blob: 8ba137ddcb5bdea40e3db961738185c4df888078 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2015 Intel Mobile Communications GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include "src/iwlwifi/iwl-eeprom-parse.h"
#include "src/iwlwifi/iwl-drv.h"
#include "src/iwlwifi/iwl-modparams.h"
#if 0 // NEEDS_PORTING
/* EEPROM offset definitions */
/* indirect access definitions */
#define ADDRESS_MSK 0x0000FFFF
#define INDIRECT_TYPE_MSK 0x000F0000
#define INDIRECT_HOST 0x00010000
#define INDIRECT_GENERAL 0x00020000
#define INDIRECT_REGULATORY 0x00030000
#define INDIRECT_CALIBRATION 0x00040000
#define INDIRECT_PROCESS_ADJST 0x00050000
#define INDIRECT_OTHERS 0x00060000
#define INDIRECT_TXP_LIMIT 0x00070000
#define INDIRECT_TXP_LIMIT_SIZE 0x00080000
#define INDIRECT_ADDRESS 0x00100000
/* corresponding link offsets in EEPROM */
#define EEPROM_LINK_HOST (2 * 0x64)
#define EEPROM_LINK_GENERAL (2 * 0x65)
#define EEPROM_LINK_REGULATORY (2 * 0x66)
#define EEPROM_LINK_CALIBRATION (2 * 0x67)
#define EEPROM_LINK_PROCESS_ADJST (2 * 0x68)
#define EEPROM_LINK_OTHERS (2 * 0x69)
#define EEPROM_LINK_TXP_LIMIT (2 * 0x6a)
#define EEPROM_LINK_TXP_LIMIT_SIZE (2 * 0x6b)
/* General */
#define EEPROM_DEVICE_ID (2 * 0x08) /* 2 bytes */
#define EEPROM_SUBSYSTEM_ID (2 * 0x0A) /* 2 bytes */
#define EEPROM_MAC_ADDRESS (2 * 0x15) /* 6 bytes */
#define EEPROM_BOARD_REVISION (2 * 0x35) /* 2 bytes */
#define EEPROM_BOARD_PBA_NUMBER (2 * 0x3B + 1) /* 9 bytes */
#define EEPROM_VERSION (2 * 0x44) /* 2 bytes */
#define EEPROM_SKU_CAP (2 * 0x45) /* 2 bytes */
#define EEPROM_OEM_MODE (2 * 0x46) /* 2 bytes */
#define EEPROM_RADIO_CONFIG (2 * 0x48) /* 2 bytes */
#define EEPROM_NUM_MAC_ADDRESS (2 * 0x4C) /* 2 bytes */
/* calibration */
struct iwl_eeprom_calib_hdr {
uint8_t version;
uint8_t pa_type;
__le16 voltage;
} __packed;
#define EEPROM_CALIB_ALL (INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
#define EEPROM_XTAL ((2 * 0x128) | EEPROM_CALIB_ALL)
/* temperature */
#define EEPROM_KELVIN_TEMPERATURE ((2 * 0x12A) | EEPROM_CALIB_ALL)
#define EEPROM_RAW_TEMPERATURE ((2 * 0x12B) | EEPROM_CALIB_ALL)
/* SKU Capabilities (actual values from EEPROM definition) */
enum eeprom_sku_bits {
EEPROM_SKU_CAP_BAND_24GHZ = BIT(4),
EEPROM_SKU_CAP_BAND_52GHZ = BIT(5),
EEPROM_SKU_CAP_11N_ENABLE = BIT(6),
EEPROM_SKU_CAP_AMT_ENABLE = BIT(7),
EEPROM_SKU_CAP_IPAN_ENABLE = BIT(8)
};
/* radio config bits (actual values from EEPROM definition) */
#define EEPROM_RF_CFG_TYPE_MSK(x) (x & 0x3) /* bits 0-1 */
#define EEPROM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */
#define EEPROM_RF_CFG_DASH_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */
#define EEPROM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */
#define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */
#define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
/*
* EEPROM bands
* These are the channel numbers from each band in the order
* that they are stored in the EEPROM band information. Note
* that EEPROM bands aren't the same as mac80211 bands, and
* there are even special "ht40 bands" in the EEPROM.
*/
static const uint8_t iwl_eeprom_band_1[14] = {/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
static const uint8_t iwl_eeprom_band_2[] = {/* 4915-5080MHz */
183, 184, 185, 187, 188, 189, 192,
196, 7, 8, 11, 12, 16};
static const uint8_t iwl_eeprom_band_3[] = {/* 5170-5320MHz */
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64};
static const uint8_t iwl_eeprom_band_4[] = {/* 5500-5700MHz */
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140};
static const uint8_t iwl_eeprom_band_5[] = {/* 5725-5825MHz */
145, 149, 153, 157, 161, 165};
static const uint8_t iwl_eeprom_band_6[] = {/* 2.4 ht40 channel */
1, 2, 3, 4, 5, 6, 7};
static const uint8_t iwl_eeprom_band_7[] = {/* 5.2 ht40 channel */
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157};
#define IWL_NUM_CHANNELS \
(ARRAY_SIZE(iwl_eeprom_band_1) + ARRAY_SIZE(iwl_eeprom_band_2) + ARRAY_SIZE(iwl_eeprom_band_3) + \
ARRAY_SIZE(iwl_eeprom_band_4) + ARRAY_SIZE(iwl_eeprom_band_5))
/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
{
.bitrate = 1 * 10,
.hw_value = 0,
.hw_value_short = 0,
},
{
.bitrate = 2 * 10,
.hw_value = 1,
.hw_value_short = 1,
.flags = IEEE80211_RATE_SHORT_PREAMBLE,
},
{
.bitrate = 5.5 * 10,
.hw_value = 2,
.hw_value_short = 2,
.flags = IEEE80211_RATE_SHORT_PREAMBLE,
},
{
.bitrate = 11 * 10,
.hw_value = 3,
.hw_value_short = 3,
.flags = IEEE80211_RATE_SHORT_PREAMBLE,
},
{
.bitrate = 6 * 10,
.hw_value = 4,
.hw_value_short = 4,
},
{
.bitrate = 9 * 10,
.hw_value = 5,
.hw_value_short = 5,
},
{
.bitrate = 12 * 10,
.hw_value = 6,
.hw_value_short = 6,
},
{
.bitrate = 18 * 10,
.hw_value = 7,
.hw_value_short = 7,
},
{
.bitrate = 24 * 10,
.hw_value = 8,
.hw_value_short = 8,
},
{
.bitrate = 36 * 10,
.hw_value = 9,
.hw_value_short = 9,
},
{
.bitrate = 48 * 10,
.hw_value = 10,
.hw_value_short = 10,
},
{
.bitrate = 54 * 10,
.hw_value = 11,
.hw_value_short = 11,
},
};
#define RATES_24_OFFS 0
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS 4
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
/* EEPROM reading functions */
static uint16_t iwl_eeprom_query16(const uint8_t* eeprom, size_t eeprom_size, int offset) {
if (WARN_ON(offset + sizeof(uint16_t) > eeprom_size)) {
return 0;
}
return le16_to_cpup((__le16*)(eeprom + offset));
}
static uint32_t eeprom_indirect_address(const uint8_t* eeprom, size_t eeprom_size,
uint32_t address) {
uint16_t offset = 0;
if ((address & INDIRECT_ADDRESS) == 0) {
return address;
}
switch (address & INDIRECT_TYPE_MSK) {
case INDIRECT_HOST:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_HOST);
break;
case INDIRECT_GENERAL:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_GENERAL);
break;
case INDIRECT_REGULATORY:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_REGULATORY);
break;
case INDIRECT_TXP_LIMIT:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_TXP_LIMIT);
break;
case INDIRECT_TXP_LIMIT_SIZE:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_TXP_LIMIT_SIZE);
break;
case INDIRECT_CALIBRATION:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_CALIBRATION);
break;
case INDIRECT_PROCESS_ADJST:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_PROCESS_ADJST);
break;
case INDIRECT_OTHERS:
offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_OTHERS);
break;
default:
WARN_ON(1);
break;
}
/* translate the offset from words to byte */
return (address & ADDRESS_MSK) + (offset << 1);
}
static const uint8_t* iwl_eeprom_query_addr(const uint8_t* eeprom, size_t eeprom_size,
uint32_t offset) {
uint32_t address = eeprom_indirect_address(eeprom, eeprom_size, offset);
if (WARN_ON(address >= eeprom_size)) {
return NULL;
}
return &eeprom[address];
}
static int iwl_eeprom_read_calib(const uint8_t* eeprom, size_t eeprom_size,
struct iwl_nvm_data* data) {
struct iwl_eeprom_calib_hdr* hdr;
hdr = (void*)iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_CALIB_ALL);
if (!hdr) {
return -ENODATA;
}
data->calib_version = hdr->version;
data->calib_voltage = hdr->voltage;
return 0;
}
/**
* enum iwl_eeprom_channel_flags - channel flags in EEPROM
* @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
* @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
* @EEPROM_CHANNEL_ACTIVE: active scanning allowed
* @EEPROM_CHANNEL_RADAR: radar detection required
* @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
* @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
*/
enum iwl_eeprom_channel_flags {
EEPROM_CHANNEL_VALID = BIT(0),
EEPROM_CHANNEL_IBSS = BIT(1),
EEPROM_CHANNEL_ACTIVE = BIT(3),
EEPROM_CHANNEL_RADAR = BIT(4),
EEPROM_CHANNEL_WIDE = BIT(5),
EEPROM_CHANNEL_DFS = BIT(7),
};
/**
* struct iwl_eeprom_channel - EEPROM channel data
* @flags: %EEPROM_CHANNEL_* flags
* @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
*/
struct iwl_eeprom_channel {
uint8_t flags;
int8_t max_power_avg;
} __packed;
enum iwl_eeprom_enhanced_txpwr_flags {
IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
};
/**
* iwl_eeprom_enhanced_txpwr structure
* @flags: entry flags
* @channel: channel number
* @chain_a_max_pwr: chain a max power in 1/2 dBm
* @chain_b_max_pwr: chain b max power in 1/2 dBm
* @chain_c_max_pwr: chain c max power in 1/2 dBm
* @delta_20_in_40: 20-in-40 deltas (hi/lo)
* @mimo2_max_pwr: mimo2 max power in 1/2 dBm
* @mimo3_max_pwr: mimo3 max power in 1/2 dBm
*
* This structure presents the enhanced regulatory tx power limit layout
* in an EEPROM image.
*/
struct iwl_eeprom_enhanced_txpwr {
uint8_t flags;
uint8_t channel;
int8_t chain_a_max;
int8_t chain_b_max;
int8_t chain_c_max;
uint8_t delta_20_in_40;
int8_t mimo2_max;
int8_t mimo3_max;
} __packed;
static int8_t iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data* data,
struct iwl_eeprom_enhanced_txpwr* txp) {
int8_t result = 0; /* (.5 dBm) */
/* Take the highest tx power from any valid chains */
if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result) {
result = txp->chain_a_max;
}
if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result) {
result = txp->chain_b_max;
}
if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result) {
result = txp->chain_c_max;
}
if ((data->valid_tx_ant == ANT_AB || data->valid_tx_ant == ANT_BC ||
data->valid_tx_ant == ANT_AC) &&
txp->mimo2_max > result) {
result = txp->mimo2_max;
}
if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result) {
result = txp->mimo3_max;
}
return result;
}
#define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
#define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
#define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
#define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? #x " " : "")
static void iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data* data,
struct iwl_eeprom_enhanced_txpwr* txp, int n_channels,
int8_t max_txpower_avg) {
int ch_idx;
enum nl80211_band band;
band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ? NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
struct ieee80211_channel* chan = &data->channels[ch_idx];
/* update matching channel or from common data only */
if (txp->channel != 0 && chan->hw_value != txp->channel) {
continue;
}
/* update matching band only */
if (band != chan->band) {
continue;
}
if (chan->max_power < max_txpower_avg && !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ)) {
chan->max_power = max_txpower_avg;
}
}
}
static void iwl_eeprom_enhanced_txpower(struct device* dev, struct iwl_nvm_data* data,
const uint8_t* eeprom, size_t eeprom_size, int n_channels) {
struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
int idx, entries;
__le16* txp_len;
int8_t max_txp_avg_halfdbm;
BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
/* the length is in 16-bit words, but we want entries */
txp_len = (__le16*)iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_TXP_SZ_OFFS);
entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
txp_array = (void*)iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_TXP_OFFS);
for (idx = 0; idx < entries; idx++) {
txp = &txp_array[idx];
/* skip invalid entries */
if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID)) {
continue;
}
IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
(txp->channel && (txp->flags & IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE))
? "Common "
: (txp->channel) ? "Channel" : "Common",
(txp->channel), TXP_CHECK_AND_PRINT(VALID), TXP_CHECK_AND_PRINT(BAND_52G),
TXP_CHECK_AND_PRINT(OFDM), TXP_CHECK_AND_PRINT(40MHZ),
TXP_CHECK_AND_PRINT(HT_AP), TXP_CHECK_AND_PRINT(RES1),
TXP_CHECK_AND_PRINT(RES2), TXP_CHECK_AND_PRINT(COMMON_TYPE), txp->flags);
IWL_DEBUG_EEPROM(dev, "\t\t chain_A: %d chain_B: %d chain_C: %d\n", txp->chain_a_max,
txp->chain_b_max, txp->chain_c_max);
IWL_DEBUG_EEPROM(dev, "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
txp->mimo2_max, txp->mimo3_max, ((txp->delta_20_in_40 & 0xf0) >> 4),
(txp->delta_20_in_40 & 0x0f));
max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
iwl_eeprom_enh_txp_read_element(data, txp, n_channels, DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm) {
data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
}
}
}
static void iwl_init_band_reference(const struct iwl_cfg* cfg, const uint8_t* eeprom,
size_t eeprom_size, int eeprom_band, int* eeprom_ch_count,
const struct iwl_eeprom_channel** ch_info,
const uint8_t** eeprom_ch_array) {
uint32_t offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
*ch_info = (void*)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
switch (eeprom_band) {
case 1: /* 2.4GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
*eeprom_ch_array = iwl_eeprom_band_1;
break;
case 2: /* 4.9GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
*eeprom_ch_array = iwl_eeprom_band_2;
break;
case 3: /* 5.2GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
*eeprom_ch_array = iwl_eeprom_band_3;
break;
case 4: /* 5.5GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
*eeprom_ch_array = iwl_eeprom_band_4;
break;
case 5: /* 5.7GHz band */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
*eeprom_ch_array = iwl_eeprom_band_5;
break;
case 6: /* 2.4GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
*eeprom_ch_array = iwl_eeprom_band_6;
break;
case 7: /* 5 GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
*eeprom_ch_array = iwl_eeprom_band_7;
break;
default:
*eeprom_ch_count = 0;
*eeprom_ch_array = NULL;
WARN_ON(1);
}
}
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? #x " " : "")
static void iwl_mod_ht40_chan_info(struct device* dev, struct iwl_nvm_data* data, int n_channels,
enum nl80211_band band, uint16_t channel,
const struct iwl_eeprom_channel* eeprom_ch,
uint8_t clear_ht40_extension_channel) {
struct ieee80211_channel* chan = NULL;
int i;
for (i = 0; i < n_channels; i++) {
if (data->channels[i].band != band) {
continue;
}
if (data->channels[i].hw_value != channel) {
continue;
}
chan = &data->channels[i];
break;
}
if (!chan) {
return;
}
IWL_DEBUG_EEPROM(
dev, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n", channel,
band == NL80211_BAND_5GHZ ? "5.2" : "2.4", CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), CHECK_AND_PRINT(DFS), eeprom_ch->flags,
eeprom_ch->max_power_avg,
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR))
? ""
: "not ");
if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) {
chan->flags &= ~clear_ht40_extension_channel;
}
}
#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? #x " " : "")
static int iwl_init_channel_map(struct device* dev, const struct iwl_cfg* cfg,
struct iwl_nvm_data* data, const uint8_t* eeprom,
size_t eeprom_size) {
int band, ch_idx;
const struct iwl_eeprom_channel* eeprom_ch_info;
const uint8_t* eeprom_ch_array;
int eeprom_ch_count;
int n_channels = 0;
/*
* Loop through the 5 EEPROM bands and add them to the parse list
*/
for (band = 1; band <= 5; band++) {
struct ieee80211_channel* channel;
iwl_init_band_reference(cfg, eeprom, eeprom_size, band, &eeprom_ch_count, &eeprom_ch_info,
&eeprom_ch_array);
/* Loop through each band adding each of the channels */
for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
const struct iwl_eeprom_channel* eeprom_ch;
eeprom_ch = &eeprom_ch_info[ch_idx];
if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
IWL_DEBUG_EEPROM(dev, "Ch. %d Flags %x [%sGHz] - No traffic\n", eeprom_ch_array[ch_idx],
eeprom_ch_info[ch_idx].flags, (band != 1) ? "5.2" : "2.4");
continue;
}
channel = &data->channels[n_channels];
n_channels++;
channel->hw_value = eeprom_ch_array[ch_idx];
channel->band = (band == 1) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
channel->center_freq = ieee80211_channel_to_frequency(channel->hw_value, channel->band);
/* set no-HT40, will enable as appropriate later */
channel->flags = IEEE80211_CHAN_NO_HT40;
if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS)) {
channel->flags |= IEEE80211_CHAN_NO_IR;
}
if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE)) {
channel->flags |= IEEE80211_CHAN_NO_IR;
}
if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR) {
channel->flags |= IEEE80211_CHAN_RADAR;
}
/* Initialize regulatory-based run-time data */
channel->max_power = eeprom_ch_info[ch_idx].max_power_avg;
IWL_DEBUG_EEPROM(dev, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
channel->hw_value, (band != 1) ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(DFS),
eeprom_ch_info[ch_idx].flags, eeprom_ch_info[ch_idx].max_power_avg,
((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_IBSS) &&
!(eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_RADAR))
? ""
: "not ");
}
}
if (cfg->eeprom_params->enhanced_txpower) {
/*
* for newer device (6000 series and up)
* EEPROM contain enhanced tx power information
* driver need to process addition information
* to determine the max channel tx power limits
*/
iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size, n_channels);
} else {
/* All others use data from channel map */
int i;
data->max_tx_pwr_half_dbm = -128;
for (i = 0; i < n_channels; i++)
data->max_tx_pwr_half_dbm =
max_t(int8_t, data->max_tx_pwr_half_dbm, data->channels[i].max_power * 2);
}
/* Check if we do have HT40 channels */
if (cfg->eeprom_params->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
cfg->eeprom_params->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40) {
return n_channels;
}
/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
for (band = 6; band <= 7; band++) {
enum nl80211_band ieeeband;
iwl_init_band_reference(cfg, eeprom, eeprom_size, band, &eeprom_ch_count, &eeprom_ch_info,
&eeprom_ch_array);
/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
ieeeband = (band == 6) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
/* Loop through each band adding each of the channels */
for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
/* Set up driver's info for lower half */
iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband, eeprom_ch_array[ch_idx],
&eeprom_ch_info[ch_idx], IEEE80211_CHAN_NO_HT40PLUS);
/* Set up driver's info for upper half */
iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband, eeprom_ch_array[ch_idx] + 4,
&eeprom_ch_info[ch_idx], IEEE80211_CHAN_NO_HT40MINUS);
}
}
return n_channels;
}
#endif // NEEDS_PORTING
int iwl_init_sband_channels(struct iwl_nvm_data* data, struct ieee80211_supported_band* sband,
int n_channels, wlan_info_band_t band) {
struct ieee80211_channel* chan = &data->channels[0];
int n = 0, idx = 0;
while (idx < n_channels && chan->band != band) {
chan = &data->channels[++idx];
}
sband->channels = &data->channels[idx];
while (idx < n_channels && chan->band == band) {
chan = &data->channels[++idx];
n++;
}
sband->n_channels = n;
return n;
}
#if 0 // NEEDS_PORTING
#define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
#define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
void iwl_init_ht_hw_capab(const struct iwl_cfg* cfg, struct iwl_nvm_data* data,
struct ieee80211_sta_ht_cap* ht_info, enum nl80211_band band,
uint8_t tx_chains, uint8_t rx_chains) {
int max_bit_rate = 0;
tx_chains = hweight8(tx_chains);
if (cfg->rx_with_siso_diversity) {
rx_chains = 1;
} else {
rx_chains = hweight8(rx_chains);
}
if (!(data->sku_cap_11n_enable) || (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) ||
!cfg->ht_params) {
ht_info->ht_supported = false;
return;
}
if (data->sku_cap_mimo_disabled) {
rx_chains = 1;
}
ht_info->ht_supported = true;
ht_info->cap = IEEE80211_HT_CAP_DSSSCCK40;
if (cfg->ht_params->stbc) {
ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
if (tx_chains > 1) {
ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
}
}
if (cfg->ht_params->ldpc) {
ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
}
if ((cfg->mq_rx_supported && iwlwifi_mod_params.amsdu_size == IWL_AMSDU_DEF) ||
iwlwifi_mod_params.amsdu_size >= IWL_AMSDU_8K) {
ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
}
ht_info->ampdu_factor = cfg->max_ht_ampdu_exponent;
ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
ht_info->mcs.rx_mask[0] = 0xFF;
if (rx_chains >= 2) {
ht_info->mcs.rx_mask[1] = 0xFF;
}
if (rx_chains >= 3) {
ht_info->mcs.rx_mask[2] = 0xFF;
}
if (cfg->ht_params->ht_greenfield_support) {
ht_info->cap |= IEEE80211_HT_CAP_GRN_FLD;
}
ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
max_bit_rate = MAX_BIT_RATE_20_MHZ;
if (cfg->ht_params->ht40_bands & BIT(band)) {
ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
max_bit_rate = MAX_BIT_RATE_40_MHZ;
}
/* Highest supported Rx data rate */
max_bit_rate *= rx_chains;
WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
/* Tx MCS capabilities */
ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (tx_chains != rx_chains) {
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_chains - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
}
static void iwl_init_sbands(struct device* dev, const struct iwl_cfg* cfg,
struct iwl_nvm_data* data, const uint8_t* eeprom, size_t eeprom_size) {
int n_channels = iwl_init_channel_map(dev, cfg, data, eeprom, eeprom_size);
int n_used = 0;
struct ieee80211_supported_band* sband;
sband = &data->bands[NL80211_BAND_2GHZ];
sband->band = NL80211_BAND_2GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
sband->n_bitrates = N_RATES_24;
n_used += iwl_init_sband_channels(data, sband, n_channels, NL80211_BAND_2GHZ);
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, data->valid_tx_ant,
data->valid_rx_ant);
sband = &data->bands[NL80211_BAND_5GHZ];
sband->band = NL80211_BAND_5GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels, NL80211_BAND_5GHZ);
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, data->valid_tx_ant,
data->valid_rx_ant);
if (n_channels != n_used) {
IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n", n_used, n_channels);
}
}
/* EEPROM data functions */
struct iwl_nvm_data* iwl_parse_eeprom_data(struct device* dev, const struct iwl_cfg* cfg,
const uint8_t* eeprom, size_t eeprom_size) {
struct iwl_nvm_data* data;
const void* tmp;
uint16_t radio_cfg, sku;
if (WARN_ON(!cfg || !cfg->eeprom_params)) {
return NULL;
}
data = kzalloc(sizeof(*data) + sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS, GFP_KERNEL);
if (!data) {
return NULL;
}
/* get MAC address(es) */
tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
if (!tmp) {
goto err_free;
}
memcpy(data->hw_addr, tmp, ETH_ALEN);
data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_NUM_MAC_ADDRESS);
if (iwl_eeprom_read_calib(eeprom, eeprom_size, data)) {
goto err_free;
}
tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
if (!tmp) {
goto err_free;
}
memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_RAW_TEMPERATURE);
if (!tmp) {
goto err_free;
}
data->raw_temperature = *(__le16*)tmp;
tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_KELVIN_TEMPERATURE);
if (!tmp) {
goto err_free;
}
data->kelvin_temperature = *(__le16*)tmp;
data->kelvin_voltage = *((__le16*)tmp + 1);
radio_cfg = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG);
data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
sku = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_SKU_CAP);
data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) {
data->sku_cap_11n_enable = false;
}
data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_VERSION);
/* check overrides (some devices have wrong EEPROM) */
if (cfg->valid_tx_ant) {
data->valid_tx_ant = cfg->valid_tx_ant;
}
if (cfg->valid_rx_ant) {
data->valid_rx_ant = cfg->valid_rx_ant;
}
if (!data->valid_tx_ant || !data->valid_rx_ant) {
IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n", data->valid_tx_ant, data->valid_rx_ant);
goto err_free;
}
iwl_init_sbands(dev, cfg, data, eeprom, eeprom_size);
return data;
err_free:
kfree(data);
return NULL;
}
IWL_EXPORT_SYMBOL(iwl_parse_eeprom_data);
#endif // NEEDS_PORTING