rsp->general.flags) & NVM_GENERAL_FLAGS_EMPTY_OTP);
if (empty_otp) {
IWL_INFO(trans, "OTP is empty\n");
}
nvm = kzalloc(sizeof(*nvm) + sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS, GFP_KERNEL);
if (!nvm) {
ret = -ENOMEM;
goto out;
}
iwl_set_hw_address_from_csr(trans, nvm);
/* TODO: if platform NVM has MAC address - override it here */
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
if (trans->dbg_cfg.hw_address.len) {
if (trans->dbg_cfg.hw_address.len == ETH_ALEN &&
is_valid_ether_addr(trans->dbg_cfg.hw_address.data)) {
memcpy(nvm->hw_addr, trans->dbg_cfg.hw_address.data, ETH_ALEN);
} else {
IWL_ERR(trans, "mac address from config file is invalid\n");
}
}
#endif
if (!is_valid_ether_addr(nvm->hw_addr)) {
IWL_ERR(trans, "no valid mac address was found\n");
ret = -EINVAL;
goto err_free;
}
IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
/* Initialize general data */
nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
nvm->n_hw_addrs = rsp->general.n_hw_addrs;
if (nvm->n_hw_addrs == 0)
IWL_WARN(trans, "Firmware declares no reserved mac addresses. OTP is empty: %d\n", empty_otp);
/* Initialize MAC sku data */
mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
nvm->sku_cap_11ac_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
nvm->sku_cap_11n_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
nvm->sku_cap_11ax_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
nvm->sku_cap_band_24ghz_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
nvm->sku_cap_band_52ghz_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
nvm->sku_cap_mimo_disabled = !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
/* Initialize PHY sku data */
nvm->valid_tx_ant = (uint8_t)le32_to_cpu(rsp->phy_sku.tx_chains);
nvm->valid_rx_ant = (uint8_t)le32_to_cpu(rsp->phy_sku.rx_chains);
if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
nvm->lar_enabled = true;
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
}
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
iwl_init_he_override(trans, &nvm->bands[NL80211_BAND_2GHZ]);
iwl_init_he_override(trans, &nvm->bands[NL80211_BAND_5GHZ]);
#endif
iwl_init_sbands(trans, nvm, rsp->regulatory.channel_profile, nvm->valid_tx_ant & fw->valid_tx_ant,
nvm->valid_rx_ant & fw->valid_rx_ant, sbands_flags);
iwl_free_resp(&hcmd);
return nvm;
err_free:
kfree(nvm);
out:
iwl_free_resp(&hcmd);
return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);
#endif // NEEDS_PORTING